Introduzione Metodo POT

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Introduzione Metodo POT"

Transcript

1 Introduzione Metodo POT 1 Un recente metodo di analisi dei valori estremi è un metodo detto POT ( Peak over thresholds ), inizialmente sviluppato per l analisi dei dati idrogeologici a partire dalla seconda metà degli anni 70, ha trovato in anni recenti una sempre maggiore applicazione. L idea fondamentale alla base di questo metodo è l analisi degli estremi di una grandezza X sulla base delle eccedenze. Dato un insieme di dati x 1, x 2..x n, si definiscono come eccedenze y j quei valori xi maggiori di un valore di soglia u. Le quantità (y j -u) sono detti gli eccessi sopra u.

2 Introduzione metodo POT 2 raccogliere solo le eccedenze risulta vantaggioso (es. stazioni metereologiche) L accadimento di una eccedenza è condizionato dall evento che l osservazione sia maggiore di u. Tale probabilità condizionata, detta F la probabilità cumulata della variabile X, risulta: [ ] F( x) F( u) F u ( x) = 1 F( u)

3 Distribuzione Pareto generalizzata 3 Le distribuzioni generalizzate dei valori estremi sono correlate ad una distribuzione detta distribuzione di Pareto generalizzata avente probabilità cumulata: W ( x) 1" (1 + = # x) " 1/ definita per x>0 se γ>0 e per 0<x< 1/ se γ<0 Per γ 0 la distribuzione tende all espressione: W 0 ( x) = 1 e x Il legame tra la distribuzione di Pareto e la distribuzione generalizzata dei massimi è la seguente: W ( x) = 1+ logg( x)

4 Distribuzione Pareto generalizzata 4 Come già visto per la G, possiamo introdurre due parametri µ e σ : W $ $ x # µ %%,, ( x) = 1# ' 1+ & ' ( " ( ) ) ** µ " # 1/ Una interessante proprietà della distribuzione di Pareto è la seguente: [ u] W, µ," ( x) = W, u, " + $ u # ( µ ) ovvero la distribuzione delle eccedenze è ancora una Pareto con il parametro γ, con µ=u e con una parametro di scala espresso da: ( u ) + " # $ µ

5 Distribuzione Pareto generalizzata 5 La distribuzione delle eccedenze ha proprietà asintotiche simili a quelle delle distribuzioni dei valori estremi. In particolare considerando ipotesi sulla F(x) simili a quelle dei valori estremi: F [ u] (, x) " W$, u # ( x) 0 per u ω(x), dove con ω(x) si indica l estremo superiore della grandezza x. Sulla base della relazione soprascritta è possibile cercare di analizzare le eccedenze di dati provenienti da una qualsiasi distribuzione mediante la Pareto generalizzata. Dati quindi : x 1, x 2, x 3..x n y 1,y 2, y 3 y k dati originali raccolti in un tempo Γ eccedenze sopra una soglia u si analizzano le eccedenze mediante una distribuzione W γ,u,σ, ricavando i parametri γ e σ mediante metodo ML.

6 Fittaggio parametri distribuzione Pareto 6 I parametri della distribuzione di Pareto si cercano mediante metodo ML. In particolare la log-verosimiglianza: per γ 0 diventa: ed in particolare la stima di σ risulta:

7 Applicazione POT - a 7 Cosa ce ne facciamo della W γ,u,σ per stimare degli eventi estremi? 1 possibilità Conoscendo k ed n, possiamo stimare che: F( x) # F( u) F x W 1 # F( u) [ u ] ( ) = $, u, ( ) 1" k F u " n ( ) ( ) ( ) ( 1 ) y, u, F x " F u + # F u $ W per x u A questo punto disponiamo di una stima della F(x) con cui ad esempio stimare il valore massimo di x su un intervallo 10 Γ massimo caratteristico su 10 n (evento con T=10 n) F max,10 ( ) 10 = " $ F x # % n

8 Applicazione POT - b 8 La strada vista prima presuppone di sapere che il numero di estrazioni in Γ è pari ad n. Possiamo anche sapere solo di avere k eccedenze. 2 possibilità Disponiamo della stima della distribuzione tronca: [ u ] ( )#, u, F x W " l evento massimo rilevato su Γ è il massimo di k eccedenze; l evento massimo ha quindi T u = k; y cl # 1 $ 1 % = W, u, " & 1# ' ( k ) Fmax,10 W, u, " # = $ & % ' 10k

9 Applicazione POT - c 9 3 possibilità Cerchiamo una distribuzione: W, µ, " Tale che: [ u] # $ W, µ," = W, u, " % $& W, µ," ( u) = FX ( u)

10 10 Applicazione POT - c Per l esponenziale negativa (γ =0): ln k u n µ = " # $ % & = + ' ( ) # * +, Per γ 0 : " # $ % % & ' ( ( ) * % & ' ( ) * +, + = % & ' ( ) *, = -. µ / 1 n k u n k

11 Diagnostica - mean excess plot 11 in linea teorica y' = y u " # 1 # esempio inclusioni praticamente non si ha mai un adamento così semplice e si identificano delle zone (prima della zona finale) in cui identificare l andamento

12 Legame tra POT e LEVD - a 12 Supponiamo di aver analizzato k eccedenze su un periodo di acquisizione Γ # W 0,u, = 1" exp " y " u & $ % ' ( Se cerchiamo il valore massimo caratteristico su Γ ha periodo di ritorno T=k e risulta: y( T = k) = u + " log( k) Se cerchiamo il valore massimo caratteristico su 10Γ ha periodo di ritorno T=10k e risulta: y( T = 10k) = u + " log( 10 " k) che diventa: y( T = 10k) = y T = k + " log(10) Dobbiamo ricordarci che il massimo caratteristico ha una probabilità di superamento del 63.2%

13 Legame tra POT e LEVD -b 13 Se avessimo dato la descrizione dell evento massimo su 10Γ attraverso la LEVD, avremmo potuto stimarlo dal massimo caratteristico su Γ (ovvero il λ Γ dei massimi su Γ) come: 10"# = # + $ " log(10) E evidente l analogia tra le due formulazioni. Ne segue che i massimi su Γ appartengono ad una LEVD con parametri: ( ) & " = u + # $ log k ' (% = #

11) convenzioni sulla rappresentazione grafica delle soluzioni

11) convenzioni sulla rappresentazione grafica delle soluzioni 2 PARAGRAFI TRATTATI 1)La funzione esponenziale 2) grafici della funzione esponenziale 3) proprietá delle potenze 4) i logaritmi 5) grafici della funzione logaritmica 6) principali proprietá dei logaritmi

Dettagli

x ( 3) + Inoltre (essendo il grado del numeratore maggiore del grado del denominatore, d ancora dallo studio del segno),

x ( 3) + Inoltre (essendo il grado del numeratore maggiore del grado del denominatore, d ancora dallo studio del segno), 6 - Grafici di funzioni Soluzioni Esercizio. Studiare il grafico della funzione f(x) = x x + 3. ) La funzione è definita per x 3. ) La funzione non è né pari, né dispari, né periodica. 3) La funzione è

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

DI IDROLOGIA TECNICA PARTE III

DI IDROLOGIA TECNICA PARTE III FACOLTA DI INGEGNERIA Laurea Specialistica in Ingegneria Civile N.O. Giuseppe T. Aronica CORSO DI IDROLOGIA TECNICA PARTE III Idrologia delle piene Lezione XII: I metodi diretti per la valutazione delle

Dettagli

Politecnico di Torino. Esercitazioni di Protezione idraulica del territorio

Politecnico di Torino. Esercitazioni di Protezione idraulica del territorio Politecnico di Torino Esercitazioni di Protezione idraulica del territorio a.a. 2012-2013 ESERCITAZIONE 1 VALUTAZIONE DELLA RARITÀ DI UN EVENTO PLUVIOMETRICO ECCEZIONALE 1. Determinazione del periodo di

Dettagli

Gas perfetti e sue variabili

Gas perfetti e sue variabili Gas perfetti e sue variabili Un gas è detto perfetto quando: 1. è lontano dal punto di condensazione, e quindi è molto rarefatto 2. su di esso non agiscono forze esterne 3. gli urti tra le molecole del

Dettagli

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi.

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi. Iniziamo con definizione (capiremo fra poco la sua utilità): DEFINIZIONE DI VARIABILE ALEATORIA Una variabile aleatoria (in breve v.a.) X è funzione che ha come dominio Ω e come codominio R. In formule:

Dettagli

Esercitazione 5 Soluzioni

Esercitazione 5 Soluzioni Esercitazione 5 Soluzioni. (Esercizio 5. del Ross) Sia X una variabile aleatoria la cui densità è c( 2 ) < < 0 altrimenti. (a) Qual è il valore di c? (b) Scrivere la funzione di ripartizione di X. 2. (Esercizio

Dettagli

Anno 4 Grafico di funzione

Anno 4 Grafico di funzione Anno 4 Grafico di funzione Introduzione In questa lezione impareremo a disegnare il grafico di una funzione reale. Per fare ciò è necessario studiare alcune caratteristiche salienti della funzione che

Dettagli

Intorni Fissato un punto sull' asse reale, si definisce intorno del punto, un intervallo aperto contenente e tutto contenuto in

Intorni Fissato un punto sull' asse reale, si definisce intorno del punto, un intervallo aperto contenente e tutto contenuto in Intorni Fissato un punto sull' asse reale, si definisce intorno del punto, un intervallo aperto contenente e tutto contenuto in Solitamente si fa riferimento ad intorni simmetrici =, + + Definizione: dato

Dettagli

Anno 3. Funzioni: dominio, codominio e campo di esistenza

Anno 3. Funzioni: dominio, codominio e campo di esistenza Anno 3 Funzioni: dominio, codominio e campo di esistenza 1 Introduzione In questa lezione parleremo delle funzioni. Ne daremo una definizione e impareremo a studiarne il dominio in relazione alle diverse

Dettagli

La Funzione Caratteristica di una Variabile Aleatoria

La Funzione Caratteristica di una Variabile Aleatoria La Funzione Caratteristica di una Variabile Aleatoria La funzione caratteristica Φ densità di probabilità è f + Φ ω = ω di una v.a., la cui x, è definita come: jωx f x e dx E e j ω Φ ω = 1 La Funzione

Dettagli

Perché il logaritmo è così importante?

Perché il logaritmo è così importante? Esempio 1. Perché il logaritmo è così importante? (concentrazione di ioni di idrogeno in una soluzione, il ph) Un sistema solido o liquido, costituito da due o più componenti, (sale disciolto nell'acqua),

Dettagli

Affidabilità nel tempo tasso di guasto. h( t) =! dt N dt N ( ) ( ) = =! N N

Affidabilità nel tempo tasso di guasto. h( t) =! dt N dt N ( ) ( ) = =! N N Affidabilità nel tempo tasso di guasto 1 N=numero componenti N s (t)=numero componenti sopravvissuti al tempo t N f (t)=numero componenti rotti al tempo t N ( ) ( ) s t N f t R( t) = = 1! N N dr( t) 1

Dettagli

Reliability Demonstration Tests Distribuzione di Weibull

Reliability Demonstration Tests Distribuzione di Weibull Reliability Demonstration Tests Distribuzione di Weibull Stefano Beretta Politecnico di Milano, Dipartimento di Meccanica Giugno 2009 Sommario Le prove di laboratorio molto spesso vengono intese come tests

Dettagli

3 GRAFICI DI FUNZIONI

3 GRAFICI DI FUNZIONI 3 GRAFICI DI FUNZIONI Particolari sottoinsiemi di R che noi studieremo sono i grafici di funzioni. Il grafico di una funzione f (se non è specificato il dominio di definizione) è dato da {(x, y) : x dom

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

Regressione Mario Guarracino Data Mining a.a. 2010/2011

Regressione Mario Guarracino Data Mining a.a. 2010/2011 Regressione Esempio Un azienda manifatturiera vuole analizzare il legame che intercorre tra il volume produttivo X per uno dei propri stabilimenti e il corrispondente costo mensile Y di produzione. Volume

Dettagli

STUDIO DEL SEGNO DI UNA FUNZIONE

STUDIO DEL SEGNO DI UNA FUNZIONE STUDIO DEL SEGNO DI UNA FUNZIONE Quando si studia una funzione! " #$%&' (funzione reale di variabile reale) è fondamentale conoscere il segno, in altre parole sapere per quali valori di &( #$%&'$è positiva,

Dettagli

G3. Asintoti e continuità

G3. Asintoti e continuità G3 Asintoti e continuità Un asintoto è una retta a cui la funzione si avvicina sempre di più senza mai toccarla Non è la definizione formale, ma sicuramente serve per capire il concetto di asintoto Nei

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Intervalli di confidenza

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Intervalli di confidenza Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Intervalli di confidenza Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica

Dettagli

V= R*I. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro.

V= R*I. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro. PREMESSA: Anche intuitivamente dovrebbe a questo punto essere ormai chiaro

Dettagli

Regressione Logistica: un Modello per Variabili Risposta Categoriali

Regressione Logistica: un Modello per Variabili Risposta Categoriali : un Modello per Variabili Risposta Categoriali Nicola Tedesco (Statistica Sociale) Regressione Logistica: un Modello per Variabili Risposta Categoriali 1 / 54 Introduzione Premessa I modelli di regressione

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

La distribuzione Gaussiana

La distribuzione Gaussiana Università del Piemonte Orientale Corso di Laurea in Biotecnologie Corso di Statistica Medica La distribuzione Normale (o di Gauss) Corso di laurea in biotecnologie - Corso di Statistica Medica La distribuzione

Dettagli

Corso di Automazione Industriale 1. Capitolo 4

Corso di Automazione Industriale 1. Capitolo 4 Simona Sacone - DIST Corso di Automazione Corso Industriale di 1 Automazione Industriale 1 Capitolo 4 Analisi delle prestazioni tramite l approccio simulativo Aspetti statistici della simulazione: generazione

Dettagli

Basi di matematica per il corso di micro

Basi di matematica per il corso di micro Basi di matematica per il corso di micro Microeconomia (anno accademico 2006-2007) Lezione del 21 Marzo 2007 Marianna Belloc 1 Le funzioni 1.1 Definizione Una funzione è una regola che descrive una relazione

Dettagli

Psicometria (8 CFU) Corso di Laurea triennale STANDARDIZZAZIONE

Psicometria (8 CFU) Corso di Laurea triennale STANDARDIZZAZIONE Psicometria (8 CFU) Corso di Laurea triennale Un punteggio all interno di una distribuzione è in realtà privo di significato se preso da solo. Sapere che un soggetto ha ottenuto un punteggio x=52 in una

Dettagli

~ Copyright Ripetizionando - All rights reserved ~ http://ripetizionando.wordpress.com STUDIO DI FUNZIONE

~ Copyright Ripetizionando - All rights reserved ~ http://ripetizionando.wordpress.com STUDIO DI FUNZIONE STUDIO DI FUNZIONE Passaggi fondamentali Per effettuare uno studio di funzione completo, che non lascia quindi margine a una quasi sicuramente errata inventiva, sono necessari i seguenti 7 passaggi: 1.

Dettagli

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) PROBABILITÀ -

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = log a (x) si può studiare per punti e constatare che essa presenta i seguenti andamenti y

0 < a < 1 a > 1. In entrambi i casi la funzione y = log a (x) si può studiare per punti e constatare che essa presenta i seguenti andamenti y INTRODUZIONE Osserviamo, in primo luogo, che le funzioni logaritmiche sono della forma y = log a () con a costante positiva diversa da (il caso a = è banale per cui non sarà oggetto del nostro studio).

Dettagli

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero

Dettagli

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da Data una funzione reale f di variabile reale x, definita su un sottoinsieme proprio D f di R (con questo voglio dire che il dominio di f è un sottoinsieme di R che non coincide con tutto R), ci si chiede

Dettagli

1. PRIME PROPRIETÀ 2

1. PRIME PROPRIETÀ 2 RELAZIONI 1. Prime proprietà Il significato comune del concetto di relazione è facilmente intuibile: due elementi sono in relazione se c è un legame tra loro descritto da una certa proprietà; ad esempio,

Dettagli

1. Distribuzioni campionarie

1. Distribuzioni campionarie Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 3 e 6 giugno 2013 - di Massimo Cristallo - 1. Distribuzioni campionarie

Dettagli

Analisi di scenario File Nr. 10

Analisi di scenario File Nr. 10 1 Analisi di scenario File Nr. 10 Giorgio Calcagnini Università di Urbino Dip. Economia, Società, Politica [email protected] http://www.econ.uniurb.it/calcagnini/ http://www.econ.uniurb.it/calcagnini/forecasting.html

Dettagli

ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE

ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE e-mail: [email protected] web: www.dm.unipi.it/ tommei Ricevimento: su appuntamento Dipartimento di Matematica, piano terra, studio 114

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2014-2015 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f.

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f. FUNZIONI CONTINUE - ALCUNI ESERCIZI SVOLTI SIMONE ALGHISI 1. Continuità di una funzione Dati un insieme D R, una funzione f : D R e x 0 R, si è detto che f è continua in x 0 se sono soddisfatte le seguenti

Dettagli

Indici di dispersione

Indici di dispersione Indici di dispersione 1 Supponiamo di disporre di un insieme di misure e di cercare un solo valore che, meglio di ciascun altro, sia in grado di catturare le caratteristiche della distribuzione nel suo

Dettagli

11. Analisi statistica degli eventi idrologici estremi

11. Analisi statistica degli eventi idrologici estremi . Analisi statistica degli eventi idrologici estremi I processi idrologici evolvono, nello spazio e nel tempo, secondo modalità che sono in parte predicibili (deterministiche) ed in parte casuali (stocastiche

Dettagli

Slide Cerbara parte1 5. Le distribuzioni teoriche

Slide Cerbara parte1 5. Le distribuzioni teoriche Slide Cerbara parte1 5 Le distribuzioni teoriche I fenomeni biologici, demografici, sociali ed economici, che sono il principale oggetto della statistica, non sono retti da leggi matematiche. Però dalle

Dettagli

Richiami: funzione di trasferimento e risposta al gradino

Richiami: funzione di trasferimento e risposta al gradino Richiami: funzione di trasferimento e risposta al gradino 1 Funzione di trasferimento La funzione di trasferimento di un sistema lineare è il rapporto di due polinomi della variabile complessa s. Essa

Dettagli

Misurare il rischio finanziario con l Extreme Value Theory

Misurare il rischio finanziario con l Extreme Value Theory Misurare il rischio finanziario con l Extreme Value Theory M. Bee Dipartimento di Economia, Università di Trento MatFinTN 2012, Trento, 24 gennaio 2012 Outline Introduzione Extreme Value Theory EVT e rischio

Dettagli

Anno 5 4 Funzioni reali. elementari

Anno 5 4 Funzioni reali. elementari Anno 5 4 Funzioni reali elementari 1 Introduzione In questa lezione studieremo alcune funzioni molto comuni, dette per questo funzioni elementari. Al termine di questa lezione sarai in grado di definire

Dettagli

Il valore assoluto. F. Battelli Università Politecnica delle Marche, Ancona. Pesaro, Precorso di Analisi 1, 22-28 Settembre 2005 p.

Il valore assoluto. F. Battelli Università Politecnica delle Marche, Ancona. Pesaro, Precorso di Analisi 1, 22-28 Settembre 2005 p. Il valore assoluto F Battelli Università Politecnica delle Marche Ancona Pesaro Precorso di Analisi 1 22-28 Settembre 2005 p1/23 Il valore assoluto Si definisce il valore assoluto di un numero reale l

Dettagli

Capitolo 2 - Teoria della manutenzione: classificazione ABC e analisi di Pareto

Capitolo 2 - Teoria della manutenzione: classificazione ABC e analisi di Pareto Capitolo 2 - Teoria della manutenzione: classificazione ABC e analisi di Pareto Il presente capitolo continua nell esposizione di alcune basi teoriche della manutenzione. In particolare si tratteranno

Dettagli

f(x) = x3 2x 2x 2 4x x 2 x 3 2x 2x 2 4x =, lim lim 2x 2 4x = +. lim Per ricavare gli asintoti obliqui, essendo lim

f(x) = x3 2x 2x 2 4x x 2 x 3 2x 2x 2 4x =, lim lim 2x 2 4x = +. lim Per ricavare gli asintoti obliqui, essendo lim Esercizi 0//04 - Analisi I - Ingegneria Edile Architettura Esercizio. Studiare la seguente funzione e disegnarne il graco. Soluzione: f(x) = x3 x x 4x La funzione è denita dove il denominatore risulta

Dettagli

FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas

FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas.8.6.. - -.5.5 -. In questa dispensa ricordiamo la classificazione delle funzioni elementari e il dominio di esistenza delle stesse. Inoltre

Dettagli

Lezione n. 2 (a cura di Chiara Rossi)

Lezione n. 2 (a cura di Chiara Rossi) Lezione n. 2 (a cura di Chiara Rossi) QUANTILE Data una variabile casuale X, si definisce Quantile superiore x p : X P (X x p ) = p Quantile inferiore x p : X P (X x p ) = p p p=0.05 x p x p Graficamente,

Dettagli

C) DIAGRAMMA A SETTORI

C) DIAGRAMMA A SETTORI C) DIAGRAMMA A SETTORI Procedura: Determinare la percentuale per ciascuna categoria Convertire i valori percentuali in gradi d angolo Disegnare un cerchio e tracciare i settori Contrassegnare i settori

Dettagli

Statistica inferenziale

Statistica inferenziale Statistica inferenziale Popolazione e campione Molto spesso siamo interessati a trarre delle conclusioni su persone che hanno determinate caratteristiche (pazienti, atleti, bambini, gestanti, ) Osserveremo

Dettagli

Le misure dell accrescimento demografico

Le misure dell accrescimento demografico Le misure dell accrescimento demografico Una domanda importante a cui la demografia cerca di rispondere è: di quanto aumenta, e con quale velocità, la popolazione?. Il calcolo del tasso d incremento r

Dettagli

Funzioni e loro grafici

Funzioni e loro grafici Funzioni e loro grafici Dicesi funzione y=f(x) della variabile x una legge qualsiasi che faccia corrispondere ad ogni valore di x, scelto in un certo insieme, detto dominio, uno ed uno solo valore di y

Dettagli

Esercizi riassuntivi di probabilità

Esercizi riassuntivi di probabilità Esercizi riassuntivi di probabilità Esercizio 1 Una ditta produttrice di fotocopiatrici sa che la durata di una macchina (in migliaia di copie) si distribuisce come una normale con µ = 1600 e 2 = 3600.

Dettagli

Massimi e minimi vincolati

Massimi e minimi vincolati Massimi e minimi vincolati In problemi di massimo e minimo vincolato viene richiesto di ricercare massimi e minimi di una funzione non definita su tutto R n, ma su un suo sottoinsieme proprio. Esempio:

Dettagli

Statistical Process Control

Statistical Process Control Statistical Process Control ESERCIZI Esercizio 1. Per la caratteristica di un processo distribuita gaussianamente sono note media e deviazione standard: µ = 100, σ = 0.2. 1a. Calcolare la linea centrale

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6 Dott.ssa Antonella Costanzo [email protected] Esercizio 1. Stima puntuale per la proporzione Da un lotto di arance se ne estraggono 400, e di queste 180

Dettagli

FREQUENZA TEORICA E FREQUENZA PERCENTUALE Lezione n. 13

FREQUENZA TEORICA E FREQUENZA PERCENTUALE Lezione n. 13 FREQUENZA TEORICA E FREQUENZA PERCENTUALE Lezione n. 13 Finalità: Enunciare le definizioni maturate attraverso l esercitazione pratica. Sistematizzare concetti e definizioni Metodo: Sperimentazione pratica

Dettagli

La metodologia di determinazione dei Margini Futures Straddle

La metodologia di determinazione dei Margini Futures Straddle La metodologia di determinazione dei Margini Futures Straddle Ufficio RM Versione.0 Indice Premessa... 3 Definizione e finalità dei margini Futures Straddle... 3 3 La metodologia di calcolo... 4 Pagina

Dettagli

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2015

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2015 SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 015 1. Indicando con i minuti di conversazione effettuati nel mese considerato, la spesa totale mensile in euro è espressa dalla funzione f()

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi risolti

CONTINUITÀ E DERIVABILITÀ Esercizi risolti CONTINUITÀ E DERIVABILITÀ Esercizi risolti. Determinare kπ/ [cos] al variare di k in Z. Ove tale ite non esista, discutere l esistenza dei iti laterali. Identificare i punti di discontinuità della funzione

Dettagli

Introduzione. Coesis Research Analisi discriminante

Introduzione. Coesis Research Analisi discriminante I metodi chemiometrici: l analisi discriminante Coesis Research ANALISI DISCRIMINANTE COESIS RESEARCH Srl Sede legale - Direzione e amministrazione: 24127 Bergamo, Via Grumello 61 - Tel. 035/4328422 -

Dettagli

Approssimazione polinomiale di funzioni e dati

Approssimazione polinomiale di funzioni e dati Approssimazione polinomiale di funzioni e dati Approssimare una funzione f significa trovare una funzione f di forma più semplice che possa essere usata al posto di f. Questa strategia è utilizzata nell

Dettagli

2. Leggi finanziarie di capitalizzazione

2. Leggi finanziarie di capitalizzazione 2. Leggi finanziarie di capitalizzazione Si chiama legge finanziaria di capitalizzazione una funzione atta a definire il montante M(t accumulato al tempo generico t da un capitale C: M(t = F(C, t C t M

Dettagli

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R Studio di funzione Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R : allo scopo di determinarne le caratteristiche principali.

Dettagli

Prova di autovalutazione Prof. Roberta Siciliano

Prova di autovalutazione Prof. Roberta Siciliano Prova di autovalutazione Prof. Roberta Siciliano Esercizio 1 Nella seguente tabella è riportata la distribuzione di frequenza dei prezzi per camera di alcuni agriturismi, situati nella regione Basilicata.

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

Esercizi sugli integrali impropri

Esercizi sugli integrali impropri Esercizi sugli integrali impropri Esercizio. Studiare 2 x4 dx. Svolgimento: è un integrale improprio, in quanto f(x) =, x (, 2] ha una singolarità in : x4 lim x + x4 = +. Osserviamo che f è positiva, quindi

Dettagli

Statistical Process Control

Statistical Process Control Statistical Process Control ESERCIZI Esercizio 1. Per la caratteristica di un processo distribuita gaussianamente sono note media e deviazione standard: µ = 100, σ = 0.2. 1a. Calcolare la linea centrale

Dettagli

Probabilità discreta

Probabilità discreta Probabilità discreta Daniele A. Gewurz 1 Che probabilità c è che succeda...? Una delle applicazioni della combinatoria è nel calcolo di probabilità discrete. Quando abbiamo a che fare con un fenomeno che

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t)

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t) CONTINUITÀ E DERIVABILITÀ Esercizi proposti 1. Determinare lim M(sin) (M(t) denota la mantissa di t) kπ/ al variare di k in Z. Ove tale limite non esista, discutere l esistenza dei limiti laterali. Identificare

Dettagli

Econometria. lezione 17. variabili dipendenti binarie. Econometria. lezione 17. AA 2014-2015 Paolo Brunori

Econometria. lezione 17. variabili dipendenti binarie. Econometria. lezione 17. AA 2014-2015 Paolo Brunori AA 2014-2015 Paolo Brunori domande di mutui rigettate - nei dati raccolti a Boston negli anni 90 il tasso di rifiuto è 28% per i neri e 9% per i bianchi - si può parlare di discriminazione? - è possibili

Dettagli

Studio di una funzione. Schema esemplificativo

Studio di una funzione. Schema esemplificativo Studio di una funzione Schema esemplificativo Generalità Studiare una funzione significa determinarne le proprietà ovvero Il dominio. Il segno. Gli intervalli in cui cresce o decresce. Minimi e massimi

Dettagli

Certificati di investimento e strategie di yield enchancement

Certificati di investimento e strategie di yield enchancement Certificati di investimento e strategie di yield enchancement Isabella Liso Deutsche Bank Trading Online Expo 2014 Milano - Palazzo Mezzanotte - 24 ottobre 2014 1 INDICE Introduzione. Express Autocallable...

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (0/07/03) Università di Verona - Laurea in Biotecnologie - A.A. 0/3 Matematica e Statistica Prova di MATEMATICA (0/07/03) Università di Verona - Laurea in Biotecnologie

Dettagli

La Distribuzione Normale (Curva di Gauss)

La Distribuzione Normale (Curva di Gauss) 1 DISTRIBUZIONE NORMALE o CURVA DI GAUSS 1. E la più importante distribuzione statistica continua e trova numerose applicazioni nello studio dei fenomeni biologici. 2. Fu proposta da Gauss (1809) nell'ambito

Dettagli

Appunti e generalità sulle funzioni reali di variabili reali.

Appunti e generalità sulle funzioni reali di variabili reali. Appunti e generalità sulle funzioni reali di variabili reali. Premessa Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire solamente i concetti

Dettagli

ELABORAZIONE DI DATI TRIDIMENSIONALI - RELAZIONE HOMEWORK 2

ELABORAZIONE DI DATI TRIDIMENSIONALI - RELAZIONE HOMEWORK 2 DAVIDE ZANIN 1035601 ELABORAZIONE DI DATI TRIDIMENSIONALI - RELAZIONE HOMEWORK 2 SOMMARIO Elaborazione di dati tridimensionali - Relazione Homework 2... 1 Obiettivo... 2 Descrizione della procedura seguita...

Dettagli

Vademecum studio funzione

Vademecum studio funzione Vademecum studio funzione Campo di Esistenza di una funzione o dominio: Studiare una funzione significa determinare gli elementi caratteristici che ci permettono di disegnarne il grafico, a partire dalla

Dettagli

Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo

Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo Metodi statistici per l economia (Prof. Capitanio) Slide n. 9 Materiale di supporto per le lezioni. Non sostituisce il libro di testo 1 TEST D IPOTESI Partiamo da un esempio presente sul libro di testo.

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso di Statistica medica e applicata Dott.ssa Donatella Cocca 1 a Lezione Cos'è la statistica? Come in tutta la ricerca scientifica sperimentale, anche nelle scienze mediche e biologiche è indispensabile

Dettagli

Matematica generale CTF

Matematica generale CTF Successioni numeriche 19 agosto 2015 Definizione di successione Monotonìa e limitatezza Forme indeterminate Successioni infinitesime Comportamento asintotico Criterio del rapporto per le successioni Definizione

Dettagli

IL CONCETTO DI FUNZIONE

IL CONCETTO DI FUNZIONE IL CONCETTO DI FUNZIONE Il concetto di funzione è forse il concetto più importante per la matematica: infatti la matematica e' cercare le cause, le implicazioni, le conseguenze e l'utilità di una funzione

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie numeriche e serie di potenze Sommare un numero finito di numeri reali è senza dubbio un operazione che non può riservare molte sorprese Cosa succede però se ne sommiamo un numero infinito? Prima

Dettagli

Determinare il dominio e la derivata delle seguenti funzioni e studiarne la monotonia ed eventuali massimi/minimi. ( ) x + 2.

Determinare il dominio e la derivata delle seguenti funzioni e studiarne la monotonia ed eventuali massimi/minimi. ( ) x + 2. Determinare il dominio e la derivata delle seguenti funzioni e studiarne la monotonia ed eventuali massimi/minimi (1) (2) (3) (4) f (x) = log ( ) x + 2 x 1 f (x) = x exp( x 3 ) ( f (x) = arctan x ) x 1

Dettagli

Nel seguito sono riportati due esercizi che si possono risolvere con la formula di Erlang e le relative risoluzioni.

Nel seguito sono riportati due esercizi che si possono risolvere con la formula di Erlang e le relative risoluzioni. Nel seguito sono riportati due esercizi che si possono risolvere con la formula di Erlang e le relative risoluzioni. Al fine di risolvere questo tipo di esercizi, si fa in genere riferimento a delle tabelle

Dettagli

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06 Analisi Mat. - Ing. Inform. - Soluzioni del compito del 3-3-6 Sia p il polinomio di quarto grado definito da pz = z 4. Sia S il settore circolare formato dai numeri complessi che hanno modulo minore o

Dettagli

REGOLAMENTO (UE) N. 1235/2011 DELLA COMMISSIONE

REGOLAMENTO (UE) N. 1235/2011 DELLA COMMISSIONE 30.11.2011 Gazzetta ufficiale dell Unione europea L 317/17 REGOLAMENTO (UE) N. 1235/2011 DELLA COMMISSIONE del 29 novembre 2011 recante modifica del regolamento (CE) n. 1222/2009 del Parlamento europeo

Dettagli

Analisi bivariata. Dott. Cazzaniga Paolo. Dip. di Scienze Umane e Sociali [email protected]

Analisi bivariata. Dott. Cazzaniga Paolo. Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it Dip. di Scienze Umane e Sociali [email protected] Introduzione : analisi delle relazioni tra due caratteristiche osservate sulle stesse unità statistiche studio del comportamento di due caratteri

Dettagli

Sviluppi di Taylor Esercizi risolti

Sviluppi di Taylor Esercizi risolti Esercizio 1 Sviluppi di Taylor Esercizi risolti Utilizzando gli sviluppi fondamentali, calcolare gli sviluppi di McLaurin con resto di Peano delle funzioni seguenti fino all ordine n indicato: 1. fx ln1

Dettagli

Plate Locator Riconoscimento Automatico di Targhe

Plate Locator Riconoscimento Automatico di Targhe Progetto per Laboratorio di Informatica 3 - Rimotti Daniele, Santinelli Gabriele Plate Locator Riconoscimento Automatico di Targhe Il programma plate_locator.m prende come input: l immagine della targa

Dettagli

In base alla definizione di limite, la definizione di continuità può essere data come segue:

In base alla definizione di limite, la definizione di continuità può essere data come segue: Def. Sia f una funzione a valori reali definita in un intervallo I (itato o ilitato) e sia un punto interno all intervallo I. Si dice che f è continua nel punto se: ( )= ( ) Una funzione f è continua in

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli

Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani

Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani Ricerca Operativa Esercizi sul metodo del simplesso Luigi De Giovanni, Laura Brentegani 1 1) Risolvere il seguente problema di programmazione lineare. ma + + 3 s.t. 2 + + 2 + 2 + 3 5 2 + 2 + 6,, 0 Soluzione.

Dettagli

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito. INTEGRALI DEFINITI Sia nel campo scientifico che in quello tecnico si presentano spesso situazioni per affrontare le quali è necessario ricorrere al calcolo dell integrale definito. Vi sono infatti svariati

Dettagli