RADIAZIONI IL TRASPORTO DI ENERGIA ASSOCIATO ALLA PROPAGAZIONE DI PARTICELLE O DI UN ONDA ELETTROMAGNETICA E DESCRITTO DAL TERMINE RADIAZIONE

Documenti analoghi
FISICA delle APPARECCHIATURE per MEDICINA NUCLEARE

Radioattività. 1. Massa dei nuclei. 2. Decadimenti nucleari. 3. Legge del decadimento XVI - 0. A. Contin - Fisica Generale Avanzata

LA STRUTTURA DELL ATOMO

ARGOMENTO: Cenni di Fisica del Nucleo

Radioattività artificiale Origine e impieghi

Il Nucleo. Dimensioni del nucleo dell'ordine di 10. m Il raggio nucleare R = R 0 -15

Il nucleo dell atomo

Scale dei tempi nucleari

Il nucleo dell atomo

Il nucleo e la radiazione nucleare

Emissione α. La sua carica elettrica è pari a +2e La sua massa a riposo è circa 7x10-27 kg.

Elio GIROLETTI - Università degli Studi di Pavia - Dip. Fisica nucleare e teorica marzo 2005

Atomo: modello microscopico

1.1 Struttura dell atomo

La chimica nucleare. A cura della prof. ssa. Barone Antonina

Radiazioni ionizzanti

TECNICHE RADIOCHIMICHE

ATOMI E PARTICELLE SUBATOMICHE

Scienziati in Erba Chimica

Lezione 19 Fisica nucleare

Esploriamo la chimica

Unità didattica 10. Decima unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

FISICA NUCLEARE. Liceo scientifico Don Bosco Fisica nucleare pag.1

ELEMENTI di CHIMICA NUCLEARE. La FISSIONE NUCLEARE

Un po' di fisica nucleare: La radioattività

Teoria Atomica di Dalton

La radioattività può avere un origine sia artificiale che naturale.

NUCLEO ATOMICO. Ogni nucleo è costituito da protoni e neutroni legati da forze attrattive molto intense, dette forze nucleari forti.

Breve Introduzione al laboratorio: Vedere le particelle. di Donato Di Ferdinando

Valitutti, Falasca, Tifi, Gentile. Chimica. concetti e modelli.blu

ATOMO. Legge della conservazione della massa Legge delle proporzioni definite Dalton

P. Sapia Università della Calabria. a.a. 2009/10

La Radioattività. da:ispra istituto superiore per la ricerca e protezione ambientale

La radioattività. La radioattività è il fenomeno per cui alcuni nuclei si trasformano in altri emettendo particelle e/ radiazioneni elettromagnetiche.

Fisica per Medicina. Lezione 25 - Ottica e Fisica Moderna. Dr. Cristiano Fontana

Onde elettromagnetiche ed altre storie

ATOMO. Legge della conservazione della massa Legge delle proporzioni definite Dalton

Il numero di protoni presenti in un atomo si chiama numero atomico = Z elemento differisce per il numero Z. H deuterio (6000 volte abbondante)

Lo strofinio di qualsiasi oggetto provoca la comparsa su di esso di una carica elettrica che può attrarre piccoli oggetti.

Un nuclide è un atomo caratterizzato dal numero atomico Z (numero di protoni) e dal numero di massa A (numero di neutroni e di protoni).

La fisica nucleare. Capitolo. Concetti da rivedere 24.1 LA STRUTTURA NUCLEARE

Materia e forze alla scala subatomica: il nucleo atomico, le particelle elementari

Chimica Nucleare. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

A 2 Z A 2 Z. PROTONI: carica +e, massa 1840 m e NEUTRONI: carica nulla, massa 1842 m e

Caratterizzazione del nuclide. Elio GIROLETTI - Università degli Studi di Pavia - Dip. Fisica nucleare e teorica. ottobre 2008

Introduzione alla Fisica Nucleare. Josè Javier Valiente Dobon Rosanna Depalo Alberto Boso

La misura della radioattivita γ lezione 1. Cristiana Peroni Corsi di LS in Scienze Biomolecolari Universita di Torino Anno accademico

Bagatti, Corradi, Desco, Ropa. Chimica. seconda edizione

Radioattività e dosimetria

Diametro del nucleo: m. Diametro dell atomo: m

Caratterizzazione del nuclide. Elio GIROLETTI - Università degli Studi di Pavia - Dip. Fisica nucleare e teorica febbraio 2009

Cenni di Fisica Nucleare

L atomo. Il neutrone ha una massa 1839 volte superiore a quella dell elettrone. 3. Le particelle fondamentali dell atomo

ARGOMENTO: Cenni di Fisica del Nucleo

Lezione 1 ELEMENTI DI FISICA NUCLEARE APPLICATA ALLA MEDICINA

ed infine le interazioni nucleari forte e debole? dove E rappresenta l energia cinetica della particella α, e K è: K = e2 2Z

Cenni di fisica moderna

Lezione 24 Radiazioni Ionizzanti

A Z. radioattività e radiazioni. Caratterizzazione del nuclide. elio giroletti. ottobre 2006

Il nucleo dell'atomo

Sono gli atomi indivisibili?

ARGOMENTO: Cenni di Fisica del Nucleo

Il nucleo dell'atomo

Paolo Montagna, Paolo Vitulo

Capitolo 6 : Decadimenti, Risonanze, Modello di Yukawa, Interazioni tra Particelle

FISICA delle APPARECCHIATURE per RADIOTERAPIA

Atomi, Molecole e Ioni Lezione 2

M. Marengo LA RADIOATTIVITA. Servizio di Fisica Sanitaria Ospedale Policlinico S.Orsola - Malpighi, Bologna

Cenni di Fisica Nucleare

Sommario della lezione 2. Materia e definizioni. Struttura dell atomo

Rivelatori Caratteristiche generale e concetti preliminari

Introduzione. (Appunti per il corso di Fisica Nucleare e Subnucleare 2015/16) Fiorenzo Bastianelli

Il nucleare non è il diavolo. Il problema:

Cenni di Fisica del Nucleo

LA STRUTTURA DELL ATOMO

Esercizi su Chimica Nucleare e Nucleogenesi

SORGENTI DI RADIAZIONE

Struttura atomica della materia

NOZIONI PRELIMINARI ENERGIA NUCLEARE ATOMO ISOTOPI RADIOATTIVITÀ

ATOMO. Avogadro (1811) Volumi uguali di gas diversi contengono un ugual numero di MOLECOLE (N A =6,022*10 23 )

Interazione radiazione materia Dott.ssa Alessandra Bernardini

FNPA1 Prova parziale del 16/04/2012

SIAMO TUTTI RADIOATTIVI

Fisica dei mesoni. Mesoni sono particelle con spin intero e interagisce coi barioni (nucleoni) attraverso le forze forti, elettromagnetiche e deboli

Cos è. la Chimica? G. Micera Chimica Generale e Inorganica

Loriano Storchi.

Prof. Luisa Ferronato 1

Lavoisier (1770) Legge della conservazione della massa in una trasf. chimica es. C + O 2 CO 2 Dalton (1808) Teoria atomica

Le particelle dell atomo

La radiazione elettromagnetica nucleare deve avere una lunghezza d onda dell ordine delle dimensioni del nucleo, e pertanto: c A 1/ 3

I fondamenti fisici delle radiazioni ionizzanti ovvero Aspetti fisici della protezione dalle radiazioni

Radioattività e energia nucleare. SSIS Lazio Corsi Abilitanti

Le Interazioni Fondamentali delle Particelle Elementari

Valenza didattica (aggiunta e principale) Individuazione della grandezza da misurare. Misure ccomplementari/alternative

CAPITOLO 20 LA CHIMICA NUCLEARE

92 elemento della tavola di Mendeleiev

Il numero di protoni presenti in un atomo si chiama numero atomico = Z elemento differisce per il numero Z. H deuterio (6000 volte abbondante)

STRUTTURA ATOMICA. Per lo studio della struttura dell atomo ci si avvale della Spettroscopia.

Transcript:

RADIAZIONI

RADIAZIONI IL TRASPORTO DI ENERGIA ASSOCIATO ALLA PROPAGAZIONE DI PARTICELLE O DI UN ONDA ELETTROMAGNETICA E DESCRITTO DAL TERMINE RADIAZIONE Radiazioni elettromagnetiche Ø Raggi X e raggi γ Radiazioni corpuscolari Ø Particelle α, β, protoni, neutroni,...

RADIAZIONI CORPUSCOLARI particella simbolo carica (e) massa (u.m.a) massa (MeV) elettroni o e - (β - ) -1 5.5 x 10-4 0.511 particelle β - positroni o e + (β + ) +1 5.5 x 10-4 0.511 particelle β + protoni p +1 1.0072 938.3 particelle α α +2 4.0028 3727.3 neutroni n 0 1.0087 939.6 Unità di misura 1 u.m.a. = 1/12 massa atomo 12 C = 1.66 x 10-27 kg => 931.5 MeV 1 ev = 1.6 x 10-19 J 1 kev = 10 3 ev 1 MeV = 10 6 ev

ORIGINE DELLA RADIAZIONE CORPUSCOLARE Radiazione cosmica: Raggi cosmici primari Raggi cosmici secondari Radioattività naturale: Radionuclidi presenti in natura: * Radionuclidi isolati * Famiglie radioattive naturali Radioattività artificiale: Radionuclidi prodotti in processi o reazioni nucleari indotte dall uomo

UN PO di STORIA Inizio 1800: Dalton ipotizza che tutte le sostante siano costituite da atomi Nascita della moderna teoria atomica

RAGGI X e RADIOATTIVITA 1895: scoperta dei raggi X da parte fisico tedesco Roentgen (1901: premio Nobel per la Fisica per questa scoperta) 1896: scoperta della radioattività naturale dell uranio (1903: premio Nobel per la Fisica, a Bequerel insieme a Pierre e Marie Curie, per la scoperta della radioattività naturale)

ELETTRONI E PROTONI 1896: Thomson scopre che i raggi catodici sono particelle di carica elettrica negativa (elettroni) e ne misura q/m Goldstein e Thomson modificando il tubo precedentemente usato scoprono che quando si usa idrogeno si ottengono particelle di carica elettrica positiva e di massa 1836 volte più grande dell elettrone, con carica uguale a quella dell elettrone ma di segno algebrico contrario (protone).

PROCESSI RADIOATTIVI 1904: Rutherford dimostra l esistenza di 3 diverse radiazioni emesse dagli elementi radioattivi: Particelle α à atomi (ioni!) di elio Particelle β à elettroni Raggi γ à radiazione simile ai raggi X

LA RADIAZIONE COSMICA Scoperta all inizio del XX secolo. Nel 1912 Hess con un elettroscopio a foglie posto su un pallone aerostatico dimostrò come la quantità di particelle cariche (e quindi di radiazione) aumentava con l altitudine La radiazione sconosciuta proveniva dallo spazio esterno Radiazione cosmica (o raggi cosmici) raggi cosmici primari protoni (~ 90%) nuclei di elio (~ 10%) nuclei pesanti (tracce) elettroni relativistici raggi cosmici secondari raggi X e gamma mesoni π e k, muoni neutrini (solari, da SN) elettroni e positroni neutroni e protoni secondari radiazione elettromagnetica neutrini atmosferici In genere particelle prodotte dall interazione dei r.c. primari con l atmosfera

ESPERIMENTO DI RUTHERFORD RISULTATI: La maggior parte delle particelle attraversano il foglio senza alcuna deviazione Alcune particelle vengono deviate ad angoli molto grandi, anche vicini a 180

PRIMI MODELLI DI ATOMO MODELLO ATOMICO ESISTENTE (THOMSON) L atomo è costituito da una goccia sferica uniformemente carica positivamente, contenente elettroni, carichi negativamente, e con massa notevolmente inferiore alla goccia stessa IPOTESI La deflessione della particella α è dovuta agli urti con gli elettroni (i contributi dovuti alla carca positiva si bilanciano, essendo tale carica distribuita uniformemente nello spazio). Essendo m e <<m α ci si aspettano deflessioni piccole (~10-3 rad). Ma questo constrasta con l esperimento di Rutherford!

UN NUOVO MODELLO DI ATOMO OSSERVAZIONI Deflessioni anche a grandi angoli (> 90 ) NUOVO MODELLO ATOMICO (RUTHERFORD) L atomo si suppone costituito da un nucleo centrale di carica positiva nel quale è anche localizzata la quasi totalità della massa; intorno a tale nucleo ruotano i singoli elettroni dotati di massa molto più piccola e di carica negativa. Modificato da Bohr per includere la teoria quantistica dei livelli energetici

PROTONE, POSITRONE E NEUTRONE 1919: Rutherford bombardando azoto con particelle α osserva su uno schermo di solfuro di zinco la scintillazione dovuta al passaggio di particelle di carica positiva e massa compatibile con quella degli atomi di idrogeno protone 1928: Dirac cercando di costruire una teoria quantistica e relativistica delle interazioni elettromagnetiche postula l esistenza dell antimateria 1932: Anderson, studiando la natura dei raggi cosmici (radiazione che giunge alla terra dal cosmo), scopre il positrone, una particella con massa uguale a quella dell elettrone ma di carica opposta (e + ) 1934: Chadwick scopre il neutrone in reazioni α + Be à n + C Particelle α sono nuclei di elio costituiti da 2 neutroni e 2 protoni

IL NUCLEO X A: NUMERO DI MASSA numero di nucleoni nel nucleo dell atomo Z: NUMERO ATOMICO numero di protoni ed elettroni dell atomo Due tipi di nucleoni: Protoni m = 1.673 10-27 kg q = 1.6 10-19 C Neutroni m = 1.675 10-27 kg q = 0

PROPRIETA DEI NUCLEI Elementi con lo stesso Z ma diverso A sono detti isotopi Es. Idrogeno 1 H (nucleo: 1 protone) ha due isotopi: * Deuterio 2 H (nucleo: 1 protone + 1 neutrone) * Trizio 3 H (nucleo: 1 protone + 2 neutroni) Gli isotopi hanno le stesse proprietà chimiche (non influenzate dai neutroni) ma diverse proprietà fisiche. I protoni nel nucleo sono soggetti alla forza elettrica repulsiva. Il nucleo è tenuto insieme dalla forza nucleare forte che si esercita tra i nucleoni. Tale forza: - è una forza attrattiva molto più intensa della forza elettrostatica di repulsione tra i protoni - diminuisce rapidamente con la distanza: se due nucleoni distano più di qualche fermi (10-15 m) tale forza è trascurabile - non dipende dalla carica elettrica La forza nucleare forte tra due neutroni è circa uguale a quella tra due protoni o tra un protone ed un neutrone

GRANDEZZA E FORMA DEI NUCLEI Forma e dimensioni dei nuclei si possono determinare bombardandoli con particelle di alta energia e studiandone la diffusione (tipo esperimento di Rutherford). Un ampia varietà di esperimenti suggerisce che la maggior parte dei nuclei ha forma circa sferica con raggio con R 0 ~ 1.5 fm R = R 0 A 1/3 Se si approssima il nucleo con una sfera il suo volume V sarà proporzionale a R 3 e quindi ad A La massa del nucleo è anch essa circa proporzionale ad A. La densità è circa uguale per tutti i nuclei

CURVA DI STABILITA DEI NUCLEI Un nucleo si dice stabile se rimane legato indefinitamente spontaneamente) Per nuclei leggeri (Z < 40) si raggiunge la massima stabilità se il numero di protoni Z è circa uguale al numero di neutroni N. Per Z > 40 si ha stabilità per N>Z al crescere di Z la repulsione elettrostatica tra i protoni aumenta e per mantenere il nucleo stabile è necessaria la presenza di più neutroni che esercitano solo forza di attrazione nucleare. Non esistono nuclei stabili con Z>82 Una sostanza si definisce radioattiva se è costituita da atomi instabili che decadono spontaneamente emettendo radiazioni.

MASSA ED ENERGIA DI LEGAME La massa di un nucleo stabile è minore della somma delle masse dei nucleoni che lo costituiscono. Quando due o più nucleoni si fondono per formare un nucleo la massa totale diminuisce e viene liberata energia. Per scindere un nucleo stabile nei suoi componenti occorre fornire energia. La differenza tra l energia di riposo del nucleo e quella dei suoi componenti è detta energia di legame E L : Massa del protone E L = (Z m p + N m n - M A ) c 2 Massa del neutrone Velocità della luce Massa atomica del nucleo L unità di misura più usata è l unità di massa atomica (uma) definita come 1/12 della massa dell atomo di 12 C. Poiché 1 mole di 12 C contiene N A atomi e ha una massa di 12g: 1uma = (12g)/(6.022 10 23 ) = 1.66 10-24 g (1uma) c 2 = 1.66 10-27 kg (3 10 8 m/s) 2 = 14.9 10-11 J = 931.5 MeV E=mc 2

ENERGIA DI LEGAME PER NUCLEONE L energia di legame per nucleone è l energia di legame totale di un nucleo divisa per il numero di nucleoni che lo costituiscono (A). Per nuclei molto leggeri E L /A cresce all aumentare di A Nella parte centrale la curva è circa piatta à E L /A ~ 8.3 MeV Un nucleone si lega solo con un certo numero di altri nucleoni indipendentemente da A (saturazione). L elemento più stabile è il Fe Per nuclei molto pesanti E L /A decresce all aumentare di A à i nuclei più grandi sono trattenuti insieme da un energia leggermente inferiore

Tipi di decadimento radioattivo: RADIOATTIVITA Nuclei instabili tendono a raggiungere la stabilità liberandosi dell energia in eccesso attraverso l emissione di radiazione corpuscolare o elettromagnetica α Nuclei pesanti + A A 4 4 Z X N Z 2 YN 2+ 2He2 β - + + Nuclei con troppi neutroni A A Z X N Z 1 + 1YN + e β + + + Nuclei con pochi neutroni A A Z X N Z 1YN + 1 γ + Spesso dopo decadimento α o β A Z X N A Z X N + e + +γ +ν +ν

DECADIMENTO α Nel decadimento α un nucleo N di massa atomica A e numero atomico Z si spacca emettendo una particella α e un nucleo figlio N di massa atomica A-4 e numero atomico Z-2. Nel nucleo figlio il rapporto (A-Z)/Z tra neutroni e protoni aumenta garantendo una stabilità maggiore. NOTA: LA CARICA ELETTRICA TOTALE SI CONSERVA!! Questo processo coinvolge soprattutto nuclei molto grandi in cui la forza forte (a corto raggio) non riesce a contrastare la forza elettrostatica repulsiva tra i protoni (agisce su tutta l estensione del nucleo).

DECADIMENTO α La massa nel nucleo padre (M P ) è maggiore della somma delle masse del nucleo figlio (M F ) e della particella α. La differenza di massa riappare sotto forma di energia cinetica della particella α e del rinculo del nucleo figlio. Se il nucleo padre decade a riposo: m α v α = m F v F CONSERVAZIONE DELLA QUANTITA DI MOTO CONSERVAZIONE DELL ENERGIA M P c 2 = M F c 2 + m α c 2 + Q Q = energia liberata nel decadimento = K α + K F Tutte le particelle α emesse in un determinato decadimento hanno la stessa energia (spettro monoenergetico o monocromatico).

Due tipi di decadimenti β: DECADIMENTO β β - + + β + + + A A Z X N Z 1 + 1YN + e Nuclei con troppi neutroni nà p + e - + ν A A Z X N Z 1YN + 1 + e Nuclei con pochi neutroni pà n + e + + ν + +ν [ ANTINEUTRINO ] +ν [ NEUTRINO ] Essendo m p < m n il decadimento β + può avvenire solo in un nucleo. Gli e - (e + ) emessi nel decadimento β - (β + ) non esistono all interno del nucleo ma vengono creati nel processo di decadimento del neutrone (protone)

IL NEUTRINO Nel decadimento β l elettrone non viene emesso con energia definita, ma può assumere uno spettro continuo di valori: Energia In un processo N à N + β si violerebbe la conservazione dell energia 1930: Pauli ipotizza che nel decadimento β venga emessa una terza particella difficile da rivelare (neutrino). 1934: Fermi propone una teoria dettagliata del decadimento β che ipotizza causato da una nuova interazione, l interazione debole. n à p + e - + ν Il neutrino ν ha massa circa nulla, carica nulla e interagisce solo per interazione debole (interagisce poco à difficile da rivelare). L esistenza del neutrino è stata verificata in numerosi esperimenti successivi.

DECADIMENTO γ Nel decadimento γ un nucleo in uno stato eccitato, ovvero con troppa energia, decade in uno stato di energia inferiore emettendo un fotone. γ + A A Z X N Z X N + hν Spesso dopo decadimento α o β E S E M P I O Il Boro 12 B può decadere - direttamente allo stato fondamentale del 12 C per decadimento β - - con decadimento β - ad uno stato eccitato del 12 C, con successivo decadimento γ allo stato fondamentale Poiché la distanza tra i livelli energetici nucleari è dell ordine dei MeV, i fotoni emessi (raggi γ) hanno energia e frequenza elevata rispetto a quelli emessi nelle transizioni atomiche.

SERIE DI DECADIMENTI Accade spesso che un isotopo radioattivo decada in un altro isotopo radioattivo il quale decade ancora in un terzo isotopo radioattivo. SERIE DI DECADIMENTI Grazie alle serie di decadimenti si trovano in natura elementi radioattivi che altrimenti sarebbero già scomparsi.

RADIOATTIVITA NATURALE Famiglie radioattive naturali Tre radionuclidi con tempo di dimezzamento confrontabile con quello dell Universo decrescono originando dei nuclei instabili che decadono a loro volta, creando in questo modo catene radioattive. Famiglia dell 238 U (abbondanza isotopica = 99.28 %) (τ = 4.49 10 9 anni) Famiglia del 232 Th (abbondanza isotopica = 100 %) (τ = 1.045 10 10 anni) Famiglia dell 235 U (abbondanza isotopica = 0.72 %) (τ = 7.1 10 8 anni)

RADIOATTIVITA NATURALE Radionuclidi isolati Di origine terrestre (radioisotopi con tempo di dimezzamento confrontabile con l età dell Universo) Generati dalle interazioni dei r. cosmici con l atmosfera (es: 3 H, 14 C ed 7 Be) 14 12 3 1 14 14 1 n+ N C H n+ N C p 1 0 7 6 + 1 0 7 6 + 1

LEGGE DEL DECADIMENTO RADIOATTIVO Il decadimento radioattivo è un processo stocastico: dn /dt = -λ N N = numero di atomi presenti al tempo t λ = costante di decadimento: probabilità che ogni singolo nucleo ha di decadere nell unità di tempo. Legge del decadimento radioattivo: N(t) = N 0 e -λt N 0 = numero di nuclidi radioattivi presenti all istante t=0 1/λ = τ = vita media Tempo dopo il quale rimane il 37 % (=1/e) dei nuclei radioattivi N(t) = N 0 e -t/τ

TEMPO DI DIMEZZAMENTO Tempo di dimezzamento T 1/2 = tempo dopo il quale rimane il 50 % dei nuclei radioattivi 0.50 N 0 N 0 N(t) = N 0 e -t/τ Relazione tra τ e T 1/2 : N(T 1/2 ) = N 0 /2 = N 0 e -T 1/2/τ e -T 1/2/τ = 1/2 -T 1/2 /τ = ln ½ = -ln2 = -0.693 0.37 N 0 T 1/2 = 0.693 τ 0 T 1/2 τ t

ATTIVITA RADIOATTIVA Attività radioattiva = numero di decadimenti/s (à rapidità di decadimento ) A(t) = -λn(t) A(t) = A 0 e -t/τ Unità di misura SI: becquerel à 1 Bq = 1/s 1 Bq = 1 decadimento al secondo à unità troppo piccola Unità pratica: Curie: attività di 1g di radio (decadimento α: 234 Ra à 230 Rn) 1 Ci = 3.7 10 10 Bq