Modello Black-Scholes R. Marfé Indice 1 Il modello Black Scholes 1.1 Formule di valutazione per le opzioni standard......... 3 1. Implementazione in VBA..................... 6 1
1 Il modello Black Scholes Il modello di Black e Scholes (BS) 1 rappresenta sicuramente il più importante e rivoluzionario lavoro nella storia della finanza quantitativa. Nella letteratura finanziaria tradizionale si assume che quasi tutti i prezzi delle attività finanziarie (azioni, valute, tassi d interesse) siano guidati da un moto Browniano con drift. Nel modello BS gli incrementi del prezzo di un titolo in un infinitesimale intervallo di tempo si distribuiscono secondo un processo di random walk lognormale: ds = µsdt + σsdw t, (1) dove dw t rappresenta il moto Browniano. Poiché la v.c. S segue un processo di Itô, (1.1), la dinamica della funzione V (S t, t), dipendente da S t e dal tempo t, secondo il lemma di Itô, può scriversi: { } dv = t + µs t + S σ V t dt + σs St t dw t. () La dinamica del logaritmo del prezzo del titolo, ln S t, può essere ottenuta applicando la (1.3) alla (1.): { ln St d ln S t = t Sostituendo ln St t = 0, + µs t ln S t ln St + S t σ = 1 S t e ln S t St d ln S t = (µ σ } ln S t ln S t dt + σs St t dw t. = 1 S t ) dt + σdw t. si ricava: Ciò significa che nel modello BS il prezzo di un titolo si distribuisce in modo lognormale, S t Lognormal(µdt, σ dt), e gli incrementi del prezzo, ossia il rendimento offerto dal titolo, secondo la distribuzione normale, x t = ln(s t /S 0 ) N(µdt, σ dt). Per cui la funzione di densità dei rendimenti corrisponde a: ( ( )) 1 P(x t ) = πσ t exp x t µ σ σ. t 1 Black e Scholes (1973).
1.1 Formule di valutazione per le opzioni standard Le assunzioni della versione originale del modello Black-Scholes sono: il comportamento del prezzo dell azione segue una dinamica lognormale con µ and σ costanti; non sono presenti costi di transizione o tasse, tutti i titoli sono perfettamente divisibili; non ci sono dividendi sulle azioni durante la vita dell opzione; non ci sono possibilità di arbitraggio; il trading è continuo; gli investitori possono prendere in prestito e prestare denaro al medesimo tasso di interesse privo di rischio; nel breve periodo il tasso di interesse privo di rischio, r, è costante. Nel modello Black-Scholes il prezzo S t di un titolo segue la forma esponenziale: S t = S 0 e Lt, dove il processo stocastico L t corrisponde a un moto browniano con drift, e viene quindi definito dall equazione: ) L t = (µ σ t + σw t, dove W t rappresenta l unica fonte di incertezza. Al fine di derivare le formule di valutazione per le opzioni standard 3, si consideri un portafoglio, Π, formato da una posizione lunga su un opzione, V (S t, t), sul sottostante S al tempo t e una posizione corta per la quantità,, sul sottostante: Π t = V (S t, t) S t, (3) Hull (000). 3 Wilmott (003). 3
la cui dinamica è: dπ t = dv (S t, t) ds t. (4) Definendo la dinamica per il prezzo del sottostante come: e applicando la formula di Itô, si ha: dv (S t, t) = t dt + µs t dt + St ds t = µs t dt + σs t dw t, (5) σ V dt + σs St t dw t. (6) La differenza nel valore del portafoglio viene espressa sostituendo la (1.6) e la (1.7) nella (1.5): { } { } dπ t = t + µs t + St σ V µs St t dt + σs t σs t dw t. (7) Per coprire il portafoglio dall unica fonte d incertezza, dovuta alla componente diffusiva dw t, occorre porre = /, in modo che il portafoglio risulti privo di rischio: { } dπ t = t + σ V S t dt. St In assenza di opportunità di arbitraggio, ci si aspetta dunque che il portafoglio cresca al tasso privo di rischio r: E[dΠ t ] = rπ t dt. (8) Sostituendo la (1.4) e la (1.8) nella (1.9), con = / : { } { t + σ V S t dt = r V } S St t dt. Da cui si ottiene l equazione alle differenze parziali (PDE) per il modello Black-Scholes: (S t, t) t + S t σ V (S t, t) S t + rs t (S t, t) rv (S t, t) = 0. (9) Questa è la relazione fondamentale del modello Black-Scholes. Tale equazione ha diverse soluzioni in funzione delle condizioni al contorno adottate. Differenti condizioni caratterizzano diversi titoli derivati: V call = max (S T K, 0) e V put = max (K S T, 0) 4
rappresentano rispettivamente le condizioni al contorno per opzioni call e put europee. Le seguenti formule di valutazione risolvono l equazione di Black-Scholes per opzioni call e put europee su azioni che non pagano dividendi: dove V call = SN(d 1 ) Ke rt N(d ), V put = Ke rt N( d ) SN( d 1 ) d 1 = ln(s/k) + (r + σ /)T σ T d = ln(s/k) + (r σ /)T σ T = d 1 σ T e N( ) rappresenta la funzione di probabilità cumulativa per una variabile normale standardizzata. 5
1. Implementazione in VBA INPUT: cp (Integer): 1 call case, -1 put case S (Double) : underlying price K (Double) : strike price r (Double) : instantanuous intensity of interest rate T (Double) : maturity vol (Double) : volatility OUTPUT: (Double) : european call / put price Function BS_closed_forme(cp As Double, s As Double, k As Double, r _ As Double, T As Double, vol As Double) As Double Dim d1 As Double, d As Double, logmoneyness As Double logmoneyness = Log(s / k) d1 = (logmoneyness + (r + 0.5 * vol * vol) * T) / (vol * Sqr(T)) d = d1 - vol * Sqr(T) BS_closed_forme = cp * s * WorksheetFunction.NormSDist(cp * d1) - _ Exp(-r * T) * k * cp * WorksheetFunction.NormSDist(cp * d) End Function Function BS_MonteCarlo(cp As Double, s As Double, k As Double, r _ As Double, T As Double, vol As Double) As Double Randomize Dim payoff As Double, drift As Double, volsqrt As Double, St As Double drift = (r - 0.5 * vol * vol) * T volsqrt = vol * Sqr(T) payoff = 0 For i = 1 To 10000 St = s * Exp(drift + volsqrt * WorksheetFunction.NormSInv(Rnd)) payoff = payoff + WorksheetFunction.Max(0, cp * (St - k)) Next i BS_MonteCarlo = Exp(-r * T) * (payoff / 10000) End Function 6