Rappresentazione dei numeri interi in un calcolatore
|
|
|
- Severino Arcuri
- 8 anni fa
- Visualizzazioni
Transcript
1 Corso di Calcolatori Elettronici I A.A Rappresentazione dei numeri interi in un calcolatore Prof. Roberto Canonico Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Elettrica e delle Tecnologie dell Informazione Corso di Laurea in Ingegneria Informatica (allievi A-DE) Corso di Laurea in Ingegneria dell Automazione Rappresentazione dei numeri Così come per qualsiasi altro tipo di dato, anche i numeri, per essere immagazzinati nella memoria di un calcolatore, devono essere codificati, cioè tradotti in sequenze di simboli Nei calcolatori si usano strategie di codifica binaria (k=2) L alfabeto sorgente è costituito dall insieme dei numeri che si vogliono rappresentare rappresentazione X = r (x) numero x V X W legge di codifica
2 Rappresentazione Bisogna tener conto dei seguenti fattori: L insieme V dei numeri da rappresentare L insieme W dei numeri rappresentanti Tra i due insiemi si stabilisce una corrispondenza che trasforma un elemento x di V in uno X di W Si dice allora che X è la rappresentazione di x La decomposizione in cifre del numero X La codifica in bit delle cifre Strategie di codifica in macchina Codifica binaria a lunghezza fissa Il numero di bit varia a seconda della cardinalità dell insieme dei numeri che si desidera rappresentare Nella pratica, resta comunque pari ad un multiplo di 8 bit (tipicamente 8, 16, 32, 64 bit) L associazione di un numero alla parola codice viene Realizzata differentemente a seconda della tipologia di numeri che si desidera rappresentare naturali, relativi, razionali, ecc Influenzata da aspetti che mirano a preservare la facile manipolazione delle rappresentazioni da parte del calcolatore operazioni aritmetiche, confronti logici, ecc Le operazioni aritmetiche vengono eseguite sulle rappresentazioni binarie dei numeri
3 Somme e Sottrazioni in aritmetica binaria Si effettuano secondo le regole del sistema decimale, ossia sommando (sottraendo) le cifre di pari peso Come nelle usuali operazioni su numeri decimali, si può avere un riporto sul bit di peso immediatamente superiore (carry), o un prestito dal bit di peso immediatamente superiore (borrow) Le somme (differenze) bit a bit sono definite come segue: 0+0=0 0-0=0 0+1=1 1-0=1 1+0=1 1-1=0 1+1=0 (carry=1) 0-1=1 (borrow=1) Ulteriore caso elementare: = 1 (carry=1) Moltiplicazione in aritmetica binaria La moltiplicazione bit a bit può essere definita come segue: 0x0=0 0x1=0 1x0=0 1x1=1
4 Rappresentazione di insiemi numerici infiniti Sia la dimensione che il numero dei registri in un calcolatore sono finiti La cardinalità degli insiemi numerici che occorre rappresentare è, invece, infinita N = insieme dei numeri Naturali Z = insieme dei numeri Relativi Q = insieme dei numeri Razionali R = insieme dei numeri Reali È inevitabile dunque che di un insieme di cardinalità infinita solo un sotto-insieme finito di elementi possa essere rappresentato Overflow Gli operatori aritmetici, pur essendo talvolta chiusi rispetto all intero insieme numerico su cui sono definiti, non lo sono rispetto ad un suo sottoinsieme di cardinalità finita Quando accade che, per effetto di operazioni, si tenta di rappresentare un numero non contenuto nel sottoinsieme si parla di overflow Es. sottoinsieme dei numeri naturali compresi tra 0 e 127 (rappresentabili con 7 bit): La somma genera un overflow, essendo il numero 200 non rappresentabile nel sottoinsieme
5 Rappresentazione dei numeri naturali Rappresentare di un sottoinsieme dei numeri naturali attraverso stringhe di bit di lunghezza costante n Il numero degli elementi rappresentabili è pari a 2 n Tipicamente, volendo rappresentare sempre anche lo zero, si rappresentano i numeri compresi tra 0 e 2 n 1 L associazione tra ogni numero e la propria rappresentazione avviene, nei casi pratici, nella maniera più intuitiva Ad ogni numero si associa la stringa di bit che lo rappresenta nel sistema di numerazione binario posizionale L overflow avviene quando si tenta di rappresentare un numero esterno all intervallo [0, 2 n 1] Esempio Rappresentazione dei numeri naturali su 4 bit n=4 V = [0,15] N Codifica: X=x x X
6 Operazioni sui numeri naturali Per realizzare le operazioni, il calcolatore può lavorare direttamente sulle rappresentazioni La correttezza dei calcoli è garantita dalle leggi dell aritmetica binaria posizionale (analoghe a quelle della classica aritmetica decimale) L overflow può essere facilmente rilevato attraverso la valutazione del riporto (o del prestito) sull ultima cifra In tale aritmetica, overflow = riporto uscente Esempi 6+ 8= = = = = = = = = = 0000== 0000=== overflow
7 Rappresentazione dei numeri relativi Esistono diverse tecniche Segno e modulo Corrispondente a quella comunemente utilizzata per i calcoli a mano Poco utilizzata in macchina per le difficoltà di implementazione degli algoritmi, basati sul confronto dei valori assoluti degli operandi e gestione separata del segno Complementi Complementi alla base Complementi diminuiti Per eccessi Rappresentazione in segno e modulo un singolo bit di X codifica il segno Es. il più significativo, 0 se positivo, 1 se negativo i restanti n-1 bit di X rappresentano il modulo (numero naturale) La legge di codifica X=r(x) è: X = x + 2 n-1 * sign(x) sign(x) = 0 per x 0, 1 per x < 0 Si possono rappresentare i numeri relativi compresi nell intervallo [ (2 n-1 1), 2 n-1 1] I numeri relativi rappresentati sono 2 n -1 Lo zero ha 2 rappresentazioni 0positivo e 0negativo
8 Esempio Rappresentazione in segno e modulo su 4 bit n=4 V = [-7,7] Z Codifica: X= x +8 * sign(x) x X 2 X ;1000 0; Operazioni in segno e modulo Diversamente dalla rappresentazione dei numeri naturali, questa volta non è possibile lavorare direttamente sulle rappresentazioni dei numeri per realizzare le operazioni aritmetiche È necessario lavorare separatamente sul segno e sul modulo Quando, ad esempio, si sommano due numeri di segno discorde, bisogna determinare quello con modulo maggiore e sottrarre ad esso il modulo dell altro. Il segno del risultato sarà quello dell addendo maggiore in modulo. Tale caratteristica, insieme con il problema della doppia rappresentazione dello zero, rende i calcoli particolarmente laboriosi e, per questo motivo, non è molto utilizzata nella pratica.
9 Rappresentazione in complementi alla base Una seconda tecnica per la rappresentazione dei numeri relativi consiste nell associare a ciascun numero il suo resto modulo M=2 n, definito come: x M =x-[x/m]*m Questo tipo di codifica, su n bit, è equivalente ad associare: il numero stesso (cioè X=x), ai numeri positivi compresi tra 0 e 2 n-1 1; il numero X = 2 n x, ai numeri negativi compresi tra -2 n-1 e 1; I numeri rappresentati sono quelli compresi nell intervallo [ 2 n-1 ; 2 n-1 1] Funzione intero Detto r un numero reale, si definisce intero di r il massimo intero y r y = [ r ] confronto tra funzione intero [ ] e ceiling r [r] r
10 Resto modulo M (M=16) Rappresentazione in complementi alla base su 4 bit Esempio n=4 V = [ 8,7] Z Codifica: Per 0 x 7: X= x Per -8 x -1: X= 2 n x x X 2 X
11 Complementi alla base: proprietà Questa rappresentazione ha il fondamentale vantaggio di permettere, nell ambito di operazioni aritmetiche, di lavorare direttamente sulle rappresentazioni. La regola sulla quale questa affermazione si basa è la seguente: la rappresentazione della somma (algebrica) di x ed y si ottiene come somma (modulo-m) delle rappresentazioni di x e y; analoghe sono le proprietà della differenza e del prodotto. x + y = x + M Questo tipo di codifica conserva, inoltre, la proprietà delle rappresentazioni di avere il primo bit 1 se (e solo se) il corrispondente numero è negativo (bit di segno) M y M M Esempi di addizioni in complementi alla base = = = = si ignora somma modulo-16 È possibile effettuare la somma direttamente tra le rappresentazioni modulo-m: il risultato ottenuto in questo modo, è proprio la rappresentazione (modulo-m) del risultato corretto
12 Complementi alla base: la complementazione In complementi alla base, a partire dalla rappresentazione di un numero, è anche particolarmente semplice ottenere la rappresentazione del suo opposto È infatti sufficiente complementare tutti i bit a partire da sinistra, tranne l uno più a destra ed eventuali zero successivi Questa ulteriore caratteristica consente di realizzare le sottrazioni attraverso la composizione di una complementazione (nel senso sopra detto) ed un addizione Nell aritmetica in complementi alla base, di conseguenza, l addizionatore e il complementatore rappresentano i componenti fondamentali per la realizzazione di tutte le operazioni Esempi di complementazione su 4 bit La rappresentazione di 6 10 su 4 bit è Complementando tutti i bit tranne l uno più a destra e gli zero successivi si ottiene: è la rappresentazione di 6 in complementi alla base. La rappresentazione di 5 10 su 4 bit è Complementando tutti i bit tranne l uno più a destra e gli zero successivi si ottiene: è la rappresentazione di 5 in complementi alla base. La rappresentazione di 1 10 su 4 bit è Complementando tutti i bit tranne l uno più a destra e gli zero successivi si ottiene: è la rappresentazione di 1 in complementi alla base.
13 Complementi alla base: esempio di moltiplicazione 2 * 3 = = = 0010== 0010=== si ignora prodotto Estensione del segno Problema: Sia dato un intero N, rappresentato in complemento mediante n bit Rappresentare N usando n+q bit (q>0) Soluzione: Fare q copie di MSB Dimostrazione (banale per N positivo) Sia N<0 (N=1bb b, dove b è una cifra binaria) Per induzione: Sia N q la stringa con estensione di q bit q=1: Poiché 2 n 1 = 2 n +2 n 1, allora V(N)=V(N 1 ). q>1: estendere di un bit la stringa ottenuta da N con estensione di q-1 bit V(N q )=V(N q-1 ) Esempio -2 = (110) 2 con 3 bit diventa (111110) 2 su 6 bit Nota: questa operazione viene eseguita quando si fa in C un typecast da tipo short int ad int
Rappresentazione dei numeri interi in un calcolatore
Corso di Calcolatori Elettronici I Rappresentazione dei numeri interi in un calcolatore Prof. Roberto Canonico Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Elettrica e delle
Rappresentazione dei numeri in un calcolatore
Corso di Calcolatori Elettronici I Rappresentazione dei numeri in un calcolatore ing. Alessandro Cilardo Corso di Laurea in Ingegneria Biomedica Rappresentazione dei numeri Così come per qualsiasi altro
Rappresentazione dei numeri in un calcolatore
Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri in un calcolatore Lezione 2 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione dei numeri
Rappresentazione e Codifica dell Informazione
Rappresentazione e Codifica dell Informazione Capitolo 1 Chianese, Moscato, Picariello, Alla scoperta dei fondamenti dell informatica un viaggio nel mondo dei BIT, Liguori editore. Sistema di numerazione
Conversione di base. Conversione decimale binario. Si calcolano i resti delle divisioni per due
Conversione di base Dato N>0 intero convertirlo in base b dividiamo N per b, otteniamo un quoto Q 0 ed un resto R 0 dividiamo Q 0 per b, otteniamo un quoto Q 1 ed un resto R 1 ripetiamo finché Q n < b
I.4 Rappresentazione dell informazione - Numeri con segno
I.4 Rappresentazione dell informazione - Numeri con segno Università di Ferrara Dipartimento di Economia e Management Insegnamento di Informatica Ottobre 20, 2015 Argomenti Introduzione 1 Introduzione
Codifica binaria. Rappresentazioni medianti basi diverse
Codifica binaria Rappresentazione di numeri Notazione di tipo posizionale (come la notazione decimale). Ogni numero è rappresentato da una sequenza di simboli Il valore del numero dipende non solo dalla
Rappresentazione dei Numeri
Rappresentazione dei Numeri Rappresentazione dei Numeri Il sistema numerico binario è quello che meglio si adatta alle caratteristiche del calcolatore Il problema della rappresentazione consiste nel trovare
1.2f: Operazioni Binarie
1.2f: Operazioni Binarie 2 18 ott 2011 Bibliografia Questi lucidi 3 18 ott 2011 Operazioni binarie Per effettuare operazioni è necessario conoscere la definizione del comportamento per ogni coppia di simboli
Rappresentazione di numeri relativi (interi con segno) Rappresentazione di numeri interi relativi (con N bit) Segno e Valore Assoluto
Rappresentazione di numeri relativi (interi con segno) E possibile estendere in modo naturale la rappresentazione dei numeri naturali ai numeri relativi. I numeri relativi sono numeri naturali preceduti
Fondamenti di Informatica - 1. Prof. B.Buttarazzi A.A. 2011/2012
Fondamenti di Informatica - 1 Prof. B.Buttarazzi A.A. 2011/2012 Sommario Rappresentazione dei numeri naturali (N) Rappresentazione dei numeri interi (Z) Modulo e segno In complemento a 2 Operazioni aritmetiche
Rappresentazione dell informazione
Rappresentazione dell informazione Problema che coinvolge aspetti filosofici Interessa soprattutto distinguere informazioni diverse Con un solo simbolo è impossibile Pertanto l insieme minimo è costituito
Calcolo numerico e programmazione Rappresentazione dei numeri
Calcolo numerico e programmazione Rappresentazione dei numeri Tullio Facchinetti 16 marzo 2012 10:54 http://robot.unipv.it/toolleeo Rappresentazione dei numeri nei calcolatori
Rappresentazione di numeri interi
Corso di Calcolatori Elettronici I Esercizi Rappresentazione di numeri interi ing. Alessandro Cilardo Corso di Laurea in Ingegneria Biomedica Interi senza segno Qual è l intervallo di rappresentazione
Lezione 3. I numeri relativi
Lezione 3 L artimetcia binaria: i numeri relativi i numeri frazionari I numeri relativi Si possono rappresentare i numeri negativi in due modi con modulo e segno in complemento a 2 1 Modulo e segno Si
I.4 Rappresentazione dell informazione
I.4 Rappresentazione dell informazione Università di Ferrara Dipartimento di Economia e Management Insegnamento di Informatica Ottobre 13, 2015 Argomenti Introduzione 1 Introduzione 2 3 L elaboratore Introduzione
Lezione 4. Sommario. L artimetica binaria: I numeri relativi e frazionari. I numeri relativi I numeri frazionari
Lezione 4 L artimetica binaria: I numeri relativi e frazionari Sommario I numeri relativi I numeri frazionari I numeri in virgola fissa I numeri in virgola mobile 1 Cosa sono inumeri relativi? I numeri
Cap. 2 - Rappresentazione in base 2 dei numeri interi
Cap. 2 - Rappresentazione in base 2 dei numeri interi 2.1 I NUMERI INTERI RELATIVI I numeri relativi sono numeri con il segno: essi possono essere quindi positivi e negativi. Si dividono in due categorie:
Sistemi di Numerazione Binaria
Sistemi di Numerazione Binaria BIN.1 Numeri e numerali Numero: entità astratta Numerale : stringa di caratteri che rappresenta un numero in un dato sistema di numerazione Lo stesso numero è rappresentato
Esercitazioni su rappresentazione dei numeri e aritmetica. Interi unsigned in base 2
Esercitazioni su rappresentazione dei numeri e aritmetica Salvatore Orlando & Marta Simeoni Interi unsigned in base 2 Si utilizza un alfabeto binario A = {0,1}, dove 0 corrisponde al numero zero, e 1 corrisponde
La codifica digitale
La codifica digitale Codifica digitale Il computer e il sistema binario Il computer elabora esclusivamente numeri. Ogni immagine, ogni suono, ogni informazione per essere compresa e rielaborata dal calcolatore
Corso di Architettura degli Elaboratori
Corso di Architettura degli Elaboratori Codifica dell'informazione: Numeri Binari (lucidi originali della Prof.ssa Zacchi e del Prof. Balossino, rivisti dal Prof. Baldoni) 1 Codifica dell'informazione?
Sistemi di Numerazione Binaria
Sistemi di Numerazione Binaria NB.1 Numeri e numerali Numero: entità astratta Numerale : stringa di caratteri che rappresenta un numero in un dato sistema di numerazione Lo stesso numero è rappresentato
Analogico vs. Digitale. LEZIONE II La codifica binaria. Analogico vs digitale. Analogico. Digitale
Analogico vs. Digitale LEZIONE II La codifica binaria Analogico Segnale che può assumere infiniti valori con continuità Digitale Segnale che può assumere solo valori discreti Analogico vs digitale Il computer
La codifica. dell informazione
00010010101001110101010100010110101000011100010111 00010010101001110101010100010110101000011100010111 La codifica 00010010101001110101010100010110101000011100010111 dell informazione 00010010101001110101010100010110101000011100010111
Somma di numeri binari
Fondamenti di Informatica: Codifica Binaria dell Informazione 1 Somma di numeri binari 0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 10 Esempio: 10011011 + 00101011 = 11000110 in base e una base Fondamenti di
Conversione binario-decimale. Interi unsigned in base 2. Esercitazioni su rappresentazione. dei numeri e aritmetica
Esercitazioni su rappresentazione dei numeri e aritmetica Salvatore Orlando & Marta Simeoni Interi unsigned in base 2 I seguenti numeri naturali sono rappresentabili usando il numero di bit specificato?
Rappresentazione dei numeri reali in un calcolatore
Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri reali in un calcolatore Lezione 3 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione di numeri
Aritmetica dei Calcolatori Elettronici
Aritmetica dei Calcolatori Elettronici Prof. Orazio Mirabella L informazione Analogica Segnale analogico: variabile continua assume un numero infinito di valori entro l intervallo di variazione intervallo
CONVERSIONE BINARIO DECIMALE NB: Convertire in decimale il numero binario N = N =
NOTAZIONE BINARIA, OTTALE, ESADECIMALE CODIFICA DI NUMERI INTERI RELATIVI 1 CONVERSIONE BINARIO DECIMALE Convertire in decimale il numero binario N = 101011.1011 2 N = 1 2 5 + 0 2 4 + 1 2 3 + 0 2 2 + 1
La codifica. dell informazione
La codifica dell informazione (continua) Codifica dei numeri Il codice ASCII consente di codificare le cifre decimali da 0 a 9 fornendo in questo modo un metodo per la rappresentazione dei numeri Il numero
Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione dei numeri relativi
Codice BCD Prima di passare alla rappresentazione dei numeri relativi in binario vediamo un tipo di codifica che ha una certa rilevanza in alcune applicazioni: il codice BCD (Binary Coded Decimal). È un
Calcolatori: Sistemi di Numerazione
Calcolatori: Sistemi di Numerazione Sistemi di Numerazione: introduzione In un Calcolatore, i Dati e le Istruzioni di un Programma sono codificate in forma inaria, ossia in una sequenza finita di e. Un
Calcolatori Elettronici Parte II: Sistemi di Numerazione Binaria. Prof. Riccardo Torlone Università di Roma Tre
Calcolatori Elettronici Parte II: Sistemi di Numerazione Binaria Prof. Riccardo Torlone Università di Roma Tre Unità di misura Attenzione però, se stiamo parlando di memoria: 1Byte = 8 bit 1K (KiB: KibiByte)
modificato da andynaz Cambiamenti di base Tecniche Informatiche di Base
Cambiamenti di base Tecniche Informatiche di Base TIB 1 Il sistema posizionale decimale L idea del sistema posizionale: ogni cifra ha un peso Esempio: 132 = 100 + 30 + 2 = 1 10 2 + 3 10 1 + 2 10 0 Un numero
Esercitazioni su rappresentazione dei numeri e aritmetica dei calcolatori
Esercitazioni su rappresentazione dei numeri e aritmetica dei calcolatori slide a cura di Salvatore Orlando & Marta Simeoni Architettura degli Elaboratori 1 Interi unsigned in base 2 Si utilizza un alfabeto
Aritmetica binaria e circuiti aritmetici
Aritmetica binaria e circuiti aritmetici Architetture dei Calcolatori (lettere A-I) Addizioni binarie Le addizioni fra numerali si effettuano cifra a cifra (come in decimale) portando il riporto alla cifra
Calcolatori Elettronici Parte II: Sistemi di Numerazione Binaria. Prof. Riccardo Torlone Università di Roma Tre
Calcolatori Elettronici Parte II: Sistemi di Numerazione Binaria Prof. Riccardo Torlone Università di Roma Tre Unità di misura Attenzione però, se stiamo parlando di memoria: n 1Byte = 8 bit n 1K (KiB:
Fondamenti di Informatica - 1. Prof. B.Buttarazzi A.A. 2011/2012
Fondamenti di Informatica - 1 Prof. B.Buttarazzi A.A. 2011/2012 I numeri reali Sommario Conversione dei numeri reali da base 10 a base B Rappresentazione dei numeri reali Virgola fissa Virgola mobile (mantissa
12BHD - Informatica - soluzioni Appendice B del quaderno di testo - v. 1.05
Esercizio 1 Effettuare i seguenti cambiamenti di codifica su numeri naturali: 123 10 = x 2 [ 1111011 2 ] 011101 2 = x 10 [ 29 10 ] 23 10 = x 5 [ 43 5 ] 123 5 = x 10 [ 38 10 ] 123 10 = x H [ 7B 16 ] A1
Aritmetica dei Calcolatori
Aritmetica dei Calcolatori Luca Abeni March 5, 2014 Codifica dei Numeri Interi k bit codificano 2 k simboli/valori/numeri... Si usa la base 2 per codificare i numeri Numeri naturali n N: valori da 0 a
Codifica. Rappresentazione di numeri in memoria
Codifica Rappresentazione di numeri in memoria Rappresentazione polinomiale dei numeri Un numero decimale si rappresenta in notazione polinomiale moltiplicando ciascuna cifra a sinistra della virgola per
Rappresentazioni numeriche
Rappresentazioni numeriche Un numero è dotato di un valore una rappresentazione La rappresentazione di un numero è il sistema che utilizziamo per indicarne il valore. Normalmente è una sequenza (stringa)
Rappresentazione in complemento a 2: caratteristiche generali
Rappresentazione in complemento a 2: caratteristiche generali La rappresentazione non è completamente posizionale, ma in parte sì. Guardando il bit più significativo (MSB) si capisce se il numero è positivo
04 Aritmetica del calcolatore
Aritmetica del calcolatore Numeri a precisione finita - con un numero finito di cifre - non godono della proprietà di chiusura - le violazioni creano due situazioni distinte: - overflow - underflow Pagina
Numeri interi (+/-) Alfabeto binario. Modulo e segno
Numeri interi (+/-) Alfabeto binario il segno è rappresentato da 0 (+) oppure 1 (-) è indispensabile indicare il numero k di bit utilizzati Modulo e segno 1 bit di segno (0 positivo, 1 negativo) k 1 bit
Rappresentazione di dati: numerazione binaria. Appunti per la cl. 3 Di A cura del prof. Ing. Mario Catalano
Rappresentazione di dati: numerazione binaria Appunti per la cl. 3 Di A cura del prof. Ing. Mario Catalano Rappresentazione binaria Tutta l informazione interna ad un computer è codificata con sequenze
Algoritmi Istruzioni che operano su dati. Per scrivere un programma è necessario. che l esecutore automatico sia in grado di.
Codifica di Dati e Istruzioni Fondamenti di Informatica Codifica dell Informazione Prof. Francesco Lo Presti Algoritmi Istruzioni che operano su dati Per scrivere un programma è necessario rappresentare
LA CODIFICA DELL INFORMAZIONE
LA CODIFICA DELL INFORMAZIONE Prof. Enrico Terrone A. S: 20/2 Lo schema di Tanenbaum Il livello al quale ci interessiamo in questa lezione è il linguaggio macchina, l unico dove le informazioni e istruzioni
Rappresentazione dei dati in memoria
Rappresentazione dei dati in memoria La memoria Una memoria deve essere un insieme di oggetti a più stati. Questi oggetti devono essere tali che: le dimensioni siano limitate il tempo necessario per registrare
I sistemi di numerazione. Informatica - Classe 3ª, Modulo 1
I sistemi di numerazione Informatica - Classe 3ª, Modulo 1 1 La rappresentazione interna delle informazioni ELABORATORE = macchina binaria Informazione esterna Sequenza di bit Spett. Ditta Rossi Via Roma
Per gli esercizi sulla algebra booleana, si consiglia di verificare tramite tabelle di verità le equivalenze logiche proposte sulle dispense.
Fondamenti di Informatica - A. Fantechi Raccolta di esercizi Per gli esercizi sulla algebra booleana, si consiglia di verificare tramite tabelle di verità le equivalenze logiche proposte sulle dispense.
Rappresentazione dei Dati
Parte II I computer hanno una memoria finita. Quindi, l insieme dei numeri interi e reali che si possono rappresentare in un computer è necessariamente finito 2 Codifica Binaria Tutti i dati usati dagli
Informatica Generale 1 - Esercitazioni Flowgraph, algebra di Boole e calcolo binario
Informatica Generale 1 - Esercitazioni Flowgraph, algebra di Boole e calcolo binario Daniele Pighin [email protected] FBK Via Sommarive, 18 I-38050 Trento, Italy February 27, 2008 Outline 1 Algebra di Boole
Fondamenti di Informatica - 1. Prof. B.Buttarazzi A.A. 2011/2012
Fondamenti di Informatica - 1 Prof. B.Buttarazzi A.A. 2011/2012 Sommario I sistemi di numerazione Il sistema binario Altri sistemi di numerazione Algoritmi di conversione Esercizi 07/03/2012 2 Sistemi
La codifica dei numeri
La codifica dei numeri La rappresentazione dei numeri con il sistema decimale può essere utilizzata come spunto per definire un metodo di codifica dei numeri all interno degli elaboratori: la sequenza
