DI IDROLOGIA TECNICA PARTE III

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "DI IDROLOGIA TECNICA PARTE III"

Transcript

1 FACOLTA DI INGEGNERIA Laurea Specialistica in Ingegneria Civile N.O. Giuseppe T. Aronica CORSO DI IDROLOGIA TECNICA PARTE III Idrologia delle piene Lezione XII: I metodi diretti per la valutazione delle portate al colmo di piena

2 Se il bacino è strumentato (presenza di stazioni idrometriche) la semplice analisi d frequenza empirica può darci una stima del tempo di ritorno associato alla grandezza misurata Attraverso una plotting position si può associare ad ogni valore campionario una frequenza empirica di non superamento e quindi un tempo di ritorno F i 0.44 = N Formula di Gringorten (la più adatta per analisi di valori massimi) L analisi di una singola serie di N dati di portata al colmo massima annuale, non consente ragionevolmente di prevedere valori di portata con T > 2N (Benson, 1961) Per T grandi bisogna quindi ricorrere a modelli probabilistici teorici basandosi su tecniche inferenziali

3 T (anni) 10 N = 30 T = dimensione campionaria

4 Analisi puntuale Analisi regionale Test statistico di adattamento Scelta del modello probabilistico teorico puntuale Stima dei parametri del modello probabilistico Scelta del modello probabilistico teorico regionale Stima dei parametri del modello probabilistico Identificazione della curva di crescita caratteristica Stima portata indice Previsione del quantile richiesto Q T Test statistico di adattamento Parametri regionali della curva di crescita

5 Analisi puntuale (AMS) L idrologia delle piene Analisi statistica dei dati raccolti nelle stazioni idrometriche ove presenti e con sufficiente numerosità campionaria (stima solo nelle sezioni strumentate) AMS (Annual Maxima Series) Vengono presi in considerazione solo i valori massimi annuali della serie storica Indipendenza statistica dei valori Studio statistico semplice Tempi di ritorno > 1 anno Ridotta numerosità campionaria POT (Peak Over Threshold) Vengono presi in considerazione solo i valori che eccedono una soglia fissata T < 1 anno elevata numerosità campionaria Studio statistico complesso Difficoltà definire la soglia

6 400 Oreto a Ponte Parco 300 Q (m 3 /s) T (anni)

7 Analisi puntuale (AMS) Gumbel Q T = u 1 α ln ln T T 1 α = parametro di scala u = parametro di forma GEV (General Extreme Value) Q T = u + κ α 1 1 T ln T 1 κ α = parametro di scala u = parametro di posizione κ = parametro di forma

8 400 L idrologia delle piene Oreto a Ponte Parco 300 Q (m 3 /s) T (anni) Esempio #1 EV1 (PWM) α = u = 67.8

9 400 Oreto a Ponte Parco 300 Q (m 3 /s) T (anni) Esempio #2 GEV (PWM) α = u = 63.5 κ =

10 400 L idrologia delle piene Oreto a Ponte Parco 300 Q (m 3 /s) T (anni) Esempio #3 LNII

11 Analisi regionale L idrologia delle piene Nel caso in cui il campione disponibile sia poco significativo oppure il sito in esame privo di stazioni di misura, le tecniche di elaborazione puntuali possono risultare imprecise o addirittura impossibili Le tecniche regionali consentono invece di utilizzare le misure relative ad un intera regione idrologicamente omogenea In tal modo è possibile: Utilizzare un campione di dati maggiore Studio idrologico anche in siti privi di stazioni di misura Fare ricorso a leggi con più di due parametri

12 Legge TCEV (Two Component Extreme Value Distribution) (Rossi et al., 1984) componente base + componente straordinaria della variabile Q Q ( ) = exp λ exp λ exp P Q 1 λ 1 λ 2 ( parametri TCEV) numero medio di eventi delle due componenti, di base e straordinaria, λ 1 >> λ 2 θ 1 θ 2 ϑ1 2 ϑ2 ( parametri TCEV) medie degli eventi appartenenti a ciascuna componente (θ 1 << θ 2 )

13 Curva di crescita L idrologia delle piene P ( x' ) = exp λ exp( α) x' α Λ 1 Θ 1 λ 1 exp Θ x' Θ = ϑ2 Λ = λ2 µ (Q) α = ϑ1 ϑ1 ( λ ) 1 1 Θ µ(q) = PORTATA INDICE La variabile x = Q T /µ(q) si chiama fattore di crescita e rappresenta la variabilità relativa degli eventi estremi ai diversi tempi di ritorno. Il suo valore è una grandezza caratteristica della regione considerata

14 Analisi regionale (AMS) Stima dei parametri del modello probabilistico TCEV (Two-Component Extreme Value) Procedura gerarchica di regionalizzazione articolata su tre livelli successivi in ognuno dei quali si ritengono costanti alcuni statistici della distribuzione in regioni omogenee Definizione di regione omogenea Ω: regione geografica all interno della quale una distribuzione di probabilità (e i suoi momenti) per la descrizione statistica di una variabile, è la stessa a meno di un fattore di scala

15 Primo livello di regionalizzazione DATI UTILIZZATI NELL INDAGINE: idrologica è costante in una Coefficiente di asimmetria teorico della serie dei massimi annuali della variabile regione molto ampia, denominata zona omogenea, e ad essa competono valori costanti dei parametri Λ e Θ Dati di max portate annuali relative alle 27 stazioni idrometriche sicilane con almeno 10 anni di funzionamento nel periodo di osservazione Λ Θ = =

16 Secondo livello di regionalizzazione Individuazione di sottozone omogenee nelle quali risulta costante, oltre al coefficiente di asimmetria, anche il coefficiente di variazione della legge teorica. Per ciascuna sottozona risultano costanti α e λ 1 SOTTOZONA A λ1 = α = Sottozone idrologicamente omogenee SOTTOZONA B SOTTOZONA C λ1 = α = λ1 = α =

17 Secondo livello di regionalizzazione Curve di crescita non esplicitabili rispetto a x corrispondente ad una fissata frequenza probabile P ( x' ) = exp λ exp( α) x' 1 Θ α 1 Λ λ 1 exp Θ x' Sono stati calcolati i valori di x di assegnata durata e tempo di ritorno, risultando con ottima approssimazione dipendenti da T secondo: SOTTOZONA A SOTTOZONA B SOTTOZONA C x' T x' T x' T = logt = logt = logt Curve di crescita valide per T>10 QT = x' T µ (Q) E necessaria la conoscenza della portata indice

18 La portata indice Definizione di portata indice q indice : valore atteso del massimo annuale di portata al colmo nel sito fluviale di interesse Q indice = E[Q] = µ (Q) La portata indice è una grandezza locale caratteristica del sito fluviale, il cui valore dipende dalle caratteristiche climatiche, geologiche, geomorfologiche, idrografiche e dall uso del suolo del bacino idrografico sotteso dal sito stesso.

19 Metodi diretti (AMS) Stima della portata indice Quando si dispone di N anni di osservazione di portata al colmo di piena massima annuale (AMS) nel sito fluviale di interesse, la stima della portata indice è fornita dalla media aritmetica delle N osservazioni 1 N Qindice = Qi = Ni= 1 m(q) Se si conosce la PDF che meglio descrive il campione delle osservazioni, la portata indice è data dalla media teorica della PDF Q indice = u + α Gumbel

20 Metodi indiretti: formule empiriche Stima della portata indice I metodi indiretti empirici permettono la stima della portata indice nei siti privi di misure attraverso formule regressive che legano tra di loro caratteristiche fisiche dei bacini, quali superficie totale, percentuale area impermeabile, pendenza media, indici di piovosità, ecc. Spesso vengono utilizzate relazioni multiregressive del tipo: Qindice = a cos t W 1 a W 2... W 1 2 an n con W i variabili esplicative della regressione

21 Terzo livello di regionalizzazione Ricerca di relazioni locali tra la portata indice e le grandezze geografiche (superficie del bacino) relative al sito di misura 1000 Portata indice storica Potenza (Portata indice storica) y = x R 2 = Q indice (m 3 /s) 100 µ ( Q) = A

22 Esempio #1 TCEV Per la sezione del T. Mela alla foce si vuole ricavare la Q max per T = 100 anni Dati: Θ = S = 61.2 km 2 Λ = Sottozona = B λ1 = T = 100 anni α = P ( x' ) = exp λ exp( α) QT = (61.2) x' x' α Λ 1 Θ 1 λ 1 exp Θ Q T = (61.2) ( log100) x = Q max,100 = m 3 /s Q max,100 = m 3 /s

Corso di Idraulica ed Idrologia Forestale

Corso di Idraulica ed Idrologia Forestale Corso di Idraulica ed Idrologia Forestale Docente: Prof. Santo Marcello Zimbone Collaboratori: Dott. Giuseppe Bombino - Ing. Demetrio Zema Lezione n. 16: Le precipitazioni (parte seconda) Anno Accademico

Dettagli

11. Analisi statistica degli eventi idrologici estremi

11. Analisi statistica degli eventi idrologici estremi . Analisi statistica degli eventi idrologici estremi I processi idrologici evolvono, nello spazio e nel tempo, secondo modalità che sono in parte predicibili (deterministiche) ed in parte casuali (stocastiche

Dettagli

Politecnico di Torino. Esercitazioni di Protezione idraulica del territorio

Politecnico di Torino. Esercitazioni di Protezione idraulica del territorio Politecnico di Torino Esercitazioni di Protezione idraulica del territorio a.a. 2012-2013 ESERCITAZIONE 1 VALUTAZIONE DELLA RARITÀ DI UN EVENTO PLUVIOMETRICO ECCEZIONALE 1. Determinazione del periodo di

Dettagli

CURVE DI POSSIBILITA PLUVIOMETRICA Ancona Torrette Osimo Baraccola Recanati

CURVE DI POSSIBILITA PLUVIOMETRICA Ancona Torrette Osimo Baraccola Recanati CURVE DI POSSIBILITA PLUVIOMETRICA Ancona Torrette Osimo Baraccola Recanati ANALISI DELLE PRECIPITAZIONI INTENSE Le curve di possibilità pluviometrica sono state stimate a partire dai dati delle massime

Dettagli

Statistica inferenziale

Statistica inferenziale Statistica inferenziale Popolazione e campione Molto spesso siamo interessati a trarre delle conclusioni su persone che hanno determinate caratteristiche (pazienti, atleti, bambini, gestanti, ) Osserveremo

Dettagli

INDICE PREFAZIONE VII

INDICE PREFAZIONE VII INDICE PREFAZIONE VII CAPITOLO 1. LA STATISTICA E I CONCETTI FONDAMENTALI 1 1.1. Un po di storia 3 1.2. Fenomeno collettivo, popolazione, unità statistica 4 1.3. Caratteri e modalità 6 1.4. Classificazione

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

Lezione 1. Concetti Fondamentali

Lezione 1. Concetti Fondamentali Lezione 1 Concetti Fondamentali 1 Sonetto di Trilussa Sai ched è la statistica? E E na cosa che serve pe fa un conto in generale de la gente che nasce, che sta male, che more, che va in carcere e che sposa.

Dettagli

Strumenti e metodi per la redazione della carta del pericolo da fenomeni torrentizi

Strumenti e metodi per la redazione della carta del pericolo da fenomeni torrentizi Versione 2.0 Strumenti e metodi per la redazione della carta del pericolo da fenomeni torrentizi Corso anno 2011 E. MANUALE UTILIZZO HAZARD MAPPER Il programma Hazard Mapper è stato realizzato per redarre,

Dettagli

Statistica descrittiva

Statistica descrittiva Corso di Laurea in Ingegneria per l Ambiente ed il Territorio Corso di Costruzioni Idrauliche A.A. 2004-05 www.dica.unict.it/users/costruzioni Statistica descrittiva Ing. Antonino Cancelliere Dipartimento

Dettagli

Gemellaggi per l Internalizzazione Regionale di Esperienze di successo (A.G.I.R.E. POR) A.G.I.R.E. POR - Bari 17.03. 2008 1

Gemellaggi per l Internalizzazione Regionale di Esperienze di successo (A.G.I.R.E. POR) A.G.I.R.E. POR - Bari 17.03. 2008 1 Gemellaggi per l Internalizzazione Regionale di Esperienze di successo (A.G.I.R.E. POR) A.G.I.R.E. POR - Bari 17.03. 2008 1 Fase 2.1.1 Trasferimento delle esperienze maturate dalla Regione Marche in materia

Dettagli

Riassunto 24 Parole chiave 24 Commenti e curiosità 25 Esercizi 27 Appendice

Riassunto 24 Parole chiave 24 Commenti e curiosità 25 Esercizi 27 Appendice cap 0 Romane - def_layout 1 12/06/12 07.51 Pagina V Prefazione xiii Capitolo 1 Nozioni introduttive 1 1.1 Introduzione 1 1.2 Cenni storici sullo sviluppo della Statistica 2 1.3 La Statistica nelle scienze

Dettagli

1. Distribuzioni campionarie

1. Distribuzioni campionarie Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 3 e 6 giugno 2013 - di Massimo Cristallo - 1. Distribuzioni campionarie

Dettagli

Introduzione Metodo POT

Introduzione Metodo POT Introduzione Metodo POT 1 Un recente metodo di analisi dei valori estremi è un metodo detto POT ( Peak over thresholds ), inizialmente sviluppato per l analisi dei dati idrogeologici a partire dalla seconda

Dettagli

Insegnamento di Idrologia. Esercitazione n. 2

Insegnamento di Idrologia. Esercitazione n. 2 Insegnamento di Idrologia Esercitazione n. 2 Si vuole determinare la quota da assegnare alla sommità di un argine del Po, posto in corrispondenza del ponte ferroviario di Piacenza, dove esiste una stazione

Dettagli

STATISTICA IX lezione

STATISTICA IX lezione Anno Accademico 013-014 STATISTICA IX lezione 1 Il problema della verifica di un ipotesi statistica In termini generali, si studia la distribuzione T(X) di un opportuna grandezza X legata ai parametri

Dettagli

Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini)

Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini) Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini) Esercizio 1 In uno studio sugli affitti mensili, condotto su un campione casuale di 14 monolocali nella città nella città

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso di Statistica medica e applicata Dott.ssa Donatella Cocca 1 a Lezione Cos'è la statistica? Come in tutta la ricerca scientifica sperimentale, anche nelle scienze mediche e biologiche è indispensabile

Dettagli

LE FINESTRE E L ISOLAMENTO ACUSTICO

LE FINESTRE E L ISOLAMENTO ACUSTICO LE FINESTRE E L ISOLAMENTO ACUSTICO Roberto Malatesta. William Marcone Ufficio Tecnico (giugno 2008) LA PROTEZIONE DAL RUMORE DEGLI EDIFICI, LA NORMATIVA NAZIONALE La maggior sensibilità delle persone

Dettagli

Analisi di dati di frequenza

Analisi di dati di frequenza Analisi di dati di frequenza Fase di raccolta dei dati Fase di memorizzazione dei dati in un foglio elettronico 0 1 1 1 Frequenze attese uguali Si assuma che dalle risposte al questionario sullo stato

Dettagli

Statistica. Lezione 6

Statistica. Lezione 6 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 6 a.a 011-01 Dott.ssa Daniela Ferrante

Dettagli

Elaborazioni pluviometriche propedeutiche al dimensionamento delle opere idrauliche di smaltimento delle acque meteoriche. Brindisi, 23 maggio 2013

Elaborazioni pluviometriche propedeutiche al dimensionamento delle opere idrauliche di smaltimento delle acque meteoriche. Brindisi, 23 maggio 2013 Elaborazioni pluviometriche propedeutiche al dimensionamento delle opere idrauliche di smaltimento delle acque meteoriche Brindisi, 23 maggio 2013 Presentazione 1998 Laurea in ingegneria civile - Poliba

Dettagli

La distribuzione Gaussiana

La distribuzione Gaussiana Università del Piemonte Orientale Corso di Laurea in Biotecnologie Corso di Statistica Medica La distribuzione Normale (o di Gauss) Corso di laurea in biotecnologie - Corso di Statistica Medica La distribuzione

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

Corso di Automazione Industriale 1. Capitolo 4

Corso di Automazione Industriale 1. Capitolo 4 Simona Sacone - DIST 1 Corso di Automazione Corso Industriale di 1 Automazione Industriale 1 Capitolo 4 Analisi delle prestazioni tramite l approccio simulativo Aspetti statistici della simulazione: analisi

Dettagli

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA A. A. 2008-2009 FACOLTÀ DI ECONOMIA. Programma del modulo di STATISTICA I (6 crediti)

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA A. A. 2008-2009 FACOLTÀ DI ECONOMIA. Programma del modulo di STATISTICA I (6 crediti) UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA A. A. 2008-2009 FACOLTÀ DI ECONOMIA Programma del modulo di STATISTICA I (6 crediti) ECOCOM (lettere A-Lh): ECOCOM (lettere Li-Z): ECOBAN: ECOAMM (Lettere A-Lh):

Dettagli

Esercitazione 1 del corso di Statistica 2 Prof. Domenico Vistocco

Esercitazione 1 del corso di Statistica 2 Prof. Domenico Vistocco Esercitazione 1 del corso di Statistica 2 Prof. Domenico Vistocco Alfonso Iodice D Enza April 26, 2007 1...prima di cominciare Contare, operazione solitamente semplice, può diventare complicata se lo scopo

Dettagli

Indici di dispersione

Indici di dispersione Indici di dispersione 1 Supponiamo di disporre di un insieme di misure e di cercare un solo valore che, meglio di ciascun altro, sia in grado di catturare le caratteristiche della distribuzione nel suo

Dettagli

La statistica multivariata

La statistica multivariata Cenni di Statistica Multivariata Dr Corrado Costa La statistica multivariata La statistica multivariata è quella parte della statistica in cui l'oggetto dell'analisi è per sua natura formato da almeno

Dettagli

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA)

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA) Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 4: Analisi della varianza (ANOVA) Analisi della varianza Analisi della varianza (ANOVA) ANOVA ad

Dettagli

ALLEGATO 1 Analisi delle serie storiche pluviometriche delle stazioni di Torre del Lago e di Viareggio.

ALLEGATO 1 Analisi delle serie storiche pluviometriche delle stazioni di Torre del Lago e di Viareggio. ALLEGATO 1 Analisi delle serie storiche pluviometriche delle stazioni di Torre del Lago e di Viareggio. Per una migliore caratterizzazione del bacino idrologico dell area di studio, sono state acquisite

Dettagli

Metodologia per l analisi dei dati sperimentali L analisi di studi con variabili di risposta multiple: Regressione multipla

Metodologia per l analisi dei dati sperimentali L analisi di studi con variabili di risposta multiple: Regressione multipla Il metodo della regressione può essere esteso dal caso in cui si considera la variabilità della risposta della y in relazione ad una sola variabile indipendente X ad una situazione più generale in cui

Dettagli

Valutazione delle portate e dei volumi idrici di piena del Torrente Argentina

Valutazione delle portate e dei volumi idrici di piena del Torrente Argentina Dipartimento di Ingegneria Idraulica, Ambientale, Infrastrutture Viarie, Rilevamento Sezione di Costruzioni Idrauliche e Marittime e Idrologia Responsabile: Prof. Renzo Rosso Contratto di Consulenza tra

Dettagli

Lezione 1. Concetti Fondamentali

Lezione 1. Concetti Fondamentali Lezione 1 Concetti Fondamentali Sonetto di Trilussa Sai ched è la statistica? E na cosa che serve pe fa un conto in generale de la gente che nasce, che sta male, che more, che va in carcere e che sposa.

Dettagli

ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE

ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: su appuntamento Dipartimento di Matematica, piano terra, studio 114

Dettagli

LEZIONE n. 5 (a cura di Antonio Di Marco)

LEZIONE n. 5 (a cura di Antonio Di Marco) LEZIONE n. 5 (a cura di Antonio Di Marco) IL P-VALUE (α) Data un ipotesi nulla (H 0 ), questa la si può accettare o rifiutare in base al valore del p- value. In genere il suo valore è un numero molto piccolo,

Dettagli

L Analisi della Varianza ANOVA (ANalysis Of VAriance)

L Analisi della Varianza ANOVA (ANalysis Of VAriance) L Analisi della Varianza ANOVA (ANalysis Of VAriance) 1 CONCETTI GENERALI Finora abbiamo descritto test di ipotesi finalizzati alla verifica di ipotesi sulla differenza tra parametri di due popolazioni

Dettagli

GESTIONE INDUSTRIALE DELLA QUALITÀ A

GESTIONE INDUSTRIALE DELLA QUALITÀ A GESTIONE INDUSTRIALE DELLA QUALITÀ A Lezione 10 CAMPIONAMENTO (pag. 62-64) L indagine campionaria all interno di una popolazione consiste nell estrazione di un numero limitato e definito di elementi che

Dettagli

Capitolo 12 La regressione lineare semplice

Capitolo 12 La regressione lineare semplice Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 12 La regressione lineare semplice Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara

Dettagli

PIANO GENERALE DI BONIFICA E DI TUTELA DEL TERRITORIO

PIANO GENERALE DI BONIFICA E DI TUTELA DEL TERRITORIO PIANO GENERALE DI BONIFICA E DI TUTELA DEL TERRITORIO (L.R. 8 maggio 29 n. 12, art. 23) PRIMA STESURA LUGLIO 21 2) CARATTERIZZAZIONE PLUVIOMETRICA DEL COMPRENSORIO CONSORZIALE CONSORZIO DI BONIFICA BACCHIGLIONE

Dettagli

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato.

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato. Esercizio 1 Sia X 1,..., X un campione casuale estratto da una variabile aleatoria normale con media pari a µ e varianza pari a 1. Supponiamo che la media campionaria sia x = 2. 1a) Calcolare gli estremi

Dettagli

Caratteristiche dei bacini idrografici

Caratteristiche dei bacini idrografici Corso di Idrologia A.A. 20-202 Caratteristiche dei bacini idrografici Prof. Ing. A. Cancelliere Dipartimento di Ingegneria Civile e Ambientale Università di Catania Bacino idrografico Con riferimento ad

Dettagli

Corso di laurea in Scienze Motorie. Corso di Statistica. Docente: Dott.ssa Immacolata Scancarello Lezione 2: Misurazione, tabelle

Corso di laurea in Scienze Motorie. Corso di Statistica. Docente: Dott.ssa Immacolata Scancarello Lezione 2: Misurazione, tabelle Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione : Misurazione, tabelle 1 Misurazione Definizione: La misura è l attribuzione di un valore numerico

Dettagli

COMUNE DI GENOVA DIREZIONE CULTURA SETTORE MUSEI E BIBLIOTECHE INDAGINE SULLA QUALITA PERCEPITA RIFERITA ALLE BIBLIOTECHE PODESTA E SERVITANA

COMUNE DI GENOVA DIREZIONE CULTURA SETTORE MUSEI E BIBLIOTECHE INDAGINE SULLA QUALITA PERCEPITA RIFERITA ALLE BIBLIOTECHE PODESTA E SERVITANA COMUNE DI GENOVA DIREZIONE CULTURA SETTORE MUSEI E BIBLIOTECHE INDAGINE SULLA QUALITA PERCEPITA RIFERITA ALLE BIBLIOTECHE PODESTA E SERVITANA Nell anno 2014 sono state realizzate 2 indagini mirate di Customer

Dettagli

Programmazione Disciplinare: Calcolo Classe: Quarte - Quinte

Programmazione Disciplinare: Calcolo Classe: Quarte - Quinte Istituto Tecnico Tecnologico Basilio Focaccia Salerno Programmazione Disciplinare: Calcolo Classe: Quarte - Quinte Anno scolastico 01-01 I Docenti della Disciplina Salerno, settembre 01 Anno scolastico

Dettagli

Introduzione all Inferenza Statistica

Introduzione all Inferenza Statistica Introduzione all Inferenza Statistica Fabrizio Cipollini Dipartimento di Statistica, Informatica, Applicazioni (DiSIA) G. Parenti Università di Firenze Firenze, 3 Febbraio 2015 Introduzione Casi di studio

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Nella verifica delle ipotesi è necessario fissare alcune fasi prima di iniziare ad analizzare i dati. a) Si deve stabilire quale deve essere l'ipotesi nulla (H0) e quale l'ipotesi

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 5-Indici di variabilità (vers. 1.0c, 20 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

General Linear Model. Esercizio

General Linear Model. Esercizio Esercizio General Linear Model Una delle molteplici applicazioni del General Linear Model è la Trend Surface Analysis. Questa tecnica cerca di individuare, in un modello di superficie, quale tendenza segue

Dettagli

ELEMENTI DI STATISTICA PER IDROLOGIA

ELEMENTI DI STATISTICA PER IDROLOGIA Carlo Gregoretti Corso di Idraulica ed Idrologia Elementi di statist. per Idrolog.-7//4 ELEMETI DI STATISTICA PER IDROLOGIA Introduzione Una variabile si dice casuale quando assume valori che dipendono

Dettagli

ESAME DI STATISTICA Nome: Cognome: Matricola:

ESAME DI STATISTICA Nome: Cognome: Matricola: ESAME DI STATISTICA Nome: Cognome: Matricola: ISTRUZIONI: Per la prova è consentito esclusivamente l uso di una calcolatrice tascabile, delle tavole della normale e della t di Student. I risultati degli

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Intervalli di confidenza

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Intervalli di confidenza Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Intervalli di confidenza Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica

Dettagli

Regressione Logistica: un Modello per Variabili Risposta Categoriali

Regressione Logistica: un Modello per Variabili Risposta Categoriali : un Modello per Variabili Risposta Categoriali Nicola Tedesco (Statistica Sociale) Regressione Logistica: un Modello per Variabili Risposta Categoriali 1 / 54 Introduzione Premessa I modelli di regressione

Dettagli

ANALISI DEI QUESTIONARI PER LA RILEVAZIONE DELLE OPINIONI DEGLI STUDENTI SUI SINGOLI INSEGNAMENTI

ANALISI DEI QUESTIONARI PER LA RILEVAZIONE DELLE OPINIONI DEGLI STUDENTI SUI SINGOLI INSEGNAMENTI ANALISI DEI QUESTIONARI PER LA RILEVAZIONE DELLE OPINIONI DEGLI STUDENTI SUI SINGOLI INSEGNAMENTI Anno Accademico 008/009 Rapporto statistico riassuntivo Corso di Laurea in Scienze politiche e delle Relazioni

Dettagli

Relazioni statistiche: regressione e correlazione

Relazioni statistiche: regressione e correlazione Relazioni statistiche: regressione e correlazione È detto studio della connessione lo studio si occupa della ricerca di relazioni fra due variabili statistiche o fra una mutabile e una variabile statistica

Dettagli

VALORE DELLE MERCI SEQUESTRATE

VALORE DELLE MERCI SEQUESTRATE La contraffazione in cifre: NUOVA METODOLOGIA PER LA STIMA DEL VALORE DELLE MERCI SEQUESTRATE Roma, Giugno 2013 Giugno 2013-1 Il valore economico dei sequestri In questo Focus si approfondiscono alcune

Dettagli

matematica probabilmente

matematica probabilmente IS science centre immaginario scientifico Laboratorio dell'immaginario Scientifico - Trieste tel. 040224424 - fax 040224439 - e-mail: lis@lis.trieste.it - www.immaginarioscientifico.it indice Altezze e

Dettagli

Rapporto dal Questionari Insegnanti

Rapporto dal Questionari Insegnanti Rapporto dal Questionari Insegnanti SCUOLA CHIC81400N N. Docenti che hanno compilato il questionario: 60 Anno Scolastico 2014/15 Le Aree Indagate Il Questionario Insegnanti ha l obiettivo di rilevare la

Dettagli

I dati ricavabili da suddette verifiche (tiranti, velocità, etc.) saranno comunque necessari per procedere con la fase progettuale esecutiva.

I dati ricavabili da suddette verifiche (tiranti, velocità, etc.) saranno comunque necessari per procedere con la fase progettuale esecutiva. INDICE 1. Premessa 1 2. Descrizione dei luoghi 1 3. Valutazione degli afflussi meteorici 3 4. Valutazione dei deflussi 6 5. Calcolo del DMV 7 6. Modifiche alle portate attese a seguito delle opere 10 1.

Dettagli

SOGLIE PLUVIOMETRICHE

SOGLIE PLUVIOMETRICHE CONVENZIONE TRA IL DIPARTIMENTO PER LA PROTEZIONE CIVILE E L ARPA PIEMONTE PER L ASSISTENZA ALLA GESTIONE DELLE SITUAZIONI DI RISCHIO IDRO-METEOROLOGICO SUL TERRITORIO NAZIONALE Progetto di un sistema

Dettagli

Teoria e metodologia estimativa

Teoria e metodologia estimativa Teoria e metodologia estimativa Definizioni L estimo è la parte della scienza economica definibile come l insieme dei principi logici e metodologici che regolano e, quindi, consentono la motivata, oggettiva

Dettagli

AGENTI CHIMICI VALUTAZIONE DEL RISCHIO

AGENTI CHIMICI VALUTAZIONE DEL RISCHIO Dipartimento di Sanità Pubblica U.O. Prevenzione e Sicurezza Ambienti di Lavoro AGENTI CHIMICI VALUTAZIONE DEL RISCHIO Arcari Claudio e Mariacristina Mazzari Piacenza 6 maggio 2011 1 CURVA DOSE-EFFETTO

Dettagli

PIANO GENERALE DEL SISTEMA FOGNARIO DEL COMUNE DI RIMINI 11 PIANO DEGLI INTERVENTI CON INDIVIDUAZIONE DEL LIVELLO DI PRIORITA E DEI COSTI

PIANO GENERALE DEL SISTEMA FOGNARIO DEL COMUNE DI RIMINI 11 PIANO DEGLI INTERVENTI CON INDIVIDUAZIONE DEL LIVELLO DI PRIORITA E DEI COSTI PIANO GENERALE DEL SISTEMA FOGNARIO DEL COMUNE DI RIMINI 11 PIANO DEGLI INTERVENTI CON INDIVIDUAZIONE DEL LIVELLO DI PRIORITA E DEI COSTI 85 PIANO GENERALE DEL SISTEMA FOGNARIO DEL COMUNE DI RIMINI IL

Dettagli

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a)

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a) Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B Eventi indipendenti: un evento non influenza l altro Eventi disgiunti: il verificarsi di un evento esclude l altro Evento prodotto:

Dettagli

Slide Cerbara parte1 5. Le distribuzioni teoriche

Slide Cerbara parte1 5. Le distribuzioni teoriche Slide Cerbara parte1 5 Le distribuzioni teoriche I fenomeni biologici, demografici, sociali ed economici, che sono il principale oggetto della statistica, non sono retti da leggi matematiche. Però dalle

Dettagli

Misurare il rischio finanziario con l Extreme Value Theory

Misurare il rischio finanziario con l Extreme Value Theory Misurare il rischio finanziario con l Extreme Value Theory M. Bee Dipartimento di Economia, Università di Trento MatFinTN 2012, Trento, 24 gennaio 2012 Outline Introduzione Extreme Value Theory EVT e rischio

Dettagli

Statistica. Esercitazione 3 5 maggio 2010 Serie storiche. Connessione e indipendenza statistica

Statistica. Esercitazione 3 5 maggio 2010 Serie storiche. Connessione e indipendenza statistica Corso di Laurea in Scienze dell Organizzazione Facoltà di Sociologia, Università degli Studi di Milano-Bicocca a.a. 2008/2009 Statistica Esercitazione 3 5 maggio 2010 Serie storiche. Connessione e indipendenza

Dettagli

ANALISI DEI QUESTIONARI PER LA RILEVAZIONE DELLE OPINIONI DEGLI STUDENTI SUI SINGOLI INSEGNAMENTI

ANALISI DEI QUESTIONARI PER LA RILEVAZIONE DELLE OPINIONI DEGLI STUDENTI SUI SINGOLI INSEGNAMENTI ANALISI DEI QUESTIONARI PER LA RILEVAZIONE DELLE OPINIONI DEGLI STUDENTI SUI SINGOLI INSEGNAMENTI Anno Accademico 008/009 Rapporto statistico riassuntivo Scuola di specializzazione per gli insegnanti della

Dettagli

OSSERVAZIONI TEORICHE Lezione n. 4

OSSERVAZIONI TEORICHE Lezione n. 4 OSSERVAZIONI TEORICHE Lezione n. 4 Finalità: Sistematizzare concetti e definizioni. Verificare l apprendimento. Metodo: Lettura delle OSSERVAZIONI e risoluzione della scheda di verifica delle conoscenze

Dettagli

Automazione Industriale (scheduling+mms) scheduling+mms. adacher@dia.uniroma3.it

Automazione Industriale (scheduling+mms) scheduling+mms. adacher@dia.uniroma3.it Automazione Industriale (scheduling+mms) scheduling+mms adacher@dia.uniroma3.it Introduzione Sistemi e Modelli Lo studio e l analisi di sistemi tramite una rappresentazione astratta o una sua formalizzazione

Dettagli

DISTRIBUZIONI DI PROBABILITÀ

DISTRIBUZIONI DI PROBABILITÀ Metodi statistici e probabilistici per l ingegneria Corso di Laurea in Ingegneria Civile A.A. 2009-10 Facoltà di Ingegneria, Università di Padova Docente: Dott. L. Corain 1 LE PRINCIPALI DISTRIBUZIONI

Dettagli

Capitolo 2 - Teoria della manutenzione: classificazione ABC e analisi di Pareto

Capitolo 2 - Teoria della manutenzione: classificazione ABC e analisi di Pareto Capitolo 2 - Teoria della manutenzione: classificazione ABC e analisi di Pareto Il presente capitolo continua nell esposizione di alcune basi teoriche della manutenzione. In particolare si tratteranno

Dettagli

Conoscenza. Metodo scientifico

Conoscenza. Metodo scientifico Conoscenza La conoscenza è la consapevolezza e la comprensione di fatti, verità o informazioni ottenuti attraverso l'esperienza o l'apprendimento (a posteriori), ovvero tramite l'introspezione (a priori).

Dettagli

Analisi Statistica per le Imprese (6 CFU) - a.a. 2010-2011 Prof. L. Neri RICHIAMI DI STATISTICA DESCRITTIVA UNIVARIATA

Analisi Statistica per le Imprese (6 CFU) - a.a. 2010-2011 Prof. L. Neri RICHIAMI DI STATISTICA DESCRITTIVA UNIVARIATA Analisi Statistica per le Imprese (6 CFU) - a.a. 2010-2011 Prof. L. Neri RICHIAMI DI STATISTICA DESCRITTIVA UNIVARIATA 1 Distribuzione di frequenza Punto vendita e numero di addetti PUNTO VENDITA 1 2 3

Dettagli

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 Facoltà di Psicologia Università di Padova Anno Accademico 010-011 Corso di Psicometria - Modulo B Dott. Marco Vicentini marco.vicentini@unipd.it Rev. 10/01/011 La distribuzione F di Fisher - Snedecor

Dettagli

Facciamo qualche precisazione

Facciamo qualche precisazione Abbiamo introdotto alcuni indici statistici (di posizione, di variabilità e di forma) ottenibili da Excel con la funzione Riepilogo Statistiche Facciamo qualche precisazione Al fine della partecipazione

Dettagli

Giuseppe Ruffo. Fisica: lezioni e

Giuseppe Ruffo. Fisica: lezioni e Giuseppe Ruffo Fisica: lezioni e problemi Unità A2 - La rappresentazione di dati e fenomeni 1. Le rappresentazioni di un fenomeno 2. I grafici cartesiani 3. Le grandezze direttamente proporzionali 4. Altre

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

Test statistici di verifica di ipotesi

Test statistici di verifica di ipotesi Test e verifica di ipotesi Test e verifica di ipotesi Il test delle ipotesi consente di verificare se, e quanto, una determinata ipotesi (di carattere biologico, medico, economico,...) è supportata dall

Dettagli

Pro e contro delle RNA

Pro e contro delle RNA Pro e contro delle RNA Pro: - flessibilità: le RNA sono approssimatori universali; - aggiornabilità sequenziale: la stima dei pesi della rete può essere aggiornata man mano che arriva nuova informazione;

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2014-2015 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

GESTIONE DELLE TECNOLOGIE AMBIENTALI PER SCARICHI INDUSTRIALI ED EMISSIONI NOCIVE LEZIONE 10. Angelo Bonomi

GESTIONE DELLE TECNOLOGIE AMBIENTALI PER SCARICHI INDUSTRIALI ED EMISSIONI NOCIVE LEZIONE 10. Angelo Bonomi GESTIONE DELLE TECNOLOGIE AMBIENTALI PER SCARICHI INDUSTRIALI ED EMISSIONI NOCIVE LEZIONE 10 Angelo Bonomi CONSIDERAZIONI SUL MONITORAGGIO Un monitoraggio ottimale dipende dalle considerazioni seguenti:

Dettagli

ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015

ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015 ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015 A047 MATEMATICA CLASSE PRIMA PROFESSIONALE DOCENTI : CARAFFI ALESSANDRA, CORREGGI MARIA GRAZIA, FAZIO ANGELA,

Dettagli

CURRICOLO DI MATEMATICA SCUOLA PRIMARIA MATEMATICA SEZIONE A : Traguardi formativi

CURRICOLO DI MATEMATICA SCUOLA PRIMARIA MATEMATICA SEZIONE A : Traguardi formativi CURRICOLO DI MATEMATICA SCUOLA PRIMARIA MATEMATICA SEZIONE A : Traguardi formativi FINE CLASSE TERZA SCUOLA PRIMARIA FINE SCUOLA PRIMARIA COMPETENZE SPECIFICHE ABILITÀ CONOSCENZE ABILITÀ CONOSCENZE Utilizzare

Dettagli

CAPITOLO III CONFRONTI TRA DISTRIBUZIONI

CAPITOLO III CONFRONTI TRA DISTRIBUZIONI CAPITOLO III CONFRONTI TRA DISTRIBUZIONI 3.1 CONFRONTI TRA DISTRIBUZIONI OSSERVATE E DISTRIBUZIONI TEORICHE OD ATTESE. Nella teoria statistica e nella pratica sperimentale, è frequente la necessità di

Dettagli

Corso di laurea in Economia e Gestione delle Arti e delle Attività Culturali a.a. 2003-2004 INTRODUZIONE ALLA STATISTICA DESCRITTIVA

Corso di laurea in Economia e Gestione delle Arti e delle Attività Culturali a.a. 2003-2004 INTRODUZIONE ALLA STATISTICA DESCRITTIVA Corso di laurea in Economia e Gestione delle Arti e delle Attività Culturali a.a. 2003-2004 INTRODUZIONE ALLA STATISTICA DESCRITTIVA Prof. Stefania Funari Parte I TERMINOLOGIA STATISTICA e CONCETTI INTRODUTTIVI

Dettagli

INDAGINE STATISTICA SULLA RACCOLTA DIFFERENZIATA NEL COMUNE DI NOCERA SUPERIORE

INDAGINE STATISTICA SULLA RACCOLTA DIFFERENZIATA NEL COMUNE DI NOCERA SUPERIORE INDAGINE STATISTICA SULLA RACCOLTA DIFFERENZIATA NEL COMUNE DI NOCERA SUPERIORE CLASSI SECONDE E TERZE DELLA SCUOLA SECONDARIA DI PRIMO GRADO FRESA- PASCOLI Anno scolastico 2013-2014 Tutor: Salvatore Di

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 12-Il t-test per campioni appaiati vers. 1.2 (7 novembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

La gestione della clientela, soprattutto quando questa è numerosa, è un attività delicata e complessa che normalmente porta via molto tempo.

La gestione della clientela, soprattutto quando questa è numerosa, è un attività delicata e complessa che normalmente porta via molto tempo. B-B CUSTOMER FOCUS La gestione della clientela, soprattutto quando questa è numerosa, è un attività delicata e complessa che normalmente porta via molto tempo. Il credit manager, o comunque la persona

Dettagli

ALLEGATO I LE ZONE DI ALLERTA DELLA REGIONE LAZIO PER IL RISCHIO IDROGEOLOGICO ED IDRAULICO

ALLEGATO I LE ZONE DI ALLERTA DELLA REGIONE LAZIO PER IL RISCHIO IDROGEOLOGICO ED IDRAULICO ALLEGATO I LE ZONE DI ALLERTA DELLA REGIONE LAZIO PER IL RISCHIO IDROGEOLOGICO ED IDRAULICO 19 LE ZONE DI ALLERTA DELLA REGIONE LAZIO PER IL RISCHIO IDROGEOLOGICO ED IDRAULICO PREMESSA Coerentemente con

Dettagli

SPC e distribuzione normale con Access

SPC e distribuzione normale con Access SPC e distribuzione normale con Access In questo articolo esamineremo una applicazione Access per il calcolo e la rappresentazione grafica della distribuzione normale, collegata con tabelle di Clienti,

Dettagli

Corso di Idrologia Applicata A.A. 2007-2008. Misure idrometriche. A. Cancelliere. Dipartimento di Ingegneria Civile e Ambientale Università di Catania

Corso di Idrologia Applicata A.A. 2007-2008. Misure idrometriche. A. Cancelliere. Dipartimento di Ingegneria Civile e Ambientale Università di Catania Corso di Idrologia Applicata A.A. 2007-2008 Misure idrometriche A. Cancelliere Dipartimento di Ingegneria Civile e Ambientale Università di Catania PORTATA Volume liquido che attraversa una sezione normale

Dettagli

Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo

Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo Metodi statistici per l economia (Prof. Capitanio) Slide n. 9 Materiale di supporto per le lezioni. Non sostituisce il libro di testo 1 TEST D IPOTESI Partiamo da un esempio presente sul libro di testo.

Dettagli

INDICI DI TENDENZA CENTRALE

INDICI DI TENDENZA CENTRALE INDICI DI TENDENZA CENTRALE NA Al fine di semplificare la lettura e l interpretazione di un fenomeno oggetto di un indagine statistica, i dati possono essere: organizzati in una insieme di dati statistici

Dettagli

Potenza dello studio e dimensione campionaria. Laurea in Medicina e Chirurgia - Statistica medica 1

Potenza dello studio e dimensione campionaria. Laurea in Medicina e Chirurgia - Statistica medica 1 Potenza dello studio e dimensione campionaria Laurea in Medicina e Chirurgia - Statistica medica 1 Introduzione Nella pianificazione di uno studio clinico randomizzato è fondamentale determinare in modo

Dettagli

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della RELAZIONE TRA VARIABILI QUANTITATIVE Lezione 7 a Accade spesso nella ricerca in campo biomedico, così come in altri campi della scienza, di voler studiare come il variare di una o più variabili (variabili

Dettagli

CURRICULUM SCUOLA PRIMARIA MATEMATICA

CURRICULUM SCUOLA PRIMARIA MATEMATICA Ministero dell istruzione, dell università e della ricerca Istituto Comprensivo Giulio Bevilacqua Via Cardinale Giulio Bevilacqua n 8 25046 Cazzago San Martino (Bs) telefono 030 / 72.50.53 - fax 030 /

Dettagli

E naturale chiedersi alcune cose sulla media campionaria x n

E naturale chiedersi alcune cose sulla media campionaria x n Supponiamo che un fabbricante stia introducendo un nuovo tipo di batteria per un automobile elettrica. La durata osservata x i delle i-esima batteria è la realizzazione (valore assunto) di una variabile

Dettagli