Accoppiamento fra tecniche cromatografiche e spettrometria di massa

Documenti analoghi
Accoppiamento fra tecniche cromatografiche e spettrometria di massa

Accoppiamento fra tecniche cromatografiche e spettrometria di massa

Cromatografia liquida ad alta performance (HPLC)

Spettrometria di massa

Campionamento ed analisi di composti volatili in matrici alimentari

GC GC/MS. Chiaravalle, FEBBRAIO 2010

Cos è uno spettrometro di massa

Cromatografia Dal greco chroma : colore, graphein : scrivere 1903 Mikhail Twsett (pigmenti vegetali su carta)

Corso di Componenti e Impianti Termotecnici LE RETI DI DISTRIBUZIONE PERDITE DI CARICO LOCALIZZATE

Analisi di Controllo di un Acqua Minerale Naturale

Campione sciolto in un solvente (deuterato) e. posto in un tubo. di vetro a pareti sottili di diametro di 5 mm e lungo circa 20 cm

EMISSIONE E ASSORBIMENTO DI LUCE DA PARTE DELLA MATERIA

MISURE DI POTERE CALORIFICO E COMPOSIZIONE

Spettroscopia atomica

a.a. 2005/2006 Laurea Specialistica in Fisica Corso di Fisica Medica 1 Utilizzo ECG

PROVE SU PISTA. Sensore pressione freno. Sensore pressione freno:

SENSORI E TRASDUTTORI

LABORATORIO DI CHIMICA GENERALE E INORGANICA

Come valutare le caratteristiche aerobiche di ogni singolo atleta sul campo

LA MOLE : UN UNITA DI MISURA FONDAMENTALE PER LA CHIMICA

Perché il logaritmo è così importante?

Sinterizzazione. Il processo di sinterizzazione. π = D

Un altro importante parametro di questo processo è la risoluzione che rappresenta la distanza minima che la litografia può apprezzare.

LA CORRENTE ELETTRICA

Capitolo 7. Le soluzioni

TETRACLOROETILENE Urinario in GC/MS spazio di testa Codice GC15010

Gestione dei segnali analogici nei sistemi di automazione industriale con PLC.

Le proprietà periodiche degli elementi LA LEZIONE

Si classifica come una grandezza intensiva

SISTEMA BINARIO DI DUE LIQUIDI VOLATILI TOTALMENTE MISCIBILI che seguono Raoult

Q 1 = C carica numero 1 Q 2 = C carica numero 2 forza esercitata tra le cariche distanza tra le cariche, incognita

Elettroforesi. Elettroforesi: processo per cui molecole cariche si separano in un campo elettrico a causa della loro diversa mobilita.

Tesina di scienze. L Elettricità. Le forze elettriche

REAZIONI ORGANICHE Variazioni di energia e velocità di reazione

Determinazione della composizione elementare dello ione molecolare. Metodo dell abbondanza isotopica. Misure di massa esatta

Elettricità e magnetismo

Impianti per il trasferimento di energia

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE

Descrizione dei Diversi Tipi di Polvere

POLITECNICO DI TORINO

Idrogeno: trasporto ed accumulo Seminario «Power to Gas e Idrogeno» Gianluca Valenti Politecnico di Milano, Dipartimento di Energia

INTERVENTO DI CLAUDIA RICCARDI PLASMAPROMETEO - Dipartimento di Fisica Università degli Studi di Milano - Bicocca

TEORIA CINETICA DEI GAS

Unità di misura. Perché servono le unità di misura nella pratica di laboratorio e in corsia? Le unità di misura sono molto importanti

PREVENZIONE INCENDI. Celsino Govoni

Strumenti e metodi per la redazione della carta del pericolo da fenomeni torrentizi

SPETTROSCOPIA ATOMICA

Ottimizzazione Multi Obiettivo

Pagina 2 di 14. Indice

Manuale d uso per la raccolta: Sicurezza degli impianti di utenza a gas - Postcontatore

La propagazione delle onde luminose può essere studiata per mezzo delle equazioni di Maxwell. Tuttavia, nella maggior parte dei casi è possibile

LA CORRENTE ELETTRICA CONTINUA

IL MARKETING E QUELLA FUNZIONE D IMPRESA CHE:

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26

Mynute Sinthesi. Condensazione / Murali. Caldaie murali a condensazione, combinate istantanee, per impianti ad alta temperatura.

Termodinamica. Sistema termodinamico. Piano di Clapeyron. Sistema termodinamico. Esempio. Cosa è la termodinamica? TERMODINAMICA

Classificazione delle pompe. Pompe rotative volumetriche POMPE ROTATIVE. POMPE VOLUMETRICHE si dividono in... VOLUMETRICHE

NUOVE ENERGIE nella Scuola 4 DICEMBRE, 2012

LO STATO GASSOSO. Proprietà fisiche dei gas Leggi dei gas Legge dei gas ideali Teoria cinetico-molecolare dei gas Solubilità dei gas nei liquidi

Limiti e continuità delle funzioni reali a variabile reale

Guida all uso del Portale Web

A.Cartocci, M.Fedi, M.Manetti, F.Taccetti

RIVELAZIONE DELLE RADIAZIONI IONIZZANTI. Nelle tecniche di rivelazione delle radiazioni ionizzanti le grandezze da rivelare possono essere diverse:

Introduzione alla SPETTROMETRIA IN ASSORBIMENTO ATOMICO SPETTROMETRIA PLASMA MASSA CROMATOGRAFIA IONICA

Classificazione dei Sensori. (raccolta di lucidi)

CONDUTTORI, CAPACITA' E DIELETTRICI

Cosa misura il ph: la concentrazione di ioni H +, che si scrive [H + ]. La definizione di ph è: ph = -log 10 [H + ]

TECNICHE DI BASE PER LA SEPARAZIONE DEI COMPONENTI DI UNA MISCELA

Liquidi, Solidi e Forze Intermolecolari

MISURE DI CONCENTRAZIONE DI GAS RADON IN AMBIENTI CONFINATI VALUTAZIONE DELLA CONCENTRAZIONE MEDIA ANNUALE

Programma Gestione Presenze Manuale autorizzatore. Versione /08/2010. Area Sistemi Informatici - Università di Pisa

Perché la spettrometria di massa potrebbe essere di interesse per Voi? La spettrometria di massa è una tecnica analitica potente usata per

Energia potenziale elettrica e potenziale. In queste pagine R indicherà una regione in cui è presente un campo elettrostatico.

I TEST DI CHIMICA - INGEGNERIA DELL INFORMAZIONE AA 04/05

Macromolecole Biologiche. I domini (III)

( x) ( x) 0. Equazioni irrazionali

per immagini guida avanzata Uso delle tabelle e dei grafici Pivot Geometra Luigi Amato Guida Avanzata per immagini excel

Energia nelle reazioni chimiche. Lezioni d'autore di Giorgio Benedetti

Interruttore automatico

Interruttore automatico

ALLEGATO 14 PROBLEMATICHE APPLICATIVE PASSERELLA ESPORTAZIONE DATI E CAPRES

LOTTO 1 - CAPITOLATO TECNICO. Spettrometro di Massa lineare/reflectron MALDI completo di sistema 2D-gel e HPLC con Spotting caratterizzato da

PANNELLI SOLARI TERMICI PANNELLI SOLARI FOTOVOLTAICI

La ventilazione meccanica controllata LA VENTILAZIONE DEI LOCALI

Esame sezione Brevetti Prova Pratica di meccanica

SymCAD/C.A.T.S. modulo Canali Schema

I.I.S. Giulio Natta Istituto di Istruzione Superiore Tecnico per la meccanica e le materie plastiche Liceo delle Scienze Applicate

Università di Roma Tor Vergata

GESTIONE DELLE TECNOLOGIE AMBIENTALI PER SCARICHI INDUSTRIALI ED EMISSIONI NOCIVE LEZIONE 10. Angelo Bonomi

GUIDA INSTALLAZIONE NB-AFW1

IL RISPARMIO ENERGETICO E GLI AZIONAMENTI A VELOCITA VARIABILE L utilizzo dell inverter negli impianti frigoriferi.

L H 2 O nelle cellule vegetali e

CT228 Dispositivo controllo temperatura

Acidi e basi. HCl H + + Cl - (acido cloridrico) NaOH Na + + OH - (idrossido di sodio; soda caustica)

Appunti sul galleggiamento

PROTEINE. sono COMPOSTI ORGANICI QUATERNARI

materia atomi miscugli omogenei e eterogenei sostanze elementari composti

CONVERTITORI DIGITALE/ANALOGICO (DAC)

ebook Linee guida sul locale batterie Seguici su:

IL CAMPO MAGNETICO. V Scientifico Prof.ssa Delfino M. G.

Transcript:

Accoppiamento fra tecniche cromatografiche e spettrometria di massa I due principali accoppiamenti fra cromatografia e spettrometria di massa sono GC-MS e HPLC-MS: Tecnica GC-MS Tipi di accoppiamento con interfaccia (a getto, a tubo/membrana porosi) diretto (per GC con colonne capillari) HPLC-MS Particle Beam (PB) Ionizzazione ElectroSpray (ESI) Ionizzazione chimica a pressione atmosferica (APCI)

Accoppiamento GC-MS Colonne impaccate In questo caso il flusso di gas eluente dalla colonna è troppo elevato (da 10 a 40 ml/min) perché lo si possa introdurre direttamente all interno della sorgente di ionizzazione dello spettrometro di massa, che è posta sotto vuoto. Occorre quindi inserire un interfaccia fra gas cromatografo e spettrometro di massa: Separatore a getto (Becker-Ryhage) GC pompa rotativa (10-2 torr) MS L estremità della colonna GC termina in una camera sotto vuoto, affacciandosi all ingresso dello spettrometro di massa. Le molecole di gas di trasporto (azzurre), di solito più piccole di quelle di analita (arancione), vengono allontanate dal flusso molto più efficacemente, mediante una pompa rotativa.

GC MS tubo poroso pompa rotativa (10-2 torr) Separatore a tubo Fra GC ed MS è posto un tubo poroso che può essere attraversato soltanto dalle molecole di gas di trasporto, più piccole, che vengono facilmente allontanate. GC scarico Separatore a membrana MS membrana E impiegato nei casi particolari in cui le molecole di gas di trasporto siano più grandi di quelle dell analita (ad esempio nell analisi GC di gas inorganici). Quelle di analita riescono a passare attraverso i pori della membrana e raggiungono lo spettrometro di massa.

Colonne capillari In questo caso il flusso di gas eluente dalla colonna è sufficientemente piccolo (pochi ml/min) da consentire il suo ingresso diretto nella sorgente di ionizzazione. Oltre ai quadrupoli in GC-MS vengono impiegati analizzatori a trappola ionica o ToF, perché consentono la registrazione di spettri di massa in tempi rapidissimi. La linea di trasferimento è di solito un tubo capillare riscaldato a temperature paragonabili a quelle del forno gas-cromatografico.

Modalità di analisi in GC-MS A differenza degli altri rivelatori GC, lo spettrometro di massa non fornisce direttamente un aumento di responso (ad es. dell intensità di corrente in un FID) al passaggio di un analita. Durante l eluizione cromatografica esso acquisisce continuamente spettri di massa che vengono conservati nel computer che gestisce lo strumento. Il cromatogramma GC-MS viene costruito (di solito in tempo reale) mediante un elaborazione di tali spettri, che può avvenire secondo due modalità: Total Ion Current (TIC) Si acquisisce continuamente l intero spettro di massa (di solito da 50 a 2000 unità di rapporto m/z) del gas effluente dalla colonna cromatografica. Il computer somma le intensità dei picchi presenti nello spettro di massa ottenuto ad un certo tempo durante la corsa cromatografica. Il dato risultante viene usato come ordinata del punto corrispondente del cromatogramma GC-MS.

2000 m/z 0 30 50 Il dominio dei dati è di tipo tridimensionale: ad intervalli prestabiliti di tempo di ritenzione si ottiene uno spettro di massa, tipicamente di tipo EI o CI. In corrispondenza dei tempi di ritenzione in cui avviene l eluizione della sola fase mobile lo spettro MS conterrà picchi poco intensi, legati ad impurezze del gas di trasporto (spettro verde). Gli spettri corrispondenti invece a picchi (ad es. quelli rosso e blu) contengono i frammenti, e quindi l informazione sulla struttura molecolare, della sostanza eluita in corrispondenza di quel picco.

Analisi qualitativa in GC-MS Rispetto agli altri rivelatori per GC la spettrometria di massa consente di riconoscere la struttura di un analita dal confronto del suo spettro di massa (EI o CI) con quelli riportati su banche dati elettroniche, contenenti migliaia di spettri MS di riferimento.

Selective Ion Monitoring (SIM) Quando si è interessati alla ricerca di un particolare analita (o di un loro ristretto numero) all interno di una miscela sottoposta a separazione GC- MS è possibile impostare l acquisizione MS soltanto in un ristretto intervallo di rapporti m/z (di solito 10 unità al massimo), contenente quello dell analita d interesse, realizzando un SIM. Il cromatogramma GC-MS di tipo SIM verrà dunque costruito dal computer mettendo in ordinata solo l intensità degli ioni presenti nel piccolo intervallo di rapporti m/z esplorato. abbondanza tempo / min 70 m/z 80 Composti isomerici/isobarici (o aventi un frammento in comune)

La modalità SIM è utile soprattutto quando si vuole cercare un particolare analita all interno di miscele complesse, che in modalità TIC forniscono decine di picchi: SIM Poiché la scansione SIM è molto più breve di quella TIC è possibile ricostruire il picco cromatografico con molti più punti rispetto al caso della TIC: SIM TIC

E possibile costruire un cromatogramma simile ad un tracciato SIM anche a partire da un acquisizione TIC, imponendo al computer di estrarre dagli spettri MS totali soltanto l intensità relativa allo ione con il rapporto m/z desiderato. Il tracciato ottenuto viene definito Cromatogramma di Corrente Ionica Estratta (extracted Ion Chromatogram, XIC, talvolta indicato come EIC) TIC XIC XIC XIC

Accoppiamento HPLC-MS HPLC-MS: la strana coppia L HPLC è adatta all analisi di analiti troppo poco volatili per essere separati in gas-cromatografia mentre la spettrometria di massa è applicabile solo ad analiti volatili I flussi di liquido tipicamente impiegati in HPLC (1 ml/min), se vaporizzati, corrispondono a flussi di gas dell ordine di 1 L/min, assolutamente non gestibili dai sistemi da vuoto degli spettrometri di massa. Occorre sviluppare delle interfacce in grado di vaporizzare la fase mobile HPLC e gli analiti in essa disciolti ma di trasferirne solo una parte, possibilmente arricchita in analita, all interno dello spettrometro di massa.

Interfaccia Particle Beam (PB) Anche se non è storicamente la prima sviluppata, l interfaccia PB, introdotta nel 1984, è la prima che abbia dimostrato una discreta applicabilità pratica in HPLC-MS. L eluente proveniente dalla colonna HPLC viene trasformato in aerosol all interno di un nebulizzatore, l aerosol viene desolvatato in una camera riscaldata e le molecole di analita in esso presenti vengono selezionate da un sistema di skimmer per l ingresso nello spettrometro di massa.

skimmer 1 skimmer 2 MS Principio dello skimmer Le particelle di analita (arancione) liberate nella camera di desolvatazione tenderanno, essendo di solito più grandi (e quindi più inerti), a mantenere la traiettoria ideale rettilinea che collega l orifizio del nebulizzatore all asse degli skimmer. Vantaggi e svantaggi dell interfaccia PB Tipicamente è possibile ottenere spettri MS di tipo EI o CI, ricchi di informazioni sulla struttura molecolare E compatibile con flussi di fase mobile relativamente elevati (0.1-0.5 ml/min) La sensibilità è bassa, perché parte dell analita viene inevitabilmente persa attraverso gli skimmer Non è compatibile con l uso di tamponi non volatili Può indurre degradazione termica negli analiti

Interfaccia a Ionizzazione Elettrospray (ESI) E attualmente l interfaccia di gran lunga più usata in HPLC-MS (uno dei suoi inventori, John Fenn, è stato insignito del Premio Nobel per la Chimica nel 2002). La fase mobile proveniente dalla colonna HPLC viene introdotta in un capillare o ago metallico, posto ad un elevata differenza di potenziale (alcuni kv) rispetto ad uno schermo provvisto di un foro centrale che fa da ingresso allo spettrometro di massa.

In ESI l analita è di solito già presente come ione (positivo o negativo) nella fase mobile HPLC, grazie all azione di acidi/basi. Nel caso sia carico positivamente il suo controione (negativo) si scarica sulle pareti del capillare di spray, mentre l accumulo di cariche positive fa assumere alla soluzione in uscita una caratteristica forma a cono (cono di Taylor), dovuta alla reciproca repulsione elettrostatica. Quando la repulsione elettrostatica vince la tensione superficiale della fase mobile dal vertice del cono di Taylor si staccano prima filamenti di liquido e poi, da questi, gocce di dimensioni relativamente grandi.

Il processo che porta alla formazione di singoli ioni dell analita, eventualmente solvatati, a partire dalle gocce può avvenire secondo due meccanismi: Fissione coulombiana A B C A. Le gocce più grandi rimpiccioliscono per evaporazione del solvente Limite di Rayleigh B. La concentrazione delle cariche positive in un volume inferiore fa aumentare la repulsione fino a superare la tensione superficiale: la goccia esplode in gocce più piccole C. Il processo prosegue a catena fino ad arrivare al singolo ione, che può essere dotato di più cariche positive [M + nh] n+. q RY ε 0 γ R carica-limite permittività del vuoto tensione superficiale del solvente raggio della goccia

Evaporazione ionica (Modello di Iribarne-Thompson) A B C Rispetto al meccanismo precedente, in questo caso uno ione può essere espulso dalla superficie di una goccia piccola prima che questa si riduca ulteriormente (C ), a causa della repulsione elettrostatica da parte degli ioni ad esso adiacenti. I due meccanismi descritti hanno pressoché le stesse probabilità di verificarsi ma soprattutto portano ad un livello molto basso di frammentazione. L ESI è una tecnica di ionizzazione soft : negli spettri ESI-MS lo ione principale è nella quasi totalità dei casi lo ione molecolare mono(de)protonato o multi(de)protonato.

Assistenza pneumatica nel processo ESI Nella maggior parte delle interfacce ESI un flusso di gas inerte (azoto) principale (nebulising) ed eventualmente uno ausiliario (drying) vengono impiegati per facilitare l evaporazione del solvente dalle goccioline, nonché per direzionare l aerosol verso il foro d ingresso dello spettrometro di massa. Storicamente l interfaccia ESI assistita pneumaticamente fu definita Ion-Spray, tuttavia questo termine è ormai in disuso.

Un esempio di strumento HPLC-ESI-MS interfaccia ESI ottapoli rivelatore HPLC infusione con siringa trappola ionica sensore per il vuoto

Esempi di applicazioni particolari dell ESI-MS Spettro ESI-MS di un peptide: si noti la presenza sia dello ione molecolare monoprotonato (rapporto m/z = (M+1)/1 = 773.0) sia di quello biprotonato (rapporto m/z = (M+2)/2 = 387.5 Spettro ESI-MS di una proteina: si nota una distribuzione di ioni di carica via via crescente (e quindi rapporto m/z decrescente)

Un esempio speciale dell effetto del ph sugli spettri ESI-MS: spettro della mioglobina di cuore di cavallo In condizioni di elevata acidità (ph 2) la molecola della mioglobina, normalmente raggomitolata intorno al gruppo eme, si apre, venendo protonata in modo esteso, per cui i rapporti m/z sono bassi (z alto) e si nota anche il picco del gruppo eme. A ph neutro la molecola rimane nella conformazione originaria per cui solo poche cariche positive possono essere introdotte, inoltre l eme non viene liberato (il suo picco è assente nello spettro).

Interfaccia per la Ionizzazione Chimica a Pressione Atmosferica (APCI) 350-500 C + 3-6 kv Il capillare dell ESI è sostituito da un nebulizzatore riscaldato. La ionizzazione dell analita (M) avviene in questo caso per cessione (o cattura) di protoni da parte di uno ione reagente (XH + ) generato dalla scarica a corona creata all estremità di un ago mantenuto ad alta tensione (positiva o negativa a seconda del segno degli ioni che si vogliono generare).

Formazione degli ioni reagenti nella modalità APCI-positiva H 2 O, O 2, N 2 (aria) ago H 2 O +., O 2 +., N 2 +. (ioni primari, tempo di vita: 1 s) e - H 2 O +. + H 2 O H 3 O + + OH. ione reagente, tempo di vita 500 s N 2 +. + H 2 O N 2 + H 2 O +. O 2 +. + H 2 O O 2 + H 2 O +. M + H 3 O + [M+ H] + + H 2 O

Formazione degli ioni reagenti nella modalità APCI-negativa O 2 (aria) e - O 2 -, O - ago (ioni primari, tempo di vita: 1 s) O 2 - + H 2 O HO 2 + OH - O - + H 2 O OH + OH - ioni reagenti O - + CO 2 + H 2 O OH + HCO 3 - OH - + M [M-H] - + H 2 O HCO 3 - + M [M-H] - + H 2 CO 3

Confronto fra ESI e APCI ESI è adatta ad analiti polari/molto polari, che subiscono protonazione/deprotonazione già nella fase mobile; è compatibile con l HPLC di ripartizione in fase inversa ma non diretta; tollera flussi fino a 0.2-0.3 ml/min; ha un limite di rapporti m/z esplorabili piuttosto elevato, fino a 100000 (compatibilmente con l analizzatore impiegato) APCI è adatta ad analiti mediamente/poco polari, la cui protonazione/deprotonazione avviene sopratutto in fase gassosa; è compatibile con l HPLC di ripartizione in fase diretta e moderatamente con quella a fase inversa; tollera flussi fino a 1-2 ml/min; ha un limite relativamente basso di rapporti m/z esplorabili (fino a 1000)

Confronto fra i campi di applicabilità delle diverse tecniche di cromatografia-spettrometria di massa ESI PB APCI GC-MS

Modalità di analisi in HPLC-MS Le modalità TIC e SIM descritte per la tecnica GC-MS possono essere realizzate in modo analogo in HPLC-MS. Tuttavia: gli spettri HPLC-MS danno un numero di informazioni molto minore sulla struttura (e quindi sull identità) degli analiti, essendo la frammentazione pressocché assente. Si accoppiano al cromatografo liquido spettrometri di massa tandem (MS/MS) o sequenziale (MS n ). MS/MS - TIC CRM SRM

MS/MS - TIC Si registra uno spettro MS in modalità TIC, evidenziando i pesi molecolari degli analiti eluiti sotto i vari picchi del cromatogramma: C:\Ilario\...\DatiLCQ\stracchino2201 13/10/2003 17.38.22 RT: 0,00-45,66 Relative Abundance 100 90 80 70 60 50 40 30 Cromatogramma TIC 38,83 38,89 36,96 38,59 39,13 NL: 2,44E6 Base Peak F: + p ESI Full ms [ 50,00-2000,00] MS stracchino2201 20 10 0 4,86 1,40 9,01 24,84 2,34 4,09 5,24 7,23 9,47 11,90 15,61 16,38 18,02 23,72 25,36 12,81 19,63 20,85 34,87 36,68 39,83 29,84 31,83 33,40 40,88 43,71 45,31 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 Time (min) 27,84 stracchino2201#1055-1062 RT: 36,82-37,06 AV: 8 NL: 5,63E5 F: + p ESI Full ms [ 50,00-2000,00] Relative Abundance 100 80 60 40 20 0 Spettro MS 819,3 470,1 688,5 1237,7 1344,5 342,1 541,1 841,5 1383,3 1668,9 189,3 229,2 733,3 948,3 1008,5 1192,2 1818,5 1979,9 200 400 600 800 1000 1200 1400 1600 1800 2000 m/z 1570,1

si effettua una nuova corsa cromatografica impostando l isolamento di uno degli ioni d interesse (ad esempio in trappola ionica) e la sua successiva frammentazione: il cromatogramma viene ricostruito dalla corrente ionica totale relativa agli spettri MS/MS acquisiti: RT: 0,00-47,65 100 90 80 70 Cromatogramma MS/MS-TIC 36,96 Relative Abundance 60 50 40 30 20 10 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 Time (min) stracchino22msms01 # 1124-1177 RT: 36,10-37,42 AV: 5 NL: 1,96E3 F: + p ESI Full ms2 819,00@30,00 [ 225,00-834,00] Relative Abundance 100 80 60 40 20 0 Spettro MS/MS, ione m/z 819.3 276,3 341,3 635,1 478,1 719,2 775,5 442,8 686,3 459,1 670,1 783,1 754,3 799,3 250 300 350 400 450 500 550 600 650 700 750 800 m/z 744,7 819.3 L informazione sui frammenti osservati negli spettri MS/MS può consentire di fare ipotesi sulla struttura dell analita d interesse.

SRM (Selective Reaction Monitoring) In questo caso si parte già dall informazione sulla frammentazione di un particolare ione. L acquisizione è di tipo MS/MS ma viene limitata all intervallo di m/z che contiene uno specifico frammento di quello ione. Abbondanza relativa Abbondanza relativa 100 95 90 85 SIM su m/z 335 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 0 1 2 3 4 5 6 7 8 9 t R (min) 100 95 90 85 SRM N 80 75 70 335 > 180 65 60 55 50 O- O 45 40 35 30 25 20 15 10 5 0 0 1 2 3 4 5 6 7 8 9 t R (min) O CPA t R = 8.46 Confronto fra i cromatogrammi SIM ed SRM ottenuti per un estratto di latte contaminato dalla micotossina acido ciclopiazonico (CPA): NH 180 è la massa del frammento evidenziato in figura. N OH O O

La modalità SRM può consentire anche di visualizzare in modo separato specie isomeriche parzialmente co-eluenti purché i corrispondenti spettri MS/MS differiscano per almeno un frammento. CRM (Consecutive Reaction Monitoring) E una modalità analoga all SRM ma ottenuta con un acquisizione MS di tipo sequenziale (MS n, con n > 2). Relative Abundance Relative Abundance 100 90 80 70 60 50 40 30 20 10 0 100 90 80 70 60 50 40 30 20 2,06 1,66 3,36 5,25 12,38 5,00 11,65 9,19 9,84 15,91 7,38 4,43 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 O O H N H 2 OTA O O H Cll H O H O H C H 3 9,12 12,40 Modalità SRM 404 > 358 18,21 Modalità CRM 404 > 358 > 341 10 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 13,80

Accoppiamento fra Plasma Induttivamente Accoppiato e Spettrometria di Massa (ICP-MS) Sviluppata alla fine degli anni 80, l ICP-MS è attualmente la tecnica più sensibile esistente per l analisi elementare di ultra-tracce (concentrazioni inferiori alle ppt, parti per trilione). Gli ioni generati a partire dal campione nella torcia ICP vengono trasmessi attraverso un interfaccia all interno di uno spettrometro di massa, tipicamente dotato di un analizzatore a quadrupolo.

Interfaccia fra ICP e MS L interfaccia fra ICP ed MS deve consentire il passaggio dalla pressione atmosferica, a cui lavora la torcia ICP, all ultra-alto vuoto (10-6 torr) dello spettrometro di massa: Il cono di campionamento (sample) ha un orifizio più largo (diametro 0.8-1.2 mm) di quello del cono skimmer (diametro 0.4-0.8 mm) ed il loro alloggiamento è raffreddato da una serpentina ad acqua.

interfaccia lenti elettrostatiche multiple fotoni e particelle neutre quadrupolo lenti ioniche fascio ionico collimato deviazione del fascio ionico all interno dell analizzatore Dopo aver attraversato anche il cono skimmer gli ioni derivanti dall ICP vengono attratti da una serie di lenti elettrostatiche all interno dello spettrometro di massa e guidati da altre lenti all ingresso dell analizzatore a quadrupolo. Quest ultimo si trova di solito fuori asse rispetto agli skimmer, in modo che particelle neutre e fotoni provenienti dall ICP (non deviabili con campi elettrici) non entrino nell analizzatore.

Al posto del quadrupolo si può utilizzare un analizzatore a tempo di volo, aumentando così l intervallo di rapporti m/z esplorabile, oppure un analizzatore a doppia focalizzazione, che ha una risoluzione molto maggiore. Il costo di un ICP-MS a doppia focalizzazione è però molto elevato (circa un milione di euro).

Esempi di spettri ICP-MS Gli spettri ICP-MS evidenziano chiaramente i rapporti isotopici elementari per gli ioni monoatomici. Rispetto ad uno spettro ICP-OES l interferenza dovuta all argon è decisamente inferiore.

La tecnica ICP-MS è particolarmente sensibile nei confronti degli elementi della serie f della Tavola Periodica, con intervalli di linearità comprendenti 4-5 ordini di grandezza.

Limiti di rivelabilità in ICP-MS 1 ng/l = 1 ppt In molti casi (soprattutto per gli elementi transuranici), la sensibilità può addirittura essere migliore di 0.01 ppt!

Esempi di applicazione delle tecniche MS