Cicli combinati - Introduzione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Cicli combinati - Introduzione"

Transcript

1 Cicli combinati - Introduzione Pag.

2 Cicli combinati - Introduzione L'attuale diffusione degli impianti con turbina a gas è dovuta anche ai cicli combinati gas-vapore, nei quali si recupera il calore sensibile dei gas di scarico del turbogas, portandoli al camino a temperature prossime a quella atmosferica. La constatazione della vicinanza dei livelli di temperatura dei gas di scarico della turbina a gas con quelli massimi tipici degli impianti a vapore ( C) porta a considerare la possibilità di combinare in serie i due impianti. Ciò non comporta modifiche sostanziali nei cicli di riferimento; da un punto di vista tecnologico non si richiedono consistenti modifiche o innovazioni. Il problema del perfezionamento delle prestazioni é legato al trasferimento di calore fra due fluidi con comportamenti diversi rispetto alla variazione di temperatura determinata dallo scambio di calore (gas perfetto e fluido con transizione di fase). Pag. 2

3 A fianco é rappresentato lo schema e il diagramma -s di un ciclo combinato gas-vapore a recupero ( Unfired ), ovvero basato sul solo recupero del calore sensibile dei gas di scarico della turbina a gas. Il ciclo urbogas viene denominato opper o ciclo sovrapposto Il ciclo a vapore viene denominato Bottomer o ciclo sottoposto Cicli combinati Unfired C m A 2 CC m F 3 G 4 S m G e HRSG c d b P S a S COND m S f S Le entropie sono opportunamente scalate, nei due cicli, in modo che risultino corrispondenti i calori scambiati, (aree sottese alle trasformazioni) Pag. 3

4 Cicli combinati Unfired/Fired - Rendimento Fired Q Unfired Q η W = ; Q 2 = Q ( Q η ) W W FIRED UNFIRED Q E 2 Q 2 W 2 2 Q 2 W 2 η 2 ε = = Q 2 Q E Q W2 + ε Q η 2 = W Q 2 2 Q 3 Q 3 η CC η η η2 = + η2 + ε + ε η CC = η + η2 η η2 Formule elementari per il calcolo del rendimento di un ciclo combinato Pag. 4

5 Cicli combinati Rendimento caldaia a recupero H R S G 2 Q Q 2 Q 3 Q 4 Q 5 W W 2 E necessario considerare nell impianto la caldaia a recupero (HRSG), che non consente il trasferimento di tutto il calore Q 2 all impianto a vapore, rilasciandone una certa frazione all ambiente con la portata al camino. Il rendimento della caldaia a recupero risulta e per il caso unfired: η com η = η + η HRSG Il rendimento dell'impianto combinato dipende dal prodotto dei rendimenti di caldaia a recupero e ciclo sottoposto η HRSG *η 2. Le temperature di scarico delle turbine a gas variano entro i C e la temperatura st al camino tende a C, quindi il valore di η cr si situa attorno a = Q Q emperatura al camino = / η η η η HRSG 2 2 HRSG st Pag. 5

6 Cicli combinati Monopressione - Ottimizzazione 4 appr SH p B > p A sb pinch pinch stb Per migliorare η HRSG bisogna abbassare la temperatura al camino st, ovvero: eliminare la rigenerazione interna al ciclo a vapore (spillamenti), che condurrebbe acqua preriscaldata al generatore di vapore; l acqua deve arrivare direttamente dal condensatore, con a_in più bassa possibile 0% sa Surface or Heat 00% sta a_in adottare valori molto contenuti di pinch (differenza di temperatura al Pinch Point). scegliere bassi valori della pressurizzazione del ciclo sottoposto, in modo da avere una temperatura di saturazione più bassa. Pag. 6 Basse pressioni del vapore determinano però rendimenti η 2 contenuti per il ciclo a vapore; il recupero di calore è esteso, ma il suo utilizzo è inefficiente. Per massimizzare il prodotto η HRSG η 2, si ricorre al frazionamento in più livelli di pressione della transizione di fase, contenendo le irreversibilità nello scambio termico.

7 Cicli combinati Repowering Gli interventi di ripotenziamento di impianti esistenti mediante turbine a gas, ( Repowering ) risultano particolarmente interessanti perché consentono di incrementare sia il rendimento che la potenza. Esistono varie possibilità di repowering: Interventi che prevedono la modifica della caldaia dell impianto a vapore, con un sostanziale apporto di combustibile nella stessa (ciclo combinato fired) Repowering sull acqua di alimento: eliminazione degli spillamenti delle sezioni di preriscaldo dell acqua di alimento, alimentate dall uso dei gas di scarico della turbina. Repowering sull aria comburente: alimentazione diretta della caldaia, tramite i gas di scarico caldi della turbina, che contengono ancora una notevole quantità di ossigeno (circa 5%) (rendimento + 5-7%). Il Repowering sull acqua di alimento consente di collocare il gruppo turbogas a distanze ragionevoli dall impianto a vapore (00-300m); nel caso di repowering sull aria comburente, la notevole portata dei gas di scarico del turbogas deve essere immessa direttamente in caldaia (il turbogas deve essere adiacente alla caldaia) Interventi di sostituzione della caldaia con caldaia a recupero unfired, con incrementi di potenza e rendimento elevati Diventa necessario modificare la turbina a vapore. La situazione più comune è il Repowering sull acqua di alimento. Pag. 7

8 Cicli combinati - Esempi di Repowering (Acqua alimento) Intervento di preriscaldo acqua alimento su semplice ciclo a vapore Intervento di sostituzione della linea rigenerativa acqua alimento di alta pressione su impianto a vapore rigenerativo. Pag. 8

9 Cicli combinati - Gassificatori Un altro sviluppo del ciclo combinato riguarda la possibilità di utilizzare combustibili solidi, o, comunque non pregiati, in un impianto basato sulla turbina a gas. Si adotta un processo di gassificazione in condizioni pressurizzate, realizzando un impianto IGCC (Integrated Gassifier Combined Cycle). I combustibili utilizzabili vanno dai residui della distillazione del petrolio al carbone, fino alle biomasse ed al combustibile derivato da rifiuti (CDR). La gassificazione del combustibile consente una consistente riduzione delle emissioni inquinanti rispetto alla combustione diretta. La gassificazione é un importante risorsa strategica, nella prospettiva di dover ricorrere all uso di combustibili alternativi al petrolio. Le caratteristiche del gas di sintesi prodotto della gassificazione dipendono dalle proprietà del combustibile (potere calorifico, composizione) e dal processo adottato (impiego di aria o ossigeno, con o senza uso di vapore) Pag. 9

10 Cicli combinati - IGCC Ciclo combinato con gassificazione integrata IGCC Nel Nord America esistono IGCC da carbone già attivi da diversi anni In Europa ed in Italia si sono recentemente diffusi impianti con gassificazione di residui di raffineria (SARLUX, AGIP Ragusa, ) Nella maggior parte dei casi, l integrazione tra Gassificatore e Ciclo combinato è molto più estesa rispetto a questo esempio. Ciò risulta necessario per ottenere un rendimento complessivo elevato (45 50%). Pag. 0

11 Cicli combinati - Caratteristiche delle Caldaie a Recupero Nella caldaia a recupero (nel caso di ciclo combinato completamente a recupero) lo scambio termico avviene per convezione, a differenza della caldaia tradizionale, dove la trasmissione del calore è per irraggiamento e convezione. Parametro HRSG Caldaia tradizionale Portata dei gas [t/h/mw] Superfici scambio [m 2 /MW] * 300 Volume caldaia [m 3 /MW] * Nota: MW relativi alla potenza erogata dalla turbina a vapore. * = preriscaldatori d aria esclusi. La post-combustione nell HRSG non altera tali condizioni, perché la temperatura massima è limitata ( C) in quanto conviene che il ciclo combinato operi principalmente a recupero. Acqua di alimento 60 C Vapore 500 C Gas esausti 530 C ECO EVA SH 60 C Vapore 500 C Aria e combustibile SH 00 C EVA 500 C Acqua 50 C ECO 400 C Gas di scarico HRSG a circolazione assistita senza postcombustione ad un livello di pressione Caldaia tradizionale a circolazione naturale Pag.

12 Cicli combinati Caratteristiche dei turbogas Le prestazioni di caldaia a recupero e ciclo bottomer dipendono molto dalla temperatura di scarico ( 4 ) della turbina a gas; 4 aumenta con la temperatura massima max = 3 del turbogas; diminuisce al crescere di β. E opportuno pertanto limitare il rapporto di compressione della turbina a gas. In generale si adotta β = 0-20; in alternativa si può ricorrere a turbogas con postcombustione (ABB G24/26) o alla postcombustione diretta nella caldaia a recupero. Il rendimento del ciclo combinato presenta un massimo per un preciso valore del rapporto di compressione ß; il valore del massimo risulta superiore per bassi valori di ß ed elevate pressurizzazioni del bottomer p B. Rendimenti dell'ordine del % sono raggiungibili con le odierne tecnologie, su impianti di taglia unitaria contenuta ( MWe). Pag. 2

13 Cicli combinati - HRSG La transizione di fase acqua-vapore comporta un tratto di trasformazione isoterma che introduce, in alcune zone della caldaia, forti differenze di temperatura fra i due fluidi (gas ed acqua/vapore) Riferendosi alla figura (caldaia ad un solo livello di pressione), al raggiungimento delle condizioni di saturazione dell acqua, si ottiene la minima differenza di temperatura fra i gas e l acqua stessa. PP (Pinch Point); un altro punto caratteristico è rappresentato dalla differenza di temperatura fra gas e vapore denominata Approach AP. La presenza di un modesto sottoraffreddamento (D cd =5-5 C) all ingresso del corpo evaporatore è necessaria per eliminare i rischi di evaporazione prematura nei fasci tubieri dell economizzatore. st η HRSG approach point sottoraffreddamento = Q Q = / st 4 Pag. 3

14 Cicli combinati - HRSG - emperature Il valore minimo della differenza di temperatura al pinch point si situa in genere tra i 0 e i 5 C La temperatura 4 dei gas di scarico delle turbine a gas é in genere nella fascia C; Lo sviluppo delle turbine a gas per uso terrestre, specificamente destinate ad applicazioni in cicli combinati, ha portato in alcuni casi a superare i 600 C allo scarico, con riflessi positivi sul rendimento della caldaia a recupero e sul rendimento complessivo del ciclo combinato sottoraffreddamento approach point Pag. 4

15 4 appr SH 0% Ciclo combinato monopressione - Bilancio HRSG Approach appr e pinch sono i dati di ingresso per il bilancio energetico, che deve essere condotto per la sola zona precedente il PP in modo da determinare m v : m g c pg ( 4 - pinch ) = m v [ h SH (p v, 4 - appr ) - h L (p v, s )] SH VAP ECO X s pinch Surface or Heat L = Liq. saturo pinch 00% st a_in Incognita La temperatura dei gas al camino st - una volta determinata m v - risulta dal bilancio dell ECO: m g c pg ( pinch - st ) = m v [h L (p v, st )-h a (p v, a_in )] L = Liq. saturo Il bilancio globale della caldaia non é direttamente utilizzabile, in quanto in un unica equazione sarebbero presenti 2 incognite m v e st. La pressione del circuito acqua-vapore è generalmente compresa tra i 30 e i 70 bar. La caldaia monopressione non garantisce un efficiente recupero del calore; la temperatura al camino di solito non scende sotto i 70 C. Il rendimento del ciclo combinato risulta < 50%. Pag. 5

16 Ciclo combinato ad un livello di pressione Considerati i valori moderati della pressurizzazione, le caldaie sono del tipo con evaporatore a corpo cilindrico, e circolazione naturale od assistita. Pag. 6

17 Pag. 7 Cicli combinati - HRSG a due livelli di pressione L efficienza del ciclo può essere migliorata utilizzando una caldaia a due livelli di pressione. L acqua entra in caldaia a recupero a due livelli di pressione distinti: un circuito di bassa pressione (5-0 bar) ed un circuito ad alta pressione (70-00 bar). Il vapore prodotto nell HRSG viene inviato a due sezioni distinte della turbina. Alla turbina di bassa pressione arriva anche la portata di scarico della turbina di alta pressione L impianto in questo caso è più costoso, perché la caldaia a recupero è più complessa, ma si ottengono rendimenti maggiori perché il recupero del calore è migliore. La ripartizione delle due portate m AP e m BP é determinata dal bilancio della caldaia e dalla scelta dei livelli di pressione

18 Andamento delle temperatura di gas e acqua/vapore nelle diverse tipologie di HRSG Caldaia I livello L area compresa fra le curve si riduce nel due livelli Caldaia II livelli La portata di vapore di bassa pressione è sensibilmente ridotta La temperatura al camino è più bassa nel due livelli Q Il surriscaldamento di bassa pressione può essere eliminato per facilitare il controllo del ciclo a vapore Q Pag. 8

19 Ciclo combinato a tre livelli di pressione Negli HRSG a tre livelli di pressione la pressione massima si attesta su valori dell ordine di bar. Il rendimento dell impianto aumenta perché si recupera maggiormente il calore dai gas di scarico; la temperatura dei gas al camino risulta molto bassa, con valori prossimi ai 00 C Si usa necessariamente gas naturale come combustibile per evitare condense acide; inoltre, materiali anticorrosione per il tratto terminale della caldaia. Ciclo combinato tre livelli di pressione con risurriscaldamento (Reheat) E la configurazione che conduce al massimo rendimento, adatta per grandi impianti Pag. 9

20 Ciclo combinato a tre livelli di pressione + reheat Il vapore in uscita dalla turbina di alta pressione viene riunito alla portata in uscita dall evaporatore di media pressione, risurriscaldato (SH2) e poi inviato alla turbina di media pressione. Pag. 20

21 Esempio di ciclo a tre livelli di pressione+ Reheat (Nuovo Pignone GE) Pag. 2

Roberto Lensi 1. Complementi sui sistemi termici Pag. 33 MOTORE DINAMICO A GAS Sistemi a combustione esterna o interna

Roberto Lensi 1. Complementi sui sistemi termici Pag. 33 MOTORE DINAMICO A GAS Sistemi a combustione esterna o interna Roberto Lensi 1. Complementi sui sistemi termici Pag. 33 MOTORE DINAMICO A GAS Sistemi a combustione esterna o interna Ciclo termodinamico ideale Joule (Brayton) Ciclo termodinamico ideale Holzwarth Schema

Dettagli

Esercitazione 4 Cicli a vapore avanzati

Esercitazione 4 Cicli a vapore avanzati Esercitazione 4 Cicli a vapore avanzati Questa esercitazione prevede il confronto di 5 diverse configurazioni relative ad un ciclo a vapore USC. Per effettuare i calcoli è stato utilizzato il programma

Dettagli

Cicli H2 O2 per la produzione di energia elettrica Modifica dell impianto Icaro per funzionamento con idrogeno

Cicli H2 O2 per la produzione di energia elettrica Modifica dell impianto Icaro per funzionamento con idrogeno Cicli H2 O2 per la produzione di energia elettrica Modifica dell impianto Icaro per funzionamento con idrogeno Ing. Marino Avitabile, Ing. Paolo Fiorini Cicli ad idrogeno e ossigeno La realizzazione di

Dettagli

UNIVERSITÀ DEGLI STUDI DI PISA. 4. Sistemi Termici Motori Sistemi Motori a Vapore. Roberto Lensi

UNIVERSITÀ DEGLI STUDI DI PISA. 4. Sistemi Termici Motori Sistemi Motori a Vapore. Roberto Lensi Roberto Lensi 4. Sistemi Termici Motori 4.1. Sistemi Motori a Vapore Pag. 1 di 24 UNIVERSITÀ DEGLI STUDI DI PISA FACOLTÀ DI INGEGNERIA 4. Sistemi Termici Motori 4.1. Sistemi Motori a Vapore Roberto Lensi

Dettagli

Esercitazione 2 Ciclo a vapore a recupero

Esercitazione 2 Ciclo a vapore a recupero Esercitazione 2 Ciclo a vapore a recupero Lo scopo di questa esercitazione è la progettazione di un ciclo a recupero: l impianto è composto da un ciclo a vapore ad un livello di pressione che utilizza

Dettagli

Rigenerazione Ciclo ideale -1

Rigenerazione Ciclo ideale -1 Rigenerazione Ciclo ideale - Migliorare le prestazioni di un ciclo termodinamico significa. Incrementare il lavoro utile ( W u ) Incrementare il rendimento ( W u, Q ) La Rigenerazione sostituisce parzialmente

Dettagli

Caso studio: L impianto di gassificazione di Malagrotta

Caso studio: L impianto di gassificazione di Malagrotta SEMINARIO RESIDENZIALE: Analisi e ricomposizione dei conflitti ambientali in materia di gestione del ciclo dei rifiuti e impianti per la produzione di energia, aspetti tecnici, normativi, sociali e sanitari

Dettagli

L A C E N T R A L E T U R B I G O

L A C E N T R A L E T U R B I G O LA CENTRALE TURBIGO G E Centrale di Turbigo Castano Primo Buscate A-C Turbigo F B-D A - Valle del Ticino B - Boschi del Ticino C - Valle del Ticino D - Turbigaccio, Boschi di Castelletto e Lanca di Bernate

Dettagli

UNIVERSITÀ DEGLI STUDI DI PISA. 2. Sistemi motori gas/vapore. Roberto Lensi

UNIVERSITÀ DEGLI STUDI DI PISA. 2. Sistemi motori gas/vapore. Roberto Lensi Roberto Lensi 2. Sistemi motori gas/vapore Pag. 1 UNIVERSITÀ DEGLI STUDI DI PISA FACOLTÀ DI INGEGNERIA 2. Sistemi motori gas/vapore Roberto Lensi DIPARTIMENTO DI ENERGETICA Anno Accademico 2003-04 Roberto

Dettagli

Indice. Prefazione alla terza edizione italiana...xi. Ringraziamenti dell Editore...XIII. Guida alla lettura...xiv

Indice. Prefazione alla terza edizione italiana...xi. Ringraziamenti dell Editore...XIII. Guida alla lettura...xiv Prefazione alla terza edizione italiana...xi Ringraziamenti dell Editore...XIII Guida alla lettura...xiv 1 INTRODUZIONE E UNO SGUARDO D INSIEME...1 1.1 Introduzione alle scienze termiche...2 1.2 La termodinamica

Dettagli

Centrale di Moncalieri 2 G T

Centrale di Moncalieri 2 G T Centrale di Moncalieri 2 G T Iren Energia è la società del Gruppo Iren che opera nei settori della produzione e distribuzione di energia elettrica, nella produzione e distribuzione di energia termica per

Dettagli

Impianti a turbogas. Scheda riassuntiva 8 capitolo 15. Il ciclo ideale di riferimento. Impianto a turbogas. Volume 2 (cap. 15) Impianti a turbogas

Impianti a turbogas. Scheda riassuntiva 8 capitolo 15. Il ciclo ideale di riferimento. Impianto a turbogas. Volume 2 (cap. 15) Impianti a turbogas Scheda riassuntiva 8 capitolo 5 Impianti a turbogas Il ciclo ideale di riferimento È il ciclo Brayton-Joule ad aria, costituito da due adiabatiche isoentropiche e due scambi termici a pressione costante.

Dettagli

UNIVERSITÀ DEGLI STUDI DI PISA. 4. Sistemi Motori a Vapore. Roberto Lensi

UNIVERSITÀ DEGLI STUDI DI PISA. 4. Sistemi Motori a Vapore. Roberto Lensi Roberto Lensi 4. Sistemi Motori a Vapore Pag. 1 UNIVERSITÀ DEGLI STUDI DI PISA FACOLTÀ DI INGEGNERIA 4. Sistemi Motori a Vapore Roberto Lensi DIPARTIMENTO DI ENERGETICA Anno Accademico 2006-07 Roberto

Dettagli

IMPIANTO ALIMENTATO CON BIOMASSA VEGETALE 1 MWe

IMPIANTO ALIMENTATO CON BIOMASSA VEGETALE 1 MWe IMPIANTO ALIMENTATO CON BIOMASSA VEGETALE 1 MWe 03/05/2016 AREA IMPIANTI s.p.a. via Leonino da Zara, 3/A 35020 z.i. Albignasego (PADOVA) Tel +39.049.8626426 Fax +39.049.8626422 Videoconference +39.049.8629238

Dettagli

gli impianti di cogenerazione e il Teleriscaldamento a Torino

gli impianti di cogenerazione e il Teleriscaldamento a Torino gli impianti di cogenerazione e il Teleriscaldamento a Torino Iren Energia è la società del Gruppo Iren che opera nei settori della produzione e distribuzione di energia elettrica, nella produzione e distribuzione

Dettagli

REFORMING dei COMBUSTIBILI

REFORMING dei COMBUSTIBILI MODELLAZIONE e SIMULAZIONE dei SISTEMI ENERGETICI REFORMING dei COMBUSTIBILI Ing. Vittorio Tola DIMCM - Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali PRODUZIONE di IDROGENO Negli ultimi

Dettagli

VALORIZZAZIONE ENERGETICA DEI RIFIUTI: NUOVE SOLUZIONI

VALORIZZAZIONE ENERGETICA DEI RIFIUTI: NUOVE SOLUZIONI VALORIZZAZIONE ENERGETICA DEI RIFIUTI: NUOVE SOLUZIONI GIANCARLO BALDI, MILENA BERNARDI Dip.. Scienza dei materiali e Ingegneria Chimica POLITECNICO di TORINO Incontro AEIT 22 maggio 2008 RIFIUTI Problema

Dettagli

BARRIERE ALLA MICROCOGENERAZIONE. Giuseppe Tomassetti

BARRIERE ALLA MICROCOGENERAZIONE. Giuseppe Tomassetti BARRIERE ALLA MICROCOGENERAZIONE Giuseppe Tomassetti La Cogenerazione o produzione combinata di elettricità e calore è una tecnologia piuttosto diffusa in Italia nel 2001, circa il 23% dell elettricità

Dettagli

Macchine termiche: ciclo di Carnot

Macchine termiche: ciclo di Carnot Macchine termiche: ciclo di Carnot Una macchina termica (o motore termico) è un dispositivo che scambia calore con l ambiente (attraverso un fluido motore) producendo lavoro in modo continuo, tramite un

Dettagli

ENERGIA DAL CALORE GENERAZIONE LOCALE DI ENERGIA CON LA TECNOLOGIA ORC

ENERGIA DAL CALORE GENERAZIONE LOCALE DI ENERGIA CON LA TECNOLOGIA ORC ENERGIA DAL CALORE GENERAZIONE LOCALE DI ENERGIA CON LA TECNOLOGIA ORC + Incrementa la produzione di energia dei motori del 10 % + Cogenerazione a livello locale da biomassa solida LA NOSTRA VISIONE Triogen

Dettagli

Il ciclo integrato della gestione dei rifiuti (raccolta, riciclo, recupero e smaltimento): situazione e prospettive

Il ciclo integrato della gestione dei rifiuti (raccolta, riciclo, recupero e smaltimento): situazione e prospettive Il ciclo integrato della gestione dei rifiuti (raccolta, riciclo, recupero e smaltimento): situazione e prospettive MODULO 5 LA PRODUZIONE DI ENERGIA DA RIFIUTI 1 /2 6 LA PRODUZIONE DI ENERGIA DA RIFIUTI

Dettagli

La cogenerazione in Italia. F. Sanson. Giornata di confronto sull applicazione della direttiva

La cogenerazione in Italia. F. Sanson. Giornata di confronto sull applicazione della direttiva CESI RICERCA Giornata di confronto sull applicazione della direttiva europea 2004/8 Milano La cogenerazione in Italia F. Sanson CESI Ricerca Dip. Sistemi di Generazione sanson@cesiricerca.it Cogenerazione

Dettagli

Ing. Riccardo Castorri

Ing. Riccardo Castorri Reti di teleriscaldamento AIMAG a Mirandola, dalla Cogenerazione ad Alto Rendimento all uso progressivo di calore rinnovabile a chilometro zero: UNA OPPORTUNITA PER IL TERRITORIO Ing. Riccardo Castorri

Dettagli

air protection technology

air protection technology ADS Adsorbimento su carboni attivi e rigenerazione Campo di applicazione Recupero solventi clorurati e non clorurati. Descrizione del processo Le S.O.V. adsorbite sui carboni attivi possono essere strippate

Dettagli

POLITECNICO DI TORINO

POLITECNICO DI TORINO POLITECNICO DI TORINO Vittorio Verda Dipartimento Energia POMPE DI CALORE GEOTERMICHE Il calore della terra a casa nostra. La Geotermia: cos è, come funziona, quanto si risparmia Pompe di calore a compressione

Dettagli

Stabilimento di Ferrera Erbognone

Stabilimento di Ferrera Erbognone Stabilimento di Ferrera Erbognone Lo Stabilimento Lo Stabilimento, ubicato nel Comune di Ferrera Erbognone (Pavia) nelle adiacenze della Raffineria Eni Divisione R&M di Sannazzaro de Burgondi, è il primo

Dettagli

Una strategia per l idrogeno, dalla produzione all impiego

Una strategia per l idrogeno, dalla produzione all impiego Una strategia per l idrogeno, dalla produzione all impiego Franco Donatini Enel - Ricerca Torino 7 Luglio 2006 Alcune domande Perché l idrogeno? H H H H Come e dove utilizzarlo? Come produrlo? H H C H

Dettagli

CAPITOLO 2 CICLO BRAYTON TURBINE A GAS

CAPITOLO 2 CICLO BRAYTON TURBINE A GAS CAPITOLO 2 CICLO BRAYTON TURBINE A GAS 1 CICLO BRAYTON IL CICLO TERMODINAMICO BRAYTON E COMPOSTO DA QUATTRO TRASFORMAZIONI PRINCIPALI (COMPRESSIONE, RISCALDAMENTO, ESPANSIONE E RAFFREDDAMENTO), PIÙ ALTRE

Dettagli

LA COGENERAZIONE: UN OPPORTUNITA PER LA NUOVA L INDUSTRIA ITALIANA

LA COGENERAZIONE: UN OPPORTUNITA PER LA NUOVA L INDUSTRIA ITALIANA Milano, 3 marzo 2016 CGT Energia LA COGENERAZIONE: UN OPPORTUNITA PER LA NUOVA L INDUSTRIA ITALIANA Ing. Francesco Lambri COGENERAZIONE. L ENERGIA EFFICIENTE. Milano, 3 marzo 2016 1 DEFINIZIONE Tecnologie

Dettagli

EVAPORAZIONE 2. Dati di progetto relativi ai vapori circolanti nell impianto:

EVAPORAZIONE 2. Dati di progetto relativi ai vapori circolanti nell impianto: EVAPORAZIONE 2 1. Una soluzione acquosa deve essere concentrata dal 10% al 25% in massa mediante un sistema di evaporazione a doppio effetto in controcorrente. Sapendo che: a) la soluzione diluita entra

Dettagli

ENERGIA DALLE FONTI RINNOVABILI ASPETTATIVE DALLE NUOVE TECNOLOGIE LE BIOMASSE

ENERGIA DALLE FONTI RINNOVABILI ASPETTATIVE DALLE NUOVE TECNOLOGIE LE BIOMASSE ENERGIA DALLE FONTI RINNOVABILI ASPETTATIVE DALLE NUOVE TECNOLOGIE LE BIOMASSE Giovanni Riva Università Politecnica delle Marche 1 Marzo 2012 Auditorium Università Ecampus COSA STA SUCCEDENDO OGGI: GLI

Dettagli

murelle revolution la caldaia in classe a++

murelle revolution la caldaia in classe a++ murelle revolution la caldaia in classe a++ UNO SGUARDO AL FUTURO Sempre più frequentemente gli impianti per il comfort ambientale si compongono di caldaie e di macchine a ciclo frigorifero inverso. La

Dettagli

CAPITOLO 4 CICLO FRIGORIFERO

CAPITOLO 4 CICLO FRIGORIFERO CAPITOLO 4 CICLO FRIGORIFERO Cap. 4 1 CICLO FRIGORIFERO IL CICLO FRIGORIFERO SI UTILIZZA PER SOTTRARRE ENERGIA TERMICA AD UN'UTENZA A TEMPERATURA PIU BASSA RISPETTO ALL AMBIENTE PER IL SECONDO PRINCIPIO

Dettagli

Piccoli sistemi cogenerativi ad alta efficienza. Porretta Terme 26 Settembre 2008 Ing. Riccardo Caliari

Piccoli sistemi cogenerativi ad alta efficienza. Porretta Terme 26 Settembre 2008 Ing. Riccardo Caliari Piccoli sistemi cogenerativi ad alta efficienza 1. Introduzione 2. Definizione Cogenerazione 3. Tecnologie per la cogenerazione 4. Vantaggi cogenerazione 5. Lo scambio sul posto 6. Definizione e tecnologie

Dettagli

Origini e sviluppo delle turbogas Cicli termodinamici e schemi circuitali Possibili varianti del ciclo Prestazioni delle turbogas La regolazione

Origini e sviluppo delle turbogas Cicli termodinamici e schemi circuitali Possibili varianti del ciclo Prestazioni delle turbogas La regolazione Corso di IMPIANI di CONVERSIONE dell ENERGIA Origini e sviluppo delle turbogas L energia, fonti, trasformazioni i ed usi finali Impianti a vapore I generatori di vapore Impianti turbogas Cicli termodinamici

Dettagli

UNIVERSITÀ DEGLI STUDI DI PISA. 4. Sistemi Termici Motori. 4.3. Sistemi Combinati. Roberto Lensi

UNIVERSITÀ DEGLI STUDI DI PISA. 4. Sistemi Termici Motori. 4.3. Sistemi Combinati. Roberto Lensi Roberto Lensi 4. Sistemi Termici Motori 4.3. Sistemi Combinati Pag. 1 di 30 UNIVERSITÀ DEGLI STUDI DI PISA FACOLTÀ DI INGEGNERIA 4. Sistemi Termici Motori 4.3. Sistemi Combinati Roberto Lensi DIPARTIMENTO

Dettagli

thermo frigo refrigeratori di liquidi ad assorbimento (libr) condensati ad acqua

thermo frigo refrigeratori di liquidi ad assorbimento (libr) condensati ad acqua thermo frigo refrigeratori di liquidi ad assorbimento (libr) condensati ad acqua 153 potenza frigorifera 134,0 4928,0 kw refrigerante soluzione di acqua e Bromuro di Litio (LiBr) sorgenti di calore acqua

Dettagli

Turbine a gas per applicazioni aeronautiche [1-14]

Turbine a gas per applicazioni aeronautiche [1-14] Politecnico di Milano Facoltà di Ingegneria Industriale Corso di Laurea in Ingegneria Aerospaziale Insegnamento di Propulsione Aerospaziale Anno accademico 2011/12 Capitolo 5 sezione b Turbine a gas per

Dettagli

ISABENERGY. Centrali di produzione energia: L interazione processo-sistema elettrico INTEGRATED GASIFICATION COMBINED CYCLE

ISABENERGY. Centrali di produzione energia: L interazione processo-sistema elettrico INTEGRATED GASIFICATION COMBINED CYCLE Torna al programma Centrali di produzione energia: L interazione processo-sistema elettrico ISABENERGY INTEGRATED GASIFICATION COMBINED CYCLE Martedì 18 marzo 2003 - Auditorum CESI Martedì 18 marzo 2003

Dettagli

Lezione del 27/05/2010 ora 10:30-13:30 Andrea Carbognani matricola Alice Lomonaco matricola Roberto Alciati matricola

Lezione del 27/05/2010 ora 10:30-13:30 Andrea Carbognani matricola Alice Lomonaco matricola Roberto Alciati matricola Lezione del 27/05/2010 ora 10:30-13:30 Andrea Carbognani matricola 219587 Alice Lomonaco matricola 219414 Roberto Alciati matricola 219475 Sommario 1 Essiccatore a tamburo rotante... 1 1.1 Introduzione...

Dettagli

E N E R G I A E L E T T R I C A E T E R M I C A

E N E R G I A E L E T T R I C A E T E R M I C A 1 E N E R G I A E L E T T R I C A E T E R M I C A Nella zona industriale di Porto Marghera sono presenti 6 centrali termoelettriche destinate alla produzione di energia elettrica e vapore: Edison - Centrale

Dettagli

Modello dinamico non lineare monodimensionale per la simulazione del pompaggio in un compressore assial-centrifugo INTRODUZIONE

Modello dinamico non lineare monodimensionale per la simulazione del pompaggio in un compressore assial-centrifugo INTRODUZIONE INTRODUZIONE L'impiego di programmi per la simulazione delle macchine è sempre più diffuso. Infatti, essi sono utilizzati sia in fase di progettazione di nuove macchine, sia per l'analisi dello stato di

Dettagli

Perdite nei generatori di calore. Perdite nei generatori di calore

Perdite nei generatori di calore. Perdite nei generatori di calore 1 1 In un generatore di calore in funzione viene immessa una certa quantità di energia (calore) nell unità di tempo che, in condizioni di combustione completa, è legata alla portata di combustibile in

Dettagli

Relazione Tecnica. Allegato n 1. Autorizzazione Integrata Ambientale CENTRALE DI COGENERAZIONE. IMPIANTO DI POST COMBUSTIONE DEL CHP3 (Camino n 3)

Relazione Tecnica. Allegato n 1. Autorizzazione Integrata Ambientale CENTRALE DI COGENERAZIONE. IMPIANTO DI POST COMBUSTIONE DEL CHP3 (Camino n 3) Relazione Tecnica Allegato n 1 Autorizzazione Integrata Ambientale Impianto IPPC SEDAMYL S.p.A. (AIA n.1018 del 12/10/2007) Comune SALUZZO CENTRALE DI COGENERAZIONE IMPIANTO DI POST COMBUSTIONE DEL CHP3

Dettagli

La Termodinamica è la disciplina che si occupa dello studio degli scambi di energia e di materia nei processi fisici e chimici

La Termodinamica è la disciplina che si occupa dello studio degli scambi di energia e di materia nei processi fisici e chimici La Termodinamica è la disciplina che si occupa dello studio degli scambi di energia e di materia nei processi fisici e chimici Materia = tutto ciò che possiede una massa ed occupa uno spazio Energia =

Dettagli

Conversione dell energia - Terminologia

Conversione dell energia - Terminologia Conversione dell energia - Terminologia Macchina: Sistema energetico costituito da organi meccanici e impianti ausiliari opportunamente collegati con lo scopo di operare delle conversioni energetiche;

Dettagli

Termodinamica e trasmissione del calore 3/ed Yunus A. Çengel Copyright 2009 The McGraw-Hill Companies srl

Termodinamica e trasmissione del calore 3/ed Yunus A. Çengel Copyright 2009 The McGraw-Hill Companies srl SOLUZIONI problemi cap.9 9.1 (a) Assimiliamo l aria a un gas perfetto con calori specifici costanti a temperatura ambiente: Trasformazione 1-2: compressione isoentropica. Trasformazione 2-3: somministrazione

Dettagli

GENERATORI DI VAPORE A TUBI D ACQUA

GENERATORI DI VAPORE A TUBI D ACQUA Generatori di vapore a tubi d acqua Valter Rosa Dopo numerose esperienze nel settore della produzione di vapore con caldaie a tubi d acqua il Gruppo GN ha creato un gruppo di lavoro dedicato alla progettazione

Dettagli

Progetto unificato AEM a pompa di calore. Convegno FIRE "La climatizzazione degli edifici: soluzioni a confronto" Rho - 2 marzo 2006

Progetto unificato AEM a pompa di calore. Convegno FIRE La climatizzazione degli edifici: soluzioni a confronto Rho - 2 marzo 2006 Progetto unificato AEM a pompa di calore Convegno FIRE "La climatizzazione degli edifici: soluzioni a confronto" Rho - 2 marzo 2006 L esperienza: teleriscaldamento da cogenerazione e pompe di calore 30

Dettagli

ŋ = 1-Tf / Tc ŋ = rendimento termodinamico, rapporto fra lavoro e calore speso Il motore stirling Principali caratteristiche

ŋ = 1-Tf / Tc ŋ = rendimento termodinamico, rapporto fra lavoro e calore speso Il motore stirling Principali caratteristiche Il motore stirling Ideato da quasi 200 anni, è un motore potenzialmente ad elevatissima efficienza, utilizzato inizialmente come alternativa più affidabile delle macchine a vapore, così detto anche motore

Dettagli

A T O R. Provincia di Torino. Tecnologie per la valorizzazione energetica dei rifiuti urbani ed assimilabili. la pirolisi lenta a bassa temperatura

A T O R. Provincia di Torino. Tecnologie per la valorizzazione energetica dei rifiuti urbani ed assimilabili. la pirolisi lenta a bassa temperatura A T O R Provincia di Torino Tecnologie per la valorizzazione energetica dei rifiuti urbani ed assimilabili 30 giugno 2008 la pirolisi lenta a bassa temperatura Dott. Ing. Alberto Mauri Consorzio I.CO.M.

Dettagli

di Progettazione degli Impianti di Potenza

di Progettazione degli Impianti di Potenza Torna al programma La Simulazione Dinamica: uno Strumento Efficace Rosa Domenichini Luigi Ottoboni Foster Wheeler Italiana Power Division Agenda Scopi di una simulazione dinamica Creazione del modello

Dettagli

Dispensa del corso di SISTEMI ENERGETICI. Argomento: Sistemi Energetici (parte 1)

Dispensa del corso di SISTEMI ENERGETICI. Argomento: Sistemi Energetici (parte 1) Dispensa del corso di SISTEMI ENERGETICI Argomento: Sistemi Energetici (parte 1) Prof. Pier Ruggero Spina Dipartimento di Ingegneria Sommario Forme di energia e loro conversione Introduzione: diagrammi

Dettagli

REGOLAZIONE DELLA PORTATA DI VAPORE IN TURBINA

REGOLAZIONE DELLA PORTATA DI VAPORE IN TURBINA REGOLAZIONE DELLA PORTATA DI VAPORE IN TURBINA La regolazione dell'impianto è di regola asservita a quella della macchina: ogni componente l'impianto viene adeguata alla portata di vapore richiesta dall'espansore.

Dettagli

3. ENERGIA. 3.1 Ciclo impiegato per produrre energia. Pag. 1 a 11

3. ENERGIA. 3.1 Ciclo impiegato per produrre energia. Pag. 1 a 11 3. ENERGIA 3.1 Ciclo impiegato per produrre energia I processi di produzione e trasformazione dello stabilimento Sedamyl di Saluzzo richiedono energia elettrica ed energia termica. Entrambe queste forme

Dettagli

Gli impianti di produzione dell energia e la loro efficienza

Gli impianti di produzione dell energia e la loro efficienza Gli impianti di produzione dell energia e la loro efficienza Michele Bianchi DIEM Università di Bologna La generazione di potenza Mini-idro eolico Gruppi a vapore Motori Combustione Interna Turbogas in

Dettagli

FACOLTÀ DI INGEGNERIA. 3. Sistemi di Conversione. Roberto Lensi

FACOLTÀ DI INGEGNERIA. 3. Sistemi di Conversione. Roberto Lensi Roberto Lensi 3. Sistemi di Conversione Pag. 1 UNIVERSITÀ DEGLI STUDI DI PISA FACOLTÀ DI INGEGNERIA 3. Sistemi di Conversione Roberto Lensi DIPARTIMENTO DI ENERGETICA Anno Accademico 2002-03 Roberto Lensi

Dettagli

UNIVERSITÀ DEGLI STUDI DI BRESCIA

UNIVERSITÀ DEGLI STUDI DI BRESCIA UNIVERSITÀ DEGLI STUDI DI BRESCIA ESAME DI STATO DI ABILITAZIONE ALL'ESERCIZIO DELLA PROFESSIONE DI INGEGNERE (Lauree di primo livello D.M. 509/99 e D.M. 270/04 e Diploma Universitario) SEZIONE B - Seconda

Dettagli

Soluzione Esame di Stato ITIS Termotecnica 2013 SVOLGIMENTO :

Soluzione Esame di Stato ITIS Termotecnica 2013 SVOLGIMENTO : Soluzione Esame di Stato ITIS Termotecnica 2013 SVOLGIMENTO : Come è noto, nella fase 3-4 del diagramma T-s di Rankine-Hirn sotto riportato, il fluido, dalla pressione vigente P2 e temperatura T3, si espande

Dettagli

IMPIANTO DI SEPARAZIONE DEL SECCO

IMPIANTO DI SEPARAZIONE DEL SECCO IMPIANTO DI SEPARAZIONE DEL SECCO L obbiettivo dell impianto è quello di separare i diversi rifiuti in ingresso per ottenere materiali selezionati riciclabili. Il tutto prevede un processo di selezione

Dettagli

CAPITOLO 6 CENTRALI FRIGORIFERE

CAPITOLO 6 CENTRALI FRIGORIFERE CAPITOLO 6 CENTRALI FRIGORIFERE Cap. 6 1 MACCHINE FRIGORIFERE LE MACCHINE FRIGORIFERE SI UTILIZZANO PER SOTTRARRE ENERGIA TERMICA AD UN'UTENZA A BASSA TEMPERATURA E QUINDI PER REFRIGERARE L UTENZA STESSA

Dettagli

Esercitazione 3. Esercizio 1

Esercitazione 3. Esercizio 1 Esercitazione 3 Esercizio 1 Una pompa centrifuga opera con velocità di rotazione n d = 1450 rpm. Al punto di massimo rendimento la pompa elabora una portata volumetrica pari a V d = 0.153 m 3 /s di acqua,

Dettagli

Ing. Antonino Genovese ENEA

Ing. Antonino Genovese ENEA Ing. Antonino Genovese ENEA Trasporti ed energia in Italia Crisi economica 28.6% In Italia il consumo energetico per il Sistema Trasporto è progressivamente cresciuto di quasi il 30% dal 1990 al 2007.

Dettagli

Messa a punto di un sistema di acquisizione dati per la valutazione delle prestazioni di una macchina ad assorbimento

Messa a punto di un sistema di acquisizione dati per la valutazione delle prestazioni di una macchina ad assorbimento UNIVERSITÀ DEGLI STUDI DI PERUGIA Facoltà di Ingegneria Corso di Laurea in Ingegneria Energetica Sede di Terni Anno Accademico 2008-2009 Relazione finale Messa a punto di un sistema di acquisizione dati

Dettagli

Volendo utilizzare per

Volendo utilizzare per di Sergio Girotto Applicazione nei paesi dell Europa del Sud Evoluzione dei sistemi frigoriferi con come refrigerante I sistemi frigoriferi commerciali con come unico refrigerante, comunemente chiamati

Dettagli

CC C T U Gruppo turbogas 3

CC C T U Gruppo turbogas 3 Corso di IMPIANI di CONVERSIONE dell ENERGIA L energia, fonti, trasformazioni i ed usi finali Impianti a vapore I generatori di vapore Impianti turbogas Cicli combinati e cogenerazione Il mercato dell

Dettagli

Termodinamica: - cenni sui gas perfetti - macchine termiche - secondo principio. 18/12/2013 Macchine termiche e Secondo Principio della Termodinamica

Termodinamica: - cenni sui gas perfetti - macchine termiche - secondo principio. 18/12/2013 Macchine termiche e Secondo Principio della Termodinamica Termodinamica: - cenni sui gas perfetti - macchine termiche - secondo principio 1 Definizione di Gas Perfetto Un gas perfetto è un gas ideale il cui comportamento approssima quello dei gas reali a densità

Dettagli

Taglia i costi Dimezza le emissioni

Taglia i costi Dimezza le emissioni Taglia i costi Dimezza le emissioni Il micro-cogeneratore più efficiente a livello mondiale Cos è BlueGEN? Il più efficiente generatore di elettricità e calore di piccola taglia BlueGEN funziona a gas

Dettagli

Componenti impianto frigorifero. Certificazione Frigoristi Regolamento CE n.842/2006

Componenti impianto frigorifero. Certificazione Frigoristi Regolamento CE n.842/2006 Componenti impianto frigorifero Certificazione Frigoristi Regolamento CE n.842/2006 Il CIRCUITO FRIGORIFERO 23/04/2013 2 In natura il calore fluisce da un corpo più caldo ad un corpo più freddo CORPO CALDO

Dettagli

CAPITOLO 4 CICLO FRIGORIFERO

CAPITOLO 4 CICLO FRIGORIFERO CAPITOLO 4 CICLO FRIGORIFERO Cap. 4 1 CICLO FRIGORIFERO IL CICLO FRIGORIFERO SI UTILIZZA PER SOTTRARRE ENERGIA TERMICA AD UN'UTENZA A TEMPERATURA PIU BASSA RISPETTO ALL AMBIENTE PER IL SECONDO PRINCIPIO

Dettagli

Biomasse ad uso energetico

Biomasse ad uso energetico Workshop, Torino, 3 Luglio 2012 Biomasse ad uso energetico Impianti di cogenerazione a biomassa di piccola taglia con espansori di vapore di nuova generazione Prof. Ing. Alberto Piatti (SAI / Milano) Dipl.-Ing.

Dettagli

Motori e cicli termodinamici

Motori e cicli termodinamici Motori e cicli termodinamici 1. Motore a scoppio 2. Motore diesel 3. Frigoriferi 4. Centrali elettriche XVIII - 0 Trasformazioni Trasformazioni reversibili (quasistatiche): Ciascun passo della trasformazione

Dettagli

UNIVERSITÀ DEGLI STUDI DI PISA. 6. Sistemi Motori a Gas. Roberto Lensi

UNIVERSITÀ DEGLI STUDI DI PISA. 6. Sistemi Motori a Gas. Roberto Lensi Roberto Lensi 6. Sistemi Motori a Gas Pag. 1 UNIVERSITÀ DEGLI STUDI DI PISA FACOLTÀ DI INGEGNERIA 6. Sistemi Motori a Gas Roberto Lensi DIPARTIMENTO DI ENERGETICA Anno Accademico 2007-08 Roberto Lensi

Dettagli

Controllo ambientale. Scopo. Assicurare ambiente di cabina sicuro, salutare e confortevole, in tutte le condizioni di volo

Controllo ambientale. Scopo. Assicurare ambiente di cabina sicuro, salutare e confortevole, in tutte le condizioni di volo Controllo ambientale 1 Scopo Assicurare ambiente di cabina sicuro, salutare e confortevole, in tutte le condizioni di volo 2 Livello di complessità Per piccoli velivoli di bassa quota: sistema di ventilazione

Dettagli

Migliora l'efficienza di un sistema di refrigerazione a CO2 con

Migliora l'efficienza di un sistema di refrigerazione a CO2 con Migliora l'efficienza di un sistema di refrigerazione a CO2 con Cos è e perchè dovrebbe essere usato? La tecnologia consiste in una soluzione di progettazione per il recupero dell'energia contenuta nel

Dettagli

Politecnico di Milano Dipartimento di Ingegneria Aerospaziale

Politecnico di Milano Dipartimento di Ingegneria Aerospaziale Politecnico di Milano Dipartimento di Ingegneria Aerospaziale Corso di Impianti e Sistemi Aerospaziale IMPIANTO DI CONDIZIONAMENTO Alessandro Daniele Galluzzi Giugno 2016 1. Premessa. La presente relazione

Dettagli

Analisi termodinamica dei gruppi turbogas complessi

Analisi termodinamica dei gruppi turbogas complessi Analisi termodinamica dei gruppi turbogas complessi Giulio Cazzoli Aprile 0 Ciclo con rigenerazione I gas scaricati dalla turbina possiedono un elevato contenuto entalpico che viene totalmente disperso

Dettagli

Algoritmo per la valutazione della legge di rilascio del calore a partire dal segnale di pressione Parte 1

Algoritmo per la valutazione della legge di rilascio del calore a partire dal segnale di pressione Parte 1 Algoritmo per la valutazione della legge di rilascio del calore a partire dal segnale di pressione Parte 1 8.5.212 1. Ciclo (diagramma) indicato 2. Rilievo sperimentale del ciclo indicato 8.5.212 3. Definizione

Dettagli

Lezione di Combustione

Lezione di Combustione Lezione di Combustione Introduzione Da un punto di vista chimico-fisico la combustione è un processo reattivo fortemente esotermico Generalmente le temperature in gioco sono particolarmente elevate e dipendono

Dettagli

Ligentoplant Impianto di cogenerazione a biomassa di legno. Ligento green power GmbH

Ligentoplant Impianto di cogenerazione a biomassa di legno. Ligento green power GmbH Ligentoplant 120-140 Impianto di cogenerazione a biomassa di legno Ligento - l innovazione per un energia sostenibile! Ligentoplant produce contemporaneamente calore ed energia elettrica in cogenerazione.

Dettagli

ACSM-AGAM. Efficientamento Energetico, il Teleriscaldamento e l Industria

ACSM-AGAM. Efficientamento Energetico, il Teleriscaldamento e l Industria ACSM-AGAM Efficientamento Energetico, il Teleriscaldamento e l Industria Monza 10 novembre 2016 IL GRUPPO ACSM AGAM Reti gas e idriche Termovalorizzatore e Ambiente Vendita gas ed energia elettrica Teleriscaldamento

Dettagli

Biomasse ad uso energetico

Biomasse ad uso energetico Workshop, Torino, 3 Luglio 2012 Biomasse ad uso energetico Impianti di cogenerazione a biomassa di piccola taglia con espansori di vapore di nuova generazione Prof. Ing. Alberto Piatti Studio Associato

Dettagli

Formulario corso vapore

Formulario corso vapore Formulario corso vapore Producibilita specifica: W s = W/S dove: W in kg/h ed S in m 2 e W s in kg/m 2 h Pressione: Pressione assoluta = pressione letta sul manometro piu 1. Fondoscala manometro: Fondoscala

Dettagli

Corso di Componenti e Impianti Termotecnici TERMOCONVETTORI

Corso di Componenti e Impianti Termotecnici TERMOCONVETTORI TERMOCONVETTORI 1 Termo convettori I termoconvettori sono corpi scaldanti che cedono calore soprattutto per convezione. Sono realizzati con batterie alettate e con dispositivi di tiraggio naturale atti

Dettagli

HOLDING POWER BIOLIQUID

HOLDING POWER BIOLIQUID HOLDING POWER BIOLIQUID IMPIANTO DI PRODUZIONE DI ENERGIA ELETTRICA - MOTORI ENDOTERMICI ALIMENTATI DA BIOMASSE AGRICOLE - SICILIA LE FONTI ENERGETICHE RINNOVABILI Nel 2020 l aumento dei consumi di energia

Dettagli

UNIVERSITÀ DEGLI STUDI DI PISA. 4. Sistemi Termici Motori Sistemi Motori a Gas. Roberto Lensi

UNIVERSITÀ DEGLI STUDI DI PISA. 4. Sistemi Termici Motori Sistemi Motori a Gas. Roberto Lensi Roberto Lensi 4. Sistemi Termici Motori 4.2. Sistemi Motori a Gas Pag. 1 di 21 UNIVERSITÀ DEGLI STUDI DI PISA FACOLTÀ DI INGEGNERIA 4. Sistemi Termici Motori 4.2. Sistemi Motori a Gas Roberto Lensi DIPARTIMENTO

Dettagli

UNITA' 7 SOMMARIO ATTENZIONE

UNITA' 7 SOMMARIO ATTENZIONE U.7/0 UNITA' 7 SOMMARIO U.7 IL SECONDO PRINCIPIO DELLA TERMODINAMICA 7.1. Introduzione 7.2. Serbatoi e motori termici 7.3. Macchine frigorifere e pompe di calore 7.4. Secondo principio della Termodinamica

Dettagli

Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 5 TERMODINAMICA

Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 5 TERMODINAMICA Anno Scolastico 2009/2010 Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 5 TERMODINAMICA Prof. Matteo Intermite 1 5.1 LEGGE DEI GAS I gas sono delle sostanze che in determinate condizioni di

Dettagli

Esercizi sui Motori a Combustione Interna

Esercizi sui Motori a Combustione Interna Esercizi sui Motori a Combustione Interna 6 MOTORE 4TEMPI AD ACCENSIONE COMANDATA (Appello del 08.0.000, esercizio N ) Un motore ad accensione comandata a 4 tempi di cilindrata V 000 cm 3, funzionante

Dettagli

Dinamica delle reazioni chimiche (attenzione: mancano i disegni)

Dinamica delle reazioni chimiche (attenzione: mancano i disegni) Dinamica delle reazioni chimiche (attenzione: mancano i disegni) Primo principio della termodinamica L energia non si può creare o distruggere, ma solo convertire da una forma all altra. Questo significa

Dettagli

POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA

POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA LAUREA MAGISTRALE IN INGEGNERIA MECCANICA A.A 2012-13 - CORSO DI SISTEMI ENERGETICI LM Prof. Emanuele MARTELLI Prova scritta del 26-02-2013 Allegare alle soluzioni

Dettagli

UNIVERSITA' DEGLI STUDI DI CASSINO E DEL LAZIO MERIDIONALE. Impianti a ciclo combinato e cogenerativo

UNIVERSITA' DEGLI STUDI DI CASSINO E DEL LAZIO MERIDIONALE. Impianti a ciclo combinato e cogenerativo UNIVERSITA' DEGLI STUDI DI CASSINO E DEL LAZIO MERIDIONALE Impianti a ciclo combinato e cogenerativo Il concetto di ciclo combinato cessione di calore a temperatura media T adduzione di calore a temperatura

Dettagli

Amplificatori in classe A con accoppiamento capacitivo

Amplificatori in classe A con accoppiamento capacitivo Ottobre 00 Amplificatori in classe A con accoppiamento capacitivo amplificatore in classe A di Fig. presenta lo svantaggio che il carico è percorso sia dalla componente di segnale, variabile nel tempo,

Dettagli

TURBO ENGINE HYBRID ELECTRIC POWER SYSTEM FOR AUTOMOTIVE APPLICATION Angelo Leto. Italian Aerospace Research Centre (CIRA)

TURBO ENGINE HYBRID ELECTRIC POWER SYSTEM FOR AUTOMOTIVE APPLICATION Angelo Leto. Italian Aerospace Research Centre (CIRA) TURBO ENGINE HYBRID ELECTRIC POWER SYSTEM FOR AUTOMOTIVE APPLICATION Angelo Leto Italian Aerospace Research Centre (CIRA) SCHEMA DI FUNZIONAMENTO DI UN SISTEMA TURBOGAS PER GENERAZIONE DI POTENZA Il fluido

Dettagli

La gassificazione della biomassa: teoria del processo e stato dell arte della tecnologia

La gassificazione della biomassa: teoria del processo e stato dell arte della tecnologia La gassificazione della biomassa: teoria del processo e stato dell arte della tecnologia Marco Baratieri Bolzano, TIS-Innovation Park 22 ottobre 2010 Cos é la gassificazione COMBUSTIONE GASSIFICAZIONE

Dettagli

Rifiuti e Salute Incenerimento e alternative

Rifiuti e Salute Incenerimento e alternative R. & T.I.A. Research & Technologic Innovation Agency for the Sustainable development s.r.l. Rifiuti e Salute Incenerimento e alternative fabrizio Nardo Pisa, 8 marzo 2007 Fonti convenzionali - Tecnologie

Dettagli

Nella seguente tabella sono riportati i dati relativi ai vapori saturi circolanti nell impianto, dove W è il vapore di rete e V il vapore sviluppato:

Nella seguente tabella sono riportati i dati relativi ai vapori saturi circolanti nell impianto, dove W è il vapore di rete e V il vapore sviluppato: EVAPORAZIONE 1 1. Una soluzione acquosa al 10% con una portata di 400 kg/min preriscaldata a 50 C viene concentrata al 25% mediante un evaporatore operante alla pressione di 0,54 ata.tenendo presente che:

Dettagli

PROF. ING. FLAVIO FUCCI UNIVERSITÀ DEL MOLISE. Autore - Affiliazione

PROF. ING. FLAVIO FUCCI UNIVERSITÀ DEL MOLISE. Autore - Affiliazione PROF. ING. FLAVIO FUCCI UNIVERSITÀ DEL MOLISE EFFICIENZA ENERGETICA per edifici adibiti ad uso civile Minima energia da utilizzare per mantenere le condizioni di benessere EE = ---------------------------------------------

Dettagli

I macro temi segnalati nella mappa sono trattati nella presentazione e fruibili attraverso schede di approfondimento.

I macro temi segnalati nella mappa sono trattati nella presentazione e fruibili attraverso schede di approfondimento. I macro temi segnalati nella mappa sono trattati nella presentazione e fruibili attraverso schede di approfondimento. 2 L Unione Europea nel 2008 ha fissato, con il pacchetto 20-20-20, degli obiettivi

Dettagli