Piastrelliamo i rettangoli
|
|
|
- Federico Contini
- 8 anni fa
- Visualizzazioni
Transcript
1 Per la quarta classe della scuola primaria Piastrelliamo i rettangoli Qui sotto vedete un rettangolo, disegnato sulla carta a quadretti. Potete immaginare che sia una stanza, che vogliamo piastrellare, con delle piastrelle quadrate, tutte uguali fra loro, il cui lato deve essere un certo numero di quadretti. Non vogliamo rompere le piastrelle, quindi vogliamo che ce ne stia un numero giusto sia per il lungo che per il largo. Voi direte che se le stanze sono disegnate sulla carta a quadretti, basta pensare che una piastrella sia un quadretto. Giusto! Ottima osservazione! Però noi vorremmo anche che le piastrelle fossero delle piastrellone MOLTO grandi, più grandi possibile. E ci accontentiamo delle piastrelle di lato un quadretto soltanto quando non è proprio possibile fare diversamente senza rompere le piastrelle. Per esempio, per un rettangolo di lati 6 e 8 quadretti, come vedete in figura qui sotto si potrebbero usare anche piastrelle di lato 2 quadretti: Si può fare anche di meglio? Chiara e Carlo sono di opinioni differenti: Carlo sostiene che si possono usare piastrelle ancora più grandi, Chiara dice invece che non si può fare meglio di così. 1. Secondo voi chi dei due ha ragione?.. 2. Perché? Provate a piastrellare anche gli altri rettangoli qui sotto, cercando di utilizzare piastrelle con lato il più grande possibile. Per ciascun rettangolo, dopo aver trovato la lunghezza del lato di una piastrella che vada bene, discutete anche fra di voi finché siete sicuri che non si possa fare di meglio. Potete registrare i 1
2 numeri che avete trovato nella prossima tabella. Nelle prime due righe abbiamo inserito noi il numero che rappresenta la lunghezza (in quadretti) dei lati del rettangolo; nella terza riga potete inserire voi la lunghezza del lato della piastrella più grande possibile che siete riusciti a trovare. Vi proponiamo anche altri due rettangoli che qui non abbiamo disegnato. Se volete esplorare altri casi, usate le colonne bianche sulla destra. 3. Primo lato Secondo lato Lato delle piastrelle 2 4. Scegliete UNO di questi rettangoli e raccontateci qui sotto che ragionamenti avete fatto per essere sicuri che non si può piastrellarlo con piastrelle più grandi (facoltativo): 5. Osservate la tabella: come è collegato secondo voi il numero che sta nella terza riga ai due numeri che gli stanno sopra? Formulate qualche ipotesi. Chiara ha osservato una cosa: se si fa la divisione fra uno dei numeri corrispondenti a un lato del rettangolo (come 6 oppure 8 nella prima colonna) e il numero che corrisponde al lato della piastrella (2 nella prima colonna), questa viene senza resto: il 2 è contenuto esattamente tre volte nel 6 e quattro volte nell 8. Quando succede una cosa del genere, i matematici dicono che 2 è un divisore di 6 (e anche di 8) oppure che 6 (e anche 8) è un multiplo di 2. Provate a controllare se succede la stessa cosa anche negli altri casi che avete esaminato. Se succede sempre, allora il numero che avete trovato piastrellando il rettangolo con la piastrella più grande possibile è un divisore sia del primo che del secondo numero, ed è il più grande fra i numeri che sono divisori contemporaneamente di tutti e due i numeri che corrispondono alla lunghezza dei lati del rettangolo. In matematica si usa dire che è il Massimo Comun Divisore dei due numeri. 6. Secondo voi come si ottiene il numero collegato al lato del rettangolo partendo dal numero collegato al lato della piastrella? Quale altra informazione vi serve? Da che cosa lo vedete? Dal disegno? Dalla tabella dei numeri? Da tutte e due? 7. E adesso una domanda davvero difficilissima. Siete capaci di trovare il Massimo Comun Divisore tra 54 e 45. Scriveteci qui sotto non solo quanto vale secondo voi, ma anche come avete fatto a trovarlo: avete usato i rettangoli? O le divisioni? O tutti e due? 2
3 Un ultima questione. La maestra Liliana è arrivata oggi in classe con ben 54 caramelle e 45 cioccolatini che vorrebbe utilizzare come premio per una gara con i suoi allievi della prima classe. La gara non ha un solo vincitore, ne ha tanti, ed è proprio la maestra che deciderà quanti saranno i vincitori. Per evitare litigi tra i ragazzi, la maestra ha bisogno che ognuno dei vincitori riceva esattamente lo stesso numero di caramelle e esattamente lo stesso numero di cioccolatini. Inoltre la maestra vorrebbe che i vincitori fossero tanti, il maggior numero possibile, anche per non far venire loro l indigestione! 8. I vincitori possono essere più di 3?.Possono essere più di 10?... Quanti vincitori al massimo può prevedere per la gara?. Quante caramelle e quanti cioccolatini riceverà ciascun giocatore?.. Secondo voi questo problema ha qualcosa a che vedere con i rettangoli che avete piastrellato? Se sì, come lo spiegate? 3
4 Scheda risposte classe IV primaria Cod docente.. Cod. classe Gruppo.. Piastrelliamo i rettangoli 1. Secondo noi ha ragione.. 2. perché Abbiamo completato la tabella qui sotto Primo lato Secondo lato Lato delle piastrelle 2 4. (facoltativo) siamo sicuri che non si può piastrellarlo con piastrelle più grandi, perché 5. Che collegamento c è tra il numero che sta nella terza riga e i due numeri che gli stanno sopra? 6. Il numero collegato al lato del rettangolo si ottiene Il Massimo Comun Divisore tra 54 e 45 è. Lo abbiamo trovato I vincitori possono/non possono (cancellate la risposta sbagliata) essere più di 3. Possono/non possono (cancellate la risposta sbagliata) essere più di 10. 4
5 La gara al massimo può prevedere.vincitori. Ciascun giocatore riceverà caramelle e cioccolatini. Questo problema c entra con i rettangoli che abbiamo piastrellato perché... 5
Per la terza classe della scuola secondaria di I grado. Numeri e rettangoli
Per la terza classe della scuola secondaria di I grado Numeri e rettangoli Qui sotto vedete due rettangoli, disegnati sulla carta a quadretti: il primo ha un lato di 39 quadretti e l altro di 27; il secondo
La città ideale Scheda di laboratorio (II sessione classe II secondaria di I grado)
La città ideale Scheda di laboratorio (II sessione classe II secondaria di I grado) Continuiamo con le nostre rappresentazioni in prospettiva. La volta scorsa vi sarete accorti che, quando vogliamo rappresentare
SOLUZIONI QUARTA TAPPA CLASSE PRIMA
CLASSE PRIMA CARI AMICI, QUESTO PROBLEMA È STATO DAVVERO DIFFICILE PER ELENA! HA DOVUTO LEGGERE IL TESTO TANTE VOLTE PER CAPIRE BENE IL PROBLEMA, MA ALLA FINE È RIUSCITA A RISOLVERLO, ANCHE GRAZIE AL VOSTRO
LA GEOMETRIA ALLO SPECCHIO - IV sessione Costruzioni allo specchio
LA GEOMETRIA ALLO SPECCHIO - IV sessione Costruzioni allo specchio Quadrilateri allo specchio Durante la prima sessione del laboratorio, avete avuto occasione di appoggiare la base di uno specchio alle
In quanto segue ci interesseranno particolarmente le forme che si comportano come l esempio del quadrato A qui sopra. Le chiameremo forme di tipo A.
I MOSAICI E IL CONCETTO DI GRUPPO (triennio sc.sec II grado) Qui sotto avete una griglia, che rappresenta una normale quadrettatura, come quella dei quaderni a quadretti; nelle attività che seguono dovrete
Addiziona poi questi tre numeri e trova come somma 45 che è proprio l età di sua mamma.
1. I BOTTONI DI ERNESTO (Cat 3, 4) ARMT 2003 - finale 11 Per il suo prossimo spettacolo il clown Ernesto deve preparare un nuovo vestito. Vuole cucire 3 bottoni sul suo vestito, nel posto indicato nel
Kangourou della Matematica 2016 Coppa a squadre Kangourou Semifinale turno A Cervia, 7 maggio Quesiti
Kangourou della Matematica 2016 Coppa a squadre Kangourou Semifinale turno A Cervia, 7 maggio 2016 Quesiti 1. I biglietti di Giacomo Ci sono 200 biglietti numerati da 1 a 200. Giacomo vuole accoppiare
I problemi di questa prova
I problemi di questa prova Categoria Problemi 3 1-2-3-4-5 4 1-2-3-4-5-6 5 1-2-3-4-5-6-7 6 7-8-9-10-11-12-13 7 8-9-10-11-12-13-14 8 8-9-10-11-12-13-14 9 10-11-12-13-14-15-16 10 10-11-12-13-14-15-16 Correzione
Coloriamo i numeri. Osservate il disegno che avete ottenuto e rispondete a queste domande, che riguardano tre pallini messi in questo modo:
Coloriamo i numeri Vi ricordate il triangolo di Tartaglia che avete incontrato nella mostra MaTeinItaly? Se l avete dimenticato, ne riproduciamo qui sotto una parte: Continuarlo è facile: ogni riga inizia
23 Rally Matematico Transalpino, prova 1
23 Rally Matematico Transalpino, prova 1 I problemi del RMT sono protetti da diritti di autore. Per un'utilizzazione in classe deve essere indicata la provenienza del problema inserendo la dicitura " ARMT".
Che cos è una retta? - Geometria sferica, euclidea e iperbolica Pagina 1
Che cos è una retta? - Geometria sferica, euclidea e iperbolica Pagina 1 Vi hanno incaricati di progettare una rotta aerea tra Mosca e Vancouver (segnati sulla cartina da dei pallini rossi). Questa rotta
Sapreste dire che cosa sono vertice, spigolo e faccia di un poliedro? Indicatelo negli appositi spazi della figura sottostante:
Laboratorio formazione primaria.. 2008-2009 1. SSERVZINE DI LIEDRI sservate le costruzioni presenti in sala, realizzate con tessere colorate. In generale le costruzioni in cui le tessere si incastrano
NONSOLOFORMULE. Confezioni Vasetti yogurt
in una tabella, dove nella colonna di sinistra scriviamo il numero di confezioni e nella colonna di destra il numero di vasetti corrispondenti. 2 12 3 18...... Abbiamo così rappresentato in modo schematico
(ED IMPARARE LE REGOLE DELLE OPERAZIONI)
COME CALCOLARE IL PERIMETRO DI UN RETTANGOLO (ED IMPARARE LE REGOLE DELLE OPERAZIONI) Mettiamo che io abbia 8 panini, per calcolare la loro somma posso fare panino+panino+panino+panino+panino+panino+panino+panino=
Massimi e minimi vincolati
Massimi e minimi vincolati Data una funzione G C 1 (D), dove D è un aperto di R 2, sappiamo bene dove andare a cercare gli eventuali punti di massimo e minimo relativi. Una condizione necessaria affinché
Parte Seconda. Prova di selezione culturale
Parte Seconda Prova di selezione culturale TEORIA DEGLI INSIEMI MATEMATICA ARITMETICA Insieme = gruppo di elementi di cui si può stabilire inequivocabilmente almeno una caratteristica in comune. Esempi:
Kangourou Italia Gara del 15 marzo 2007 Categoria Student Per studenti di quarta o quinta della secondaria di secondo grado
Testi_07.qxp 6-04-2007 2:07 Pagina 28 Kangourou Italia Gara del 5 marzo 2007 Categoria Per studenti di quarta o quinta della secondaria di secondo grado I quesiti dal N. al N. 0 valgono 3 punti ciascuno.
6 dicembre 2012 Gara a squadre di matematica per le scuole medie
1 Logo scuola Kangourou Italia UNIVERSITA DEGLI STUDI DI MODENA E REGGIO EMILIA Dipartimento di Fisica, Informatica e Matematica PIANO LAUREE SCIENTIFICHE Orientamento e Formazione degli Insegnanti 6 dicembre
AREA LOGICO - MATEMATICA TEMA PARI E DISPARI
ESTENSIONE DEL METODO BRIGHT START UNITA COGNITIVE DI RIFERIMENTO RELAZIONI QUANTITATIVE CONFRONTI CLASSE SECONDA A TEMPO PIENO- SCUOLA ELEMENTARE C. CAVOUR SANTENA AREA LOGICO - MATEMATICA TEMA PARI E
Il Sistema di numerazione decimale
Il Sistema di numerazione decimale Il NUMERO è un oggetto astratto, rappresentato da un simbolo (o cifra) ed è usato per contare e misurare. I numeri usati per contare, 0,1,2,3,4,5,. sono detti NUMERI
1 Riduzione per righe e matrici equivalenti per righe.
Geometria Lingotto. LeLing2: Sistemi lineari omogenei. Ārgomenti svolti: Riduzione per righe e matrici equivalenti per righe. Forma echelon e sistemi gia risolti. Il metodo di Gauss-Jordan e la forma echelon.
Attività - I Dadi. Proposta dal prof. Pasquale Cozza, insegnante di matematica, del Liceo Scientifico Pitagora di Rende
Attività - I Dadi Proposta dal prof. Pasquale Cozza, insegnante di matematica, del Liceo Scientifico Pitagora di Rende Ci proponiamo l obiettivo di studiare le regole di costruzione dei dadi per progettare
In questa tabella si possono vedere molti quadrati di quattro caselle:
10 o RALLY MATEMATICO TRANSALPINO - PROVA I - gen. - feb. 2002 /ARMT/2002 p. 1 1. Quadrati di quattro caselle (Cat. 3) /ARMT/2002-10 - I prova 3 14 17 11 14 In questa tabella si possono vedere molti quadrati
Le quattro operazioni fondamentali
Le quattro operazioni fondamentali ADDIZIONE Def: Si dice ADDIZIONE l operazione con la quale si calcola la somma; i numeri da addizionare si dicono ADDENDI e il risultato si dice SOMMA o TOTALE. Proprietà:
1. Pompieri (Cat. 3) /ARMT/ II prova
10 o RALLY MATEMATICO TRANSALPINO PROVA II marzo-aprile 2002 ARMT2002 p. 1 1. Pompieri (Cat. 3) /ARMT/2002-10 - II prova I pompieri di Transalpino hanno tre scale: - una corta, - una media che misura 2
Metodo di Gauss-Jordan 1
Metodo di Gauss-Jordan 1 Nota Bene: Questo materiale non debe essere considerato come sostituto delle lezioni. Ārgomenti svolti: Riduzione per righe e matrici equivalenti per righe. Forma echelon e sistemi
Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1
Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1 Esercizio 1.12 Per dimostrare che per ogni funzione esiste una formula in cui compaiono le variabili tale che la corrispondente
1. Pompieri (Cat. 3) /ARMT/ II prova
10 o RALLY MATEMATICO TRANSALPINO PROVA II marzo-aprile 2002 ARMT2002 p. 1 1. Pompieri (Cat. 3) /ARMT/2002-10 - II prova I pompieri di Transalpino hanno tre scale: - una corta, - una media che misura 2
1. Pompieri (Cat. 3) Quanto misura ciascuna scala? Spiegate il vostro ragionamento. 2. La casa di Viola (Cat. 3, 4)
10 o RALLY MATEMATICO TRANSALPINO PROVA II marzo-aprile 2002 ARMT2002 p. 1 1. Pompieri (Cat. 3) I pompieri di Transalpino hanno tre scale: - una corta, - una media che misura 2 volte quella corta, - una
Esercitazioni di. LOGICA e MATEMATICA. per la preparazione della PROVA NAZIONALE INVALSI CLASSE PRIMA
Esercitazioni di LOGICA e MATEMATICA per la preparazione della PROVA NAZIONALE INVALSI CLASSE PRIMA prof.ssa Lina Migliaccio 1 I test di Bertoldino 1. In una stalla ci sono 15 pecore. Scappano tutte tranne
tutto 42 biglie". biglie ci sono in tutto?". 5. LE BIGLIE DI ARTURO (Cat. 3, 4, 5, 6) ARMT RMT PROVA II
4 e RMT PROVA II marzo-aprile 06 ARMT06 5. LE BIGLIE DI ARTURO (Cat. 3, 4, 5, 6) ARMT 06 4 RMT PROVA II Arturo ha l abitudine di riporre le sue biglie in scatole di due tipi diversi: Mette sempre lo stesso
Le quattro operazioni fondamentali
1. ADDIZIONE Le quattro operazioni fondamentali Def: Si dice ADDIZIONE l operazione con la quale si calcola la somma; i numeri da addizionare si dicono ADDENDI e il risultato si dice SOMMA o TOTALE. Proprietà:
Quesiti. 1. La somma di quest anno La somma vale Quanti sono gli addendi?
Quesiti 1. La somma di quest anno La somma 1 3 + 5 7 + 9 vale 2013. Quanti sono gli addendi? 2. Il triangolo numerato Una tabella di numeri ha l aspetto di un triangolo: in figura ne vedete una parte.
LA NOSTRA ESPERIENZA
PREMESSE Incuriosite dall esperienza positiva portata avanti da due colleghi di scuola elementare, abbiamo deciso di aderire al progetto di geometria e di proporre ai nostri allievi delle attività in questo
Classe IV scuola primaria
Classe IV scuola primaria Cari amici, spero che siate d'accordo con me che la nostra maestra Serena è un po' strana. Questa volta ci ha detto che il compito da fare è quello del punto A, ma che invece
10. Quale dei seguenti numeri
Test d'ingresso di matematica per la secondaria di secondo grado (liceo classico) Il test si basa su alcuni test di ingresso (opportunamente modificati) assegnati al liceo classico e trovati in Rete Nome:
Scrivete tutte le possibili soluzioni numeriche per la parola MILANO.
1. NUMERO CICLICO Considerate la seguente moltiplicazione, sapendo che a lettere uguali corrispondono cifre uguali e a lettere diverse corrispondono cifre diverse: ILANOM x 4 = MILANO Scrivete tutte le
8. Cammelli e dromedari 5.I 5-6 sistema di due equazioni in N. 9. La vasca MI 5-6 scomposizione additiva di 49 in multipli di 3, 4, 5
24 e RMT PROVA I gennaio-febbraio 2016 ARMT 2016 1 Titolo or. cat. Tema matematico 8. Cammelli e dromedari 5.I 5-6 sistema di due equazioni in N 9. La vasca MI 5-6 scomposizione additiva di 49 in multipli
3 Omotetie del piano. 4 Omotetie del piano. Fondamenti e didattica della matematica B. Geometria delle similitudini. k = 3.
1 2 Fondamenti e didattica della matematica B 5 marzo 2007 Geometria delle similitudini Marina Bertolini ([email protected]) Dipartimento di Matematica F.Enriques Università degli Studi di
Alberto Gagliani Amedeo Sgueglia Giacomo Drago Enrico Piccione Matteo Pintonello Semifinale giochi matematici Padova
Alberto Gagliani Amedeo Sgueglia Giacomo Drago Enrico Piccione Matteo Pintonello Semifinale giochi matematici Padova 18.03.2017 Quesito 1 IN FORMA Lavinia mette sul tavolo (in un certo ordine) un rettangolo,
7 giorni 30 giorni 365 giorni
Budini, torte, biscotti 7 coppie e un gruppo da tre Tutte le coppie calcolano esattamente i litri di latte necessari per le torte e per i budini. Per i biscotti (2,5 litri di latte al giorno) si hanno
BREVE RIEPILOGO SULLE FRAZIONI
BREVE RIEPILOGO SULLE FRAZIONI ---> Numeratore = numero di parti uguali considerate Linea di frazione Denominatore = numero di parti uguali in cui è diviso l'intero la frazione si
Kangourou della Matematica 2012 Coppa a squadre Kangourou Semifinale turno A Cervia, 5 maggio Quesiti
Kangourou della Matematica 0 Coppa a squadre Kangourou Semifinale turno A Cervia, 5 maggio 0 Quesiti. umeri di quest anno Quanti numeri interi positivi n sono tali che entrambi i numeri n 0 e n + 0 siano
Scegliamo a caso i numeri e vediamo alcuni esempi:
Un programmatore propone di utilizzare questa serie di operazioni: Passo 1 - si sceglie un numero naturale di partenza composto da n cifre (per esempio 2 cifre). Passo 2 - si scrive il numero scelto con
7 Rally matematico transalpino Prova I p. 1
7 Rally matematico transalpino Prova I p. 1 1. I CIOCCOLATINI (Cat 3) In questa scatola i cioccolatini erano perfettamente allineati e disposti in modo regolare. Ora, però, ne restano solo 17. Quanti cioccolatini
Kangourou Italia Gara del 28 marzo 2008 Categoria Student Per studenti di quarta o quinta della secondaria di secondo grado
Testi_08.qxp 9-0-008 :6 Pagina 8 Kangourou Italia Gara del 8 marzo 008 ategoria Per studenti di quarta o quinta della secondaria di secondo grado I quesiti dal N. al N. 0 valgono punti ciascuno. Nelle
Il nano sulle spalle del gigante
Il nano sulle spalle del gigante il sottile legame che separa matematica e informatica Miriam Di Ianni Università di Roma Tor Vergata Cosa è un problema? Dal dizionario: In matematica e in altre scienze,
Agnese De Rito, Rosemma Cairo, Egidia Fusani Dell associazione Matematica in Gioco. Poligoni stellati
Agnese De Rito, Rosemma Cairo, Egidia Fusani Dell associazione Matematica in Gioco Poligoni stellati I poligoni regolari che abbiamo incontrato finora sono tutti poligoni convessi; esistono anche dei particolari
Il teorema di Rouché-Capelli
Luciano Battaia Questi appunti (1), ad uso degli studenti del corso di Matematica (A-La) del corso di laurea in Commercio Estero dell Università Ca Foscari di Venezia, campus di Treviso, contengono un
MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI. Anna TORRE
MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI Anna TORRE Dipartimento di Matematica, Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy. E-mail: [email protected] 1 SOLUZIONI:
Come può Zoe ricoprire completamente la sua tavoletta? Indicate tutte le diverse possibilità. Spiegate il vostro ragionamento.
14 RMT PROVA I gennaio-febbraio 2006 ARMT.2006 1 4. TAVOLETTA DA RICOPRIRE (Cat. 3, 4, 5) ARMT.2006-14 - I prova Zoe deve ricoprire completamente questa tavoletta di 9 caselle quadrate. Per farlo, ha a
Hai imparato che la divisione non è un operazione interna nell insieme dei numeri naturali, per esempio possiamo avere:
DIVISORI E LA DIVISIBILITA Hai imparato che la divisione non è un operazione interna nell insieme dei numeri naturali, per esempio possiamo avere: 36: 3 = 12 divisione eseguibile in N 27: 2 divisione non
Kangourou Italia Gara del 15 marzo 2007 Categoria Benjamin Per studenti di prima o seconda della scuola secondaria di primo grado
Testi_07.qxp 16-0-2007 12:0 Pagina 10 Kangourou Italia Gara del 15 marzo 2007 Categoria Per studenti di prima o seconda della scuola secondaria di primo grado I quesiti dal N. 1 al N. 10 valgono punti
Kangourou della Matematica 2016 Coppa a squadre Kangourou Finale - Cervia, 8 maggio Quesiti
Kangourou della Matematica 2016 Coppa a squadre Kangourou Finale - Cervia, 8 maggio 2016 Quesiti 1. Somme Chiamate m il più piccolo numero di due cifre la somma delle quali sia ancora un numero di due
Esempio B2.1: dire il grado del monomio seguente rispetto ad ogni lettera e il suo grado complessivo:
B. Polinomi B.1 Cos è un polinomio Un POLINOMIO è la somma di due o più monomi. Se ha due termini, come a+b è detto binomio Se ha tre termini, come a-3b+cx è detto trinomio, eccetera GRADO DI UN POLINOMIO
MATEMATICA Il. Lezione 6:13 marzo 03 Spazio e geometria. Verbale (a cura di Daniela Bertonasco e Claudia Celentano) h : revisione lezione 5
MATEMATICA Il Lezione 6:13 marzo 03 Spazio e geometria Verbale (a cura di Daniela Bertonasco e Claudia Celentano) h. 9.00-9.30: revisione lezione 5 L insegnante riprende le tre definizioni di rette parallele
Attività 12. Gli ordini di marcia I linguaggi di programmazione
Attività 12 Gli ordini di marcia I linguaggi di programmazione Sommario I computer vengono programmati mediante un linguaggio composto da un numero limitato di ordini che possono essere eseguiti. Uno dei
Insiemi uguali? biiezione : A B bambino i libro i bambino ii libro ii bambino iii libro iii bambino iv libro iv
Insiemi uguali? Vogliamo occuparci del confronto di insiemi, in particolare di insiemi infiniti. Prima di potere parlare di confronto di insiemi è necessario però fare alcune precisazioni a riguardo della
Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n
Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n Cristina Turrini UNIMI - 2016/2017 Cristina Turrini (UNIMI - 2016/2017) Elementi di Algebra e di Matematica
Gara Matematica. Dipartimento di Matematica Ulisse Dini. Viale Morgagni 67/a Firenze. Soluzioni edizione 2011
Gara Matematica Dipartimento di Matematica Ulisse Dini Viale Morgagni 67/a - 50134 Firenze Soluzioni edizione 011 Esercizio 1. Determinare tutti gli interi positivi non nulli n che sono uguali alla somma
Progetto Olimpiadi di Matematica 1997
SCUOLA NORMALE SUPERIORE DI PISA Progetto Olimpiadi di Matematica 1997 GARA di SECONDO LIVELLO 1) 2) 3) 4) 5) 19 febbraio 1997 Non sfogliare questo fascicoletto finché l insegnante non ti dice di farlo.
Kangourou della Matematica 2017 Coppa Ecolier a squadre Finale Cervia, 8 maggio Quesiti
Kangourou della Matematica 2017 Coppa Ecolier a squadre Finale Cervia, 8 maggio 2017 Quesiti 1. Il libro di Anna Anna ha notato che la somma dei numeri su due pagine consecutive di un libro è 37. Qual
io e la mia calcolatrice
io e la mia calcolatrice Si può usare la calcolatrice? Ma come si fa senza calcolatrice? È troppo difficile! Ma si può fare anche senza, non serve poi così tanto! Come faccio? Ho dimenticato la calcolatrice!
Matrici di Raven e Bochum
Matrici di Raven e Bochum @ Le matrici di Raven e di Bochum sono tabelle 3 3 (ovvero con 3 righe e 3 colonne), o 3 5 (ovvero con 3 righe e 5 colonne), contenenti in ogni cella, tranne in una o due, alcuni
Fra quanti anni i quattro bambini avranno insieme la stessa età della loro mamma? Indicate la vostra soluzione e spiegate il vostro ragionamento.
12 o RALLY MATEMATICO TRANSALPINO - PROVA I - gen. - feb. 2004-8 a cat. /ARMT/2004 1 6. IL COMPLEANNO DELLA MAMMA (Cat. 4, 5, 6) /ARMT/2004 Andrea, Anna, Annalisa e Alberto hanno rispettivamente 11, 9,
SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI
SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4B) January 17, 005 1 SISTEMI LINEARI Se a ik, b i R,
ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI A. MARTINI Castelfranco Veneto (TV) Docente: Daniele De Pieri.
6 settembre 008 Giochi Matematici. Il gioco dei grattacieli (puoi trovare una versione online all indirizzo: http://gamescene.com/skyscrapers_game.html) In una città ci sono solo grattacieli da, 0, 0 o
I.T.I.S L. Da Vinci G. Galilei Progetto: Diritti a Scuola - Matematica - Anno 2016
Si ringrazia il gentilissimo Prof. Nicola Filipponio per la sua disponibilità, per aver tenuto delle brillanti lezioni presso il nostro istituto e per l utilizzo del suo materiale relativo alla costruzione
Categoria Cadet Per studenti del terzo anno della scuola secondaria di primo grado o del primo anno della scuola secondaria di secondo grado
Categoria Cadet Per studenti del terzo anno della scuola secondaria di primo grado o del primo anno della scuola secondaria di secondo grado 1. Risposta B) Infatti la somma data corrisponde a sommare 3
1 L estrazione di radice
1 L estrazione di radice Consideriamo la potenza 3 2 = 9 di cui conosciamo: Esponente 3 2 = 9 Valore della potenza Base L operazione di radice quadrata consiste nel chiedersi qual è quel numero x che elevato
6. Trimini per tassellare il piano
6. Trimini per tassellare il piano Osservando il pavimento sotto i vostri piedi, noterete che la sua superficie è interamente ricoperta da piastrelle identiche, probabilmente di forma triangolare, quadrata
SCUOLA SECONDARIA DI SECONDO GRADO. Contenuti Attività Metodo Strumenti Durata (in ore)
SCUOLA SECONDARIA DI SECONDO GRADO Obiettivi di apprendimento Contenuti Attività Metodo Strumenti Durata (in ore) Valutazione degli obiettivi di apprendimento Valutazione della competenza Conoscere i poligoni
ATTIVITÀ INTRODUTTIVA
SCHEDA S STELLE Dalle conte alle STELLE! ATTIVITÀ INTRODUTTIVA 1 Vi ricordate le conte che facevate da bambini? Provate a recitarne una, stando attenti ad usare bene il ritmo della filastrocca: ad ogni
si usa in geometria per definire due figure uguali per forma ma non per dimensioni.
FIGURE PIANE EQUIESTESE Due figure piane si definiscono equivalenti (o equiestese) se hanno la stessa superficie, la stessa estensione cioè la stessa area. OSSERVA CHE 1- Due figure congruenti saranno
Levity IV. Framework per la narrazione interattiva Giocare con i bambini
Levity IV Framework per la narrazione interattiva Giocare con i bambini Levity IV Giocare con i bambini GLI ELEMENTI BASE DI LEVITY Levity in una pagina Levity è un framework per la narrazione interattiva
Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara
Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ [email protected] Lorenzo Pareschi (Univ. Ferrara)
Versione 1.7. Manuale per Creatori Corsi. Parte I: Accesso e Creare Risorse
Versione 1.7 Manuale per Creatori Corsi Parte I: Accesso e Creare Risorse Autore Prof.ssa Antonella Greco Pagina di accesso Per accedere cliccate su Login. Appare 2 Se dovete iscrivervi Siete alla schermata
Test di autovalutazione
Test di autovalutazione 0 0 0 0 0 0 60 70 80 90 00 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle alternative. n onfronta le tue risposte con le soluzioni. n olora,
Congruenze. Alberto Abbondandolo Forte dei Marmi, 17 Novembre 2006
Congruenze Alberto Abbondandolo Forte dei Marmi, 17 Novembre 2006 1 Il resto nella divisione tra interi Consideriamo i numeri naturali 0, 1, 2, 3,... ed effettuiamone la divisione per 3, indicando il resto:
Come passare da una canotta a un coprispalle
Come passare da una canotta a un coprispalle Occorrente: - una canotta che non usi ma che ti piace per la fantasia o per il colore - gesso/matita per vestiti - metro da sarta - forbici per tessuti - spilli
GRIGLIA DI CORREZIONE DOMANDE APERTE Matematica Classe II Scuola Primaria
GRIGLIA DI CORREZIONE DOMANDE APERTE Matematica Classe II Scuola Primaria DOMANDA RISPOSTA Codifica della risposta D3a 93 o novantatre D3b 3 o tre D4b D5a D5b D5c D5d D6 Il numero 60 deve essere posizionato
CALCOLO ELEMENTARE DELLE RADICI QUADRATE (E CUBICHE, E...)
CALCOLO ELEMENTARE DELLE RADICI QUADRATE (E CUBICHE, E...) I. RADICI QUADRATE (Prerequisiti: le quattro operazioni) Quello di fare un tentativo, vedere che succede, correggere il risultato e usare il tentativo
Kangourou della Matematica 2010 Coppa a squadre Kangourou Semifinale turno A Mirabilandia, 8 maggio Quesiti
Kangourou della Matematica 2010 Coppa a squadre Kangourou Semifinale turno A Mirabilandia, 8 maggio 2010 Quesiti 1. Sei cifre per due numeri Avete a disposizione le cifre 1, 3, 4, 7, 8, 9 per formare due
Partiamo da un informazione comune a tutti gli alunni della scuola italiana: La somma degli angoli interni di un triangolo è 180.
1 Partiamo da un informazione comune a tutti gli alunni della scuola italiana: La somma degli angoli interni di un triangolo è 180. Come giustificare questo fatto? Con delle prove sperimentali, ad esempio.
METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 11
METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 11 In questa lezione percorriamo gli argomenti della geometria che interessano la scuola primaria, in modo essenziale, o meglio ancora
GIOCHI A SQUADRE 2000
1 di 5 4/16/2009 10:48 PM International Site Ricerca > Centri di Ricerca > PRISTEM > Giochi matematici > Archivio edizioni precedenti - testi di allenamento > 2000 Giochi a squadre 2000 Giochi a squadre
Note sull implementazione in virgola fissa di filtri numerici
Note sull implementazione in virgola fissa di filtri numerici 4 settembre 2006 1 Introduction Nonostante al giorno d oggi i processori con aritmetica in virgola mobili siano molto comuni, esistono contesti
Tetrapyramis. organizza. Duello. Gara di giochii logici a squadre per Istituti Scolastici
Tetrapyramis organizza Duello Gara di giochii logici a squadre per Istituti Scolastici Autore: Data: Durata: Categoria: Sito web: ALBERTO FABRIS mercoledì 14 dicembre 2016, 14.30 16.00 (orario serverr
Addiziona poi questi tre numeri e trova come somma 45 che è proprio l età di sua mamma.
1. I BOTTONI DI ENESTO (Cat 3, 4) AMT 2003 - finale 11 Per il suo prossimo spettacolo il clown Ernesto deve preparare un nuovo vestito. Vuole cucire 3 bottoni sul suo vestito, nel posto indicato nel modello.
Proposta didattica per la classe terza - quarta della scuola primaria. I. C. Visconti
Proposta didattica per la classe terza - quarta della scuola primaria I. C. Visconti FASI DELL ESPERIENZA Cosa pensano i bambini di metà, un terzo e un quarto Raccolta delle loro idee e visualizzazione
8 RALLY MATEMATICO TRANSALPINO PROVA II (marzo 2000) 1. 1. IN BICICLETTA (Cat. 3)
1. IN BICICLETTA (Cat. 3) Claudio, Hans, Alfio, Jacky e Giancarlo partecipano ad una gara di biciclette e passano la linea del traguardo uno dopo l altro. Claudio arriva dopo Hans ma prima di Alfio. Giancarlo
