1 IL CAMPO ELETTROSTATICO

Documenti analoghi
Elettricità e Magnetismo. M. Cobal, Università di Udine

Fondamenti di Fisica necessari per i corsi di informatica ed elettronica

CAPITOLO 1 FORZA ELETTROSTATICA CAMPO ELETTROSTATICO

CAPITOLO 1 ELETTROSTATICA

ELETTRICITÀ. In natura esistono due tipi di elettricità: positiva e negativa.

(4 π 2 /kt) m t / r 2 = (4 π 2 /ks) m s / r 2

ELETTROSTATICA parte I a

1 ) Il numero atomico dell atomo di ossigeno è 8. Ciò significa che:

LA CARICA ELETTRICA E LA LEGGE DI COULOMB V CLASSICO PROF.SSA DELFINO M. G.

Lezione 8. Campo e potenziale elettrici

Elettrostatica si elettrizzano per strofinio forza attrattiva repulsiva trasferimento di carica elettrica si caricano

si elettrizzano per strofinio forza attrattiva repulsiva trasferimento di carica elettrica si caricano

Elementi di Fisica L interazione Elettrostatica

1 DISTRIBUZIONE CONTINUA DI CARICHE

ELETTRICITÀ. In natura esistono due tipi di elettricità: positiva e negativa.

CARICA ELETTRICA, LEGGE DI COULOMB, CAMPO ELETTRICO DOMANDE, ESERCIZI

ELETTROSTATICA / ELETTROLOGIA Cap I. Elettrologia I

Conservazione della carica

Problemi di Fisica. Elettrostatica. La Legge di Coulomb e il Campo elettrico

FISICA APPLICATA 2 ELEMENTI DI ELETTROMAGNETISMO

La fisica al Mazzotti

CLASSE 5^ C LICEO SCIENTIFICO 14 Settembre 2018 Elettrostatica

Problemi di Fisica. Elettromagnetismo. La Carica Elettrica e la Legge di Coulomb

b. Per il teorema di Gauss, il flusso attraverso una superficie chiusa dipende solo dalle cariche in essa contenute, in questo caso q.

Indice CAPITOLO I. I.1 La carica elettrica... I.2 Il campo elettrostatico... CAPITOLO II. Il potenziale elettrostatico...

Il campo magnetico. n I poli magnetici di nome contrario non possono essere separati: non esiste il monopolo magnetico

L elettrizzazione. Progetto: Istruzione di base per giovani adulti lavoratori 2 a opportunità

Interazioni fondamentali (origine. delle forze) Elettromagnetica : lungo raggio lega elettroni e protoni per. per formare i nuclei. molecole,, etc.

si elettrizzano per strofinio forza attrattiva repulsiva trasferimento di carica elettrica si caricano

1 Prove esami Fisica II

Principio di inerzia

Appunti sul campo elettrico

IL POTENZIALE ELETTRICO

ESAME DI FISICA II- Sessione 16/07/2013 Compito per l Ordinamento 270 e i VV.OO.

Elettrostatica. Tutorato #8

Proprietà dei campi di forze centrali (forza gravitazionale e forza elettrostatica).

Corso di Fisica Generale II Elementi di elettromagnetismo

Simulazione di prova scritta di MATEMATICA-FISICA - MIUR

ELETTROSTATICA. Elettrostatica Pagina il dipolo elettrico; 31. campo elettrico uniforme

CAMPO ELETTRICO. F r e = q E r. Newton ;

L ELETTROSTATICA FINO A COULOMB Giuseppe Frangiamore con la collaborazione di Vittorio Territo

Potenziale elettrostatico

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton

1 IL CONCETTO DI POTENZIALE

Capitolo 4: CAMBIAMENTO DI SISTEMA DI UNITÀ

2. Si pone una carica elettrica in prossimità di un filo percorso da corrente; cosa accadrà?

CAMPO MAGNETICO Proprietà della magnetite (Fe 3 O 4 ): attira a sé materiali ferrosi o altre sostanze dette magnetiche Poli del magnete = parti in

Fisica Generale LB. Prof. Mauro Villa. Esercizi di elettrostatica nel vuoto

POLITECNICO DI MILANO Scuola di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a II a prova in itinere, 25 giugno 2013

POLITECNICO DI MILANO IV FACOLTÀ Ingegneria Aerospaziale Fisica Sperimentale A+B - III Appello 11 Febbraio 2008

Prova scritta del corso di Fisica e Fisica 1 con soluzioni

Capitolo Cariche elettriche, forze 23 e campi

A1.1 Elettrostatica. Particella Carica elettrica Massa. Elettrone 1,602 x C 9,108 x kg. Protone 1,602 x C 1,672 x kg

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.

Dotto Formazione a tutto tondo Rapid Training 2018 Corso di Fisica Argomento 12 Elettricità: forza e campo elettrico

Elettrostatica I. Forza di Coulomb. Principio di Sovrapposizione Lineare. Campo Elettrico. Linee di campo. Flusso, teorema di Gauss e sue applicazioni

CARICA ELETTRICA E LEGGE DI COULOMB

POTENZIALE V T O R I ELETTRICO g. bonomi fisica sperimentale (mecc., elettrom.) Introduzione

Il campo elettrico. Giuseppe Frangiamore con la collaborazione di Mingoia Salvatore

Lezione 12 - Azione a distanza

Fisica per Farmacia A.A. 2018/2019

Esame di Fisica Data: 18 Febbraio Fisica. 18 Febbraio Problema 1

Per casa. [ 2, N, uscente]

ELETTROMAGNETISMO CARICA ELETTRICA

Lezione 9 Forze e campi magnetici

Elettromagnetismo (4/6) Magnetismo Lezione 22, 18/12/2018, JW ,

Sulla superficie interna del guscio sferico (induzione totale) si avrà la carica indotta q distribuita uniformemente, quindi

Fisica 2 per biotecnologie: Prova in itinere 14 Aprile 2014

Conservazione della carica elettrica

Fenomeni elettrici. Modello dell atomo, carica elettrica, forza tra cariche stazionarie. Campo elettrico e potenziale elettrostatico

Il Corso di Fisica per Scienze Biologiche

LICEO SCIENTIFICO ELISABETTA RENZI Via Montello 42, Bologna. Compiti di Fisica per le vacanze estive a.s. 2018/2019 Classe IV

Carica elettrica. Costituzione dell atomo: nucleo con protoni (carica +e) e neutroni (carica 0) elettroni (carica -e) orbitanti attorno al nucleo

SIMULAZIONE SECONDA PROVA SCRITTA 02 APRILE Tema di MATEMATICA-FISICA Q 1

LICEO SCIENTIFICO Statale L. DA VINCI Reggio Calabria FISICA: ELETTROMAGNETISMO

IL CAMPO ELETTRICO ED IL POTENZIALE

1 CAMPI MAGNETICI PRODOTTI DA COR- RENTI STAZIONARIE. 2 Il campo magnetico prodotto da una carica in moto uniforme

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto

Tutorato di Fisica 2 Anno Accademico 2010/2011

La storia. Talete di Mileto (IV secolo AC) XVIII secolo iniziò uno studio approfondito. Esperimenti con l'ambra

Fisica 2 per biotecnologie: Prova in itinere 16 Aprile 2012

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Prova scritta del corso di Fisica con soluzioni

Forze elettriche e Legge di Coulomb

MODULO DI ELETTROMAGNETISMO Prova Pre-Esame del 28 GENNAIO 2009 A.A

P = r. o + r. O + ω r (1)

Si chiama campo di forze una zona di spazio in cui sia possibile associare ad ogni punto un vettore forza

Problema (tratto dal 7.42 del Mazzoldi 2)

, mentre alla fine, quando i due cilindri ruotano solidalmente, L = ( I I ) ω. . Per la conservazione, abbiamo

CINEMATICA DEL PUNTO MATERIALE: MOTI RETTILINEI E INTRODUZIONE AL MOTO IN PIÙ DIMENSIONI PROF. FRANCESCO DE PALMA

I FENOMENI ELETTRICI CLASSE DELLE LAUREE TRIENNALI DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE

Metodo variazionale e applicazione all atomo di elio

Elettromagnetismo. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Fenomeni elettrici. Strofinando un righello di plastica questo ha la proprietà di attrarre dei pezzettini di carta.

IL CAMPO ELETTROSTATICO. G. Pugliese 1

Elettromagnetismo e ottica. Carica elettrica, Legge di Coulomb, Campo elettrico

Università del Sannio

Transcript:

1 IL CAMPO ELETTROSTATICO La conoscenza dei fenomeni elettrici e magnetici, nella forma presentata in questo corso, è relativamente recente. Tuttavia, fenomeni legati all elettricità ed al magnetismo erano noti anche ai popoli della Grecia che già conoscevano la resina fossile, detta ambra e la magnetite. Per arrivare ad una prima conoscenza dei fenomeni magnetici come li intendiamo oggi bisogna attendere il libro dell inglese William Gilbert, del 1600. In esso si parla del magnetismo terrestre e dell orientamento degli aghi magnetici, nonché dell elettricità per strofinio. La nascita dell elettricità moderna si fonda, in ogni caso, sui lavori del francese Charles Augustin Coulomb (1736-1806). La storia dell elettricità e del magnetismo, come tutte le storie relative al progresso della conoscenza umana, non è mai il contributo di pochi ed è difficile compendiare gli sforzi dei molti che ci hanno consegnato i loro risultati. In particolare, vogliamo rilevare che la storia dell elettricità e del magnetismo si è mescolata con la storia della costituzione della materia e con la storia della natura della luce. Durante questo corso conosceremo alcuni dei protagonisti ed il lavoro da essi svolto. Non procederemo in maniera storica, perché un tale approccio non spettaaquestocorso, mapartiremoquasidallafine, ovvero dalla costituzione della materia, in una forma semplificata. Tutti i corpi sono costituiti di atomi. Gli atomi sono costituiti da un nucleo, ove risiedono i neutroni ed i protoni, e da elettroni che sono localizzati intorno al nucleo. Questo modello fu proposto nel 1917 dall inglese Rutherford e dal danese Bohr. Elettroni e protoni posseggono una carica elettrica che indicheremo, rispettivamente, con q e e q p. Per convenzione, la carica dell elettrone è stata assunta negativa. Il protone, possiede una carica di valore pari a quella dell elettrone ma di segno opposto; la carica dell elettrone edelprotoneèdetta carica fondamentale o lementare eilsuovaloreè q e = 1, 6 10 19 C q p =1, 6 10 19 C dove C sta per Coulomb, ed è l unità di misura della carica elettrica, nel Sistema Internazionale. Un corpo è carico quando vi è un eccesso di cariche positive o negative. Tutti i corpi carichi risultano avere una carica che è un multiplo intero della carica fondamentale. L elettrone fu scoperto nel 1897 dall inglese Joseph John Thomson (1856-1940). 2 La legge di Coulomb Il contributo più rilevante di Coulomb è stato la determinazione, per via sperimentale, di quella che oggi è nota come legge di Coulomb (1785). In particolare, essa stabilisce che due corpi carichi puntiformi, posti nel vuoto ad una distanza 1

r, esercitano l uno sull altro una forza la cui intensità, èdatada F 0 = k 0 Q 1 Q 2 r 2 dove Q 1 e Q 2 sono le cariche possedute dai corpi e k 0 è una costante, detta costante di Coulomb, che nel Sistema Internazionale vale circa k 0 =9 10 9 Nm2 C 2 La direzione della forza F 0 è lungo la congiungente i due corpi e risulta attrattiva,se le due cariche sono di segno opposto, o repulsiva, se sono dello stesso segno: Nel Sistema Internazionale si usa riscrivere la costante k 0 nel modo seguente k 0 = 1 4π 0 dove 0 è una costante, detta costante dielettrica del vuoto, (o permettività assoluta del vuoto). Il suo valore, nel Sistema Internazionale è circa 2.1 Il campo coulombiano C2 0 =8, 9 10 12 Nm 2 Si considerino due cariche puntiformi, Q e q ed un sistema di riferimento con l origine sulla carica Q. Secondo la legge di Coulomb, sulla carica puntiforme q verrà esercitata, da parte della carica puntiforme Q, unaforzalacuiespressione è Qq F 0 = ±k 0 r 2 u r (1) dove u r èilversoredelvettoreposizione u r = r r Nella (1) il segno positivo va preso se le due cariche sono dello stesso segno, mentre il segno negativo va preso se le due cariche hanno segno opposto. 2

Assumeremo, in tutta la restante sezione, che entrambe le cariche siano positive. Ilvettore E = F 0 (2a) q èdettocampo elettrico generato dalla carica Q. Usando la (1), possiamo ottenere la forma esplicita del campo: Q E = k 0 r 2 u r (2b) Come si vede, il campo elettrico dipende dalla carica Q e dalla sua distanza dalla carica q. Indipendentemente dalla presenza effettiva della carica q, ad ogni punto dello spazio intorno alla carica Q si può associare un vettore, la cui direzione è lungo la congiungente la carica Q elacaricaq, il cui verso è quello del versore posizione e la cui intensità è data da Q E = k 0 r 2 (3) 3

L insieme dei vettori associabili ai punti dello spazio, con le modalità appena descritte, costituiscono il campo coulombiano della carica puntiforme Q. L unità di misura del campo elettrico è quella di una forza per unità di carica [E] = [forza] [carica] = N C Un tipico valore del campo elettrico è 10 4 N/C. Il campo coulombiano generato da Q non dipende dalla carica q. Tuttavia, per misurare il campo coulombiano E 0, dobbiamo, secondo la (2), prima conoscere la forza F 0 agente sulla carica q e poi dividere la forza stessa per il valore di q. Per evitare che ci sia una dipendenza dalla carica, q usata per determinare il campo coulombiano, occorre che essa sia una carica di prova. Per carica di prova si intende una carica che sia puntiforme e sufficientemente piccola se paragonata con Q, in maniera tale che il campo coulombiano di Q non sia modificato apprezzabilmente da essa. Allora, possiamo scrivere E = F 0 q = k Q 0 r 2 u r q Q (4) La carica di prova sarà indicata con q eassuntasemprepositiva. Una volta determinato il campo coulombiano di una carica puntiforme Q, usando la carica di prova, possiamo determinare la forza esercitata dalla carica Q su una qualunque carica puntiforme Q 1 ; basterà moltiplicare il campo, dato dalla (4), per la quantità Q 1 : F 0 = Q 1 E (5) Se la carica Q non è nell origine, ma occupa una posizione r 1, allora il campo elettrico da essa generato nel punto P, la cui posizione è r, sarà: E (r) = 1 Q 4πε 0 r r 1 3 (r r 1) (6) 2.2 Uso delle coordinate cartesiane In maniera esplicita, ora otterremo i risultati in forma generale, ma usando le coordinate cartesiane. 4

Con riferimento alla figura, il campo elettrico coulombiano in P dovuto alla carica Q è E 0 = k 0 Q 1 R 2 u R dove r r 1 = R Introducendo le coordinate cartesiane dei punto P e Q : troviamo r 1 = x 1 u x + y 1 u y + z 1 u z r = xu x + yu y + zu z e Inoltre, poiché avremo R =(x x 1 ) u x +(y y 1 ) u y +(z z 1 ) u z R 2 =(x x 1 ) 2 +(y y 1 ) 2 +(z z 1 ) 2 u R = R R u R = (x x 1) u x +(y y 1 ) u y +(z z 1 ) u q z (x x 1 ) 2 +(y y 1 ) 2 +(z z 1 ) 2 In definitiva, il campo coulombiano sarà dato E 0 = k 0 Q (x x 1) u x +(y y 1 ) u y +(z z 1 ) u z [(x x 1 ) 2 +(y y 1 ) 2 +(z z 1 ) 2 ] 3/2 Se la carica Q è posta nell origine del sistema di riferimento avremo 5

E 0 = k 0 Q xu x + yu y + zu z [x 2 + y 2 + z 2 ] 3/2 3 Il campo prodotto da più cariche puntiformi Vale, per il campo elettrico, il seguente principio di sovrapposizione: Il campo elettrico di due o più cariche puntiformi è uguale al vettore somma dei campi elettrici di ognuna di queste cariche prese separatamente. In forma matematica scriveremo, per N cariche puntiformi: ovvero NX E = E n (1) n=1 E = 1 NX Q n 4π 0 n=1 r r n 3 (r r n) (2) dove Q n è la carica posta nella posizione r n ed r è la posizione del punto P, in cui si vuole calcolare il campo coulombiano. 4 Le linee di forza del campo elettrostatico Per visualizzare il campo si usa introdurre le linee di forza del campo. Una tale descrizione, precisiamo subito, è solo approssimativaeservesoloadavere, al livello in cui opereremo, un aiuto "visivo" alla nostra rappresentazione del campo. Una linea di forza di un campo elettrico è una linea che ha per tangente in ogni suo punto un vettore che coincide con il campo nel punto considerato. Le linee di forza di cariche puntiformi positive e negative sono mostrate sotto. Esse sono sempre dirette dalle cariche positive (da cui "escono") a quelle 6

negative (in cui "entrano"). Esempi di linee di forza di cariche positive e negative sono mostrate nella figura sotto: Il verso delle linee di forza si comprende immaginando nei vari punti la carica di prova. Si può immaginare che il numero di linee di forza sia proporzionale all intensità del campo e quindi visualizzare una maggiore o minore intensità del campo, in una certa regione, aumentando o diminuendo, rispetto ad un altra regione il numero di linee di forza. In ogni caso, non bisogna dimenticare che il campo è una funzione continua dello spazio e quindi l uso, naturalmente discreto delle linee di forza, può essere fuorviante. Un modo analitico per determinare le linee di forza, ovvero per determinare le equazioni di tali linee è quello di usare la condizione di parallelismo tra il campo E e la tangente dl alla linea di forza in un punto: ovvero, in termini di componenti E dl =0 dx E x = dy E y = dz E z 5 Esempi Esempio 1:Si determini il rapporto tra la forza di Coulomb e la forza gravitazionale che un protone esercita su un elettrone. Ambedue le forze sono attrattive. La forza di Coulomb esercitata dal protone sull elettrone è data da F 0 = k 0 Q p Q e r 2 dove k 0 èlacostantedicoulombedrladistanzatraleduecariche. Laforza gravitazionale esercitata dal protone sull elettrone è data da F G = G M pm e r 2 dove G è la costante di gravitazione universale ed M p ed M e la massa del protone e dell elettrone, rispettivamente. Facendo il rapporto tra le due forze 7

F 0 = k 0 Q p Q e F G G M p M e e sostituendo i valori numerici (M p =1, 7 10 27 kg, M e =9, 1 10 30 kg) e (G =6, 7 10 11 Nm 2 /kg 2,Q i =1, 6 10 19 C) alle varie quantità, si trova F 0 F G =2, 3 10 39 La forza di Coulomb è enormemente più intensa della forza gravitazionale. Esempio 2: Trovare il campo coulombiano nel punto P di coordinate (0,0,5) prodotte da due cariche puntiformi di uguale valore, Q 1 = Q 2 = Q poste nei punti di coordinate (3,0,0) e (0,4,0). Poiché r 1 = x 1 u x + y 1 u y + z 1 u z r 2 = x 2 u x + y 2 u y + z 2 u z r = xu x + yu y + zu z troviamo r 1 =3u x r 2 =4u y r =5u z R 1 = r r 1 =( 3) u x +(5)u z R 1 = Inoltre, poiché q ( 3) 2 +(5) 2 = 34 R 2 = R 2 = r r 2 =( 4) u y +(5)u z q ( 4) 2 +(5) 2 = 41 avremo u R1 = r r 1 r r 1 u R1 = ( 3) u x +(5)u z 34 u R2 = r r 2 r r 2 u R2 = ( 4) u y +(5)u z 41 8

Il campo coulombiano in P, dovuto alla carica Q 1, sarà dato da E 1 = k 0 Q 1 ( R 1 ) 2 u R 1 e quello dovuto alla carica Q 2 sarà dato da E 2 = k 0 Q 1 ( R 2 ) 2 u R 2 Usando le relazioni precedenti troviamo Il campo risultante sarà E 1 = k 0 Q 3u x +5u z E (34) 3/2 2 = k 0 Q 4u y +5u z (41) 3/2 E = E 1 + E 2 = k 0 Q ( 0, 01u x 0, 01u y +0, 04u z ) Esempio 3: Due cariche Q 1 =50µC e Q 2 =10µC sono poste nei punti di coordinate ( 1, 1, 3) m e (3, 1, 0) m. Si determini la forza agente su Q 1. Possiamo scrivere i vettori posizione delle due cariche, avendo le componenti, come r 1 = u x + u y 3u z r 2 =3u x + u y da cui, facendo la semplice differenza delle componenti omologhe, avremo Infine R = r 1 r 2 = 4u x 3u z R = p 4 2 +3 2 =5 u R = r 1 r 2 r 1 r 2 = 1 5 ( 4u x 3u z ) La forza agente su Q 1 sarà F 12 = 1 Q 1 Q 2 4π 0 r12 2 u R =0, 18 ( 0, 8u x 0, 6u z ) N Esempio 4: (Dipolo elettrico) Due cariche, uguali ma di segno opposto, sono tenute ferme lungo l asse z, ad una distanza l, uguale per entrambe, dall origine del sistema di riferimento. Si determini il campo E in un punto P dell asse y. 9

Nella figura precedente, con E + ed E abbiamo indicato il campo elettrico generato in P dalle cariche positiva e negativa rispettivamente. Il campo generato dal dipolo in un punto arbitrario P è in generale, come mostreremo successivamente, abbastanza complesso. Qui la semplicità del calcolo è realizzata mediante la limitazione al solo asse y, che è un asse di simmetria per le due cariche. Il campo E + generato dalla carica Q è repulsivo, mentre il campo E è attrattivo. La distanza d, di P da Q, è uguale alla distanza di P da ( Q) ed entrambe sono uguali a d 2 = l 2 + y 2 (1) I due campi hanno uguale intensità: E + = E = 1 Q 4π 0 l 2 + y 2 (2) Le componenti lungo l asse y sono uguali e di segno contrario. Le componenti lungo l asse z sono uguali e dello stesso segno; il loro modulo è, rispettivamente: l E +,z = E + cos α = E + p l2 + y 2 l E,z = E cos α = E p l2 + y 2 allora, la risultante componente lungo l asse z è E z = E +,z + E,z = 2 Q l (3) 4π 0 (l 2 + y 2 ) 3/2 Nel caso in cui y À l (approssimazione di dipolo), si può trascurare l 2 nel denominatore e la precedente relazione diventa E z = 2 4π 0 Q l y 3 (4) 10

Se introduciamo la quantità d Q d Q =2lQ (5) detta, momento di dipolo elettrico, avremo E z 1 d Q = 4π 0 y 3 (6) Esempio 5: Moto in un campo elettrico longitudinale. Con riferimento alla figura precedente, determinare la velocità di arrivo dell elettrone sullo schermo, sapendo che il campo elettrico uniforme è presente solo nel tratto d. Il teorema dell energia cinetica, nel tratto d, si scrive q e Ed = 1 2 M ev 2 f 1 2 M ev 2 da cui r v f = v 2 + 2q eed M e Poiché nel tratto l il moto è rettilineo uniforme, la precedente espressione rappresenta anche la velocità di arrivo sullo schermo. Esempio 6: Moto in un campo elettrico trasverso; Determinare il punto di arrivo sullo schermo dell elettrone mostrato nella figura seguente e calcolarela velocità con cui vi arriva 11

Le equazioni utili sono M e a x (t) =0 M e a y (t) = q e ( E) da cui v x (t) =v x(t) =vt v y (t) = q ee t y (t) = 1 q e E t 2 M e 2 M e Eliminando il tempo tra le equazioni delle coordinate si ottiene y = 1 q e E 1 2 M e v 2 x2 (1) che è l espressione di una parabola. Poiché, dopo aver attraversato il tratto d la particella si muove di moto rettilineo uniforme, la velocità di arrivo sullo schermo è uguale alla velocità di arrivo in h. Il valore di h è h = 1 q e E 1 2 M e v 2 d2 (2) La velocità in h avrà un modulo che otterremo dal teorema dell energia cinetica Z F dr = 1 2 M evf 2 1 2 M ev 2 Poiché Z Z F dr = Z F x dx + F y dy = F y dy = q e Eh avremo da cui 1 2 M evf 2 = 1 2 M ev 2 + q e Eh r v f = v 2 +2 q eeh (3) M e 12

Per ottenere la direzione della velocità basta trovare la tangente alla traiettoria, nel punto di coordinate (d, h). Facendo la derivata della (1), si trova dy dx = q ee M e 1 v 2 x Ponendo x = d, siottiene tan α = q ee 1 M e v 2 d (4) Rimane la determinazione di h 1. Geometricamente, si ha h 1 = h + l tan α da cui h 1 = 1 q e E 1 2 M e v 2 d2 + l q ee 1 M e v 2 d = q µ ee d d M e v 2 2 + l (5) 13