1 Portofoglio autofinanziante

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "1 Portofoglio autofinanziante"

Transcript

1 1 Portofoglio autofinanziante Supponiamo che l evoluzione del titolo A 1 sia S 1 t) e l evoluzione del titolo A sia S t). Supponiamo che al tempo 0 io abbia una somma X0) che voglio investire parte in una quantità H 1 0) del titolo A 1 e parte in una quantità H 0) del titolo A e di aggiustare continuamente il portafoglio secondo una strategia H 1 t), H t)); quindi il valore Xt) del nostro portafoglio evolverà nel tempo come Xt) H 1 t) S 1 t) + H t) S t). 1) Supponiamo ora di non investire successivamente altro denaro se non X0); ciò significa che dh 1 t) S 1 t) + dh t) S t) 0 che è equivalente, almeno nel caso discreto oppure nel caso continuo non aleatorio, a dxt) H 1 t) ds 1 t) + H t) ds t). ) Questo vincolo sulla scelta della strategia H 1 t), H t)) si dice condizione di autofinanziamento. Un secondo vincolo è la condizione Xt) 0. Esempio. Supponiamo la seguente evoluzione dh 1 q 10 dt + q 11 dw 1 + q 1 dw dh q 0 dt + q 1 dw 1 + q dw ds 1 S 1 a 10 dt + a 11 dw 1 + a 1 dw ds S a 0 dt + a 1 dw 1 + a dw la condizione di autofinanziamento si traduce nelle equazioni q 10 + q 11 a 11 + q 1 a 1 )S 1 + q 0 + q 1 a 1 + q a )S 0 q 11 S 1 + q 1 S 0 q 1 S 1 + q S 0 Opzione call Supponiamo che io venda ora un opzione call europea O su una certa azione A: cioè un operatore Tizio mi dà una somma X0), da concordare, per avere il diritto di comprare o no un azione A al prezzo K al tempo T, se a quel tempo Tizio lo riterrà opportuno oppure no. 1

2 Al tempo T, se l operatore Tizio deciderà di esercitare l opzione, dovrò comprare un azione A al prezzo di mercato ST ) per rivenderla a Tizio al prezzo convenuto K: è chiaro che Tizio eserciterà l opzione solo se ST ) > K. Supponiamo che l evoluzione del prezzo dell azione A sia St) e consideriamo anche un titolo non a rischio B, il cui prezzo evolva come Bt). Pensiamo ora di investire la somma iniziale X0) parte in una quantità H B 0) del titolo non a rischio B e parte in una quantità H0) dell azione A e di aggiustare continuamente il nostro portafoglio secondo una strategia H B t), Ht)) e quindi il valore Xt) del nostro portafoglio evolverà nel tempo come Xt) H B t) Bt) + Ht) St). 1) Supponiamo ora di non investire successivamente altro denaro se non X0); ciò significa che dh B t) Bt) + dht) St) 0 che è equivalente, almeno nel caso discreto oppure nel caso continuo ma non aleatorio, a dxt) H B t) dbt) + Ht) dst). ) Questo vincolo sulla scelta della strategia H B t), Ht)) si dice condizione di autofinanziamento. Un secondo vincolo è la condizione Xt) 0. È chiaro che per stabilire il giusto prezzo X0) dobbiamo poter scegliere la strategia H B t), Ht)), soggetta alle due condizioni precedenti, in modo da coprire al tempo T l opzione venduta O; cioè dobbiamo richiedere che XT ) ST ) K) + φst )). 3) dove φx) x K) +. Questo vincolo ci assicura che non ci sono possibilità di arbitraggio. Supponiamo che l evoluzione del prezzo del titolo non a rischio B sia o in altri termini Bt) e rt B0) dbt) r Bt) dt 4) supponiamo inoltre che l evoluzione del prezzo del titolo a rischio A sia dst) µ St) dt + σ St) dw t. 5) Definiamo Xt) e rt Xt), St) e rt St) allora usando la ), la 4) e la 1) dxt) rxt) Ht) St)) dt + Ht) dst).

3 Ora è facile dedurre che Sfruttando la 5) abbiamo d Xt) Ht) d St). 6) d St) µ r) St) dt + σ St) dw t. Usiamo la trasformata di Girsanov per scrivere la precedente equazione senza il drift ma rispetto ad un nuovo processo di Wiener W t, cioè d St) σ St) dw t 7) la cui soluzione è [ ] St) exp σ t + σw t S0) e quindi ] St) exp [r σ )t + σw t S0). 8) Utilizzando la 7) nella 6) abbiamo d Xt) σht) St) dw t. In tal caso osserviamo che Xt) risulta una martingala rispetto alla nuova misura di probabilità quindi Xt) E XT ) F t ) che si può scrivere Infine utilizzando la 8) abbiamo Xt) E e rt t) φst )) F t ) ) Xt) E e rt t) φ St) exp [r σ )T t) + σw T Wt ) ]) F t da cui, denotando con ]) F t, x) E e rt t) φ x exp [r ) σ )T t) + σw T Wt ) 9) abbiamo Xt) F t, St)) 10) e quindi X0) F 0, S0)). Nel caso della funzione 3) la funzione F t, x) si può calcolare in maniera esplicita. Nel caso più generale si può osservare che la 9) si può considerare come la formula di Feynman-Kac per la seguente equazione: F t + 1 σ x F + r x F r F 0 F T, x) φx) 3

4 che si può risolvere numericamente. Dalla 9) ricaviamo F t, x) ]) e rt t) φ x exp [r σ )T t)+σy exp y dy /T t)) πt t) cioè F t, x) xn lx) + σ ) T t Ke rt t) N lx) σ ) T t dove e Nx) 1 π x e y / dy rt t) + logx/k) lx) σ T t Risulta che F t, x) è crescente in x e vale x K) + F t, x) x Per ricavare l espressione di H B t) e di Ht) usiamo la formula di Itô applicata alla 10): otteniamo dove dxt) Γt, St)) dt + F t, St))σSt) dw t Γt, x) F t + 1 σ x F + µ x F Confrontando con la ) otteniamo e Ht) F t, St)) H B t) Xt) Ht)St) Bt) dst) αst)dt + σst)dw t St) expα σ )t + σw t)s 0 X t α σ t + W t βt + W t P dω) F W T ω)) P dω) 4

5 P X t1, X t I, X t3 I 3,..., X tn I n ) P W t1 βt 1, W t I βt, W t3 I 3 βt 3,..., W tn I n βt n ) I βt βt 1 I n βt n R F y)g t1 y 1 )g t t 1 y y 1 )g t3 t y 3 y ) g tn t n 1 y n y n 1 )g T tn y y n )dy 1 dy... dy n dy F x βt )g t1 x 1 βt 1 )g t t 1 x x 1 βt t 1 )) I R I n g t3 t x 3 x βt 3 t )) g tn t n 1 x n x n 1 βt n t n 1 )) g T tn x x n βt t n )) dx 1 dx... dx n dx g τ x βτ) g τ x) e 1 β τ+βx P X t1, X t I, X t3 I 3,..., X tn I n ) I I n R e 1 β T +βx F x βt )g t1 x 1 )g t t 1 x x 1 ) g tn t n 1 x n x n 1 )g T tn x x n ) dx 1 dx... dx n dx F x) exp βx 1 β T ) F x βt ) exp βx + 1 β T ) P X t1, X t I, X t3 I 3,..., X tn I n ) g t1 x 1 )g t t 1 x x 1 ) g tn t n 1 x n x n 1 ) dx 1 dx... dx n I I n St) expα σ )t + σw t)s 0 exp σ t + σ α σ + W t))s 0 W t X t rispetto a P E St) F r ) Sr) 5

Modello Black-Scholes

Modello Black-Scholes Modello Black-Scholes R. Marfé Indice 1 Il modello Black Scholes 1.1 Formule di valutazione per le opzioni standard......... 3 1. Implementazione in VBA..................... 6 1 1 Il modello Black Scholes

Dettagli

Mattia Zanella mattia.zanella@unife.it www.mattiazanella.eu

Mattia Zanella mattia.zanella@unife.it www.mattiazanella.eu mattia.zanella@unife.it www.mattiazanella.eu Department of Mathematics and Computer Science, University of Ferrara, Italy Ferrara, 1 Maggio 216 Programma della lezione Seminario II Equazioni differenziali

Dettagli

ESERCIZI SUI SISTEMI LINEARI

ESERCIZI SUI SISTEMI LINEARI ESERCIZI SUI SISTEMI LINEARI Consideriamo ora il sistema lineare omogeneo a coefficienti costanti associato alla matrice A M n n, cioè SLO Vale il seguente = A. Teorema. Sia v R n \ } e sia λ C. Condizione

Dettagli

Corsi di Laurea Magistrale in Matematica, A.A Calcolo stocastico e applicazioni (Docente: Bertini) Esercizi settimanali

Corsi di Laurea Magistrale in Matematica, A.A Calcolo stocastico e applicazioni (Docente: Bertini) Esercizi settimanali Settimana 1 Esercizio 1. [Unicità della misura di Wiener] Sia C([0, 1]) l insieme delle funzioni continue sull intervallo [0, 1] con la topologia (metrizzabile) indotta dalla convergenza uniforme. Sia

Dettagli

Esercizi su formula di Itô

Esercizi su formula di Itô Esercizi su formula di Itô 1. Scrivere il differenziale stocastico dei seguenti processi: (i) X t = B t (ii) X t = t + e B t (iii) X t = B 3 t 3tB t (iv) X t = 1 + t + e B t (v) X t = [B 1 (t)] + [B (t)]

Dettagli

Valutazione in tempo continuo (formula di Black e Scholes)

Valutazione in tempo continuo (formula di Black e Scholes) Valutazione in tempo continuo (formula di Black e Scholes) Federico Marchetti (Politecnico di Milano) Dipartimento di Economia e Produzione 5/6/000 1 Calcolo stocastico Ci limitiamo al caso unidimensionale,

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

Moto Browniano Geometrico multidimensionale

Moto Browniano Geometrico multidimensionale Moto Browniano Geometrico multidimensionale Supponiamo di avere n azioni i cui prezzi sono indicati con S 1 (t), S 2 (t),,..., S n (t). Supponiamo che siano disponbili m moti Browniani indipendenti che

Dettagli

Geometria Superiore Esercizi 1 (da consegnare entro... )

Geometria Superiore Esercizi 1 (da consegnare entro... ) Geometria Superiore Esercizi 1 (da consegnare entro... ) In questi esercizi analizziamo il concetto di paracompattezza per uno spazio topologico e vediamo come questo implichi l esistenza di partizioni

Dettagli

Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli

Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 2603 Crema email:

Dettagli

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino)

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino) Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino Prova di Mercoledì giugno 4 (tempo a disposizione: ore. Scrivere su ogni foglio NOME e COGNOME. Le

Dettagli

Probabilità 1, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09

Probabilità 1, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09 Probabilità, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09. Due roulette regolari vengono azionate più volte; sia T il numero di volte che occorre azionare la prima roulette

Dettagli

PROBLEMI DI PROBABILITÀ 2

PROBLEMI DI PROBABILITÀ 2 PROBLEMI DI PROBABILITÀ 2. Si sceglie a caso un numero X nell intervallo (0, ). (a) Qual è la probabilità che la usa prima cifra decimale sia? (b) Qual è la probabilità che la seconda cifra decimale sia

Dettagli

Appunti utili per gli esercizi sugli integrali stocastici

Appunti utili per gli esercizi sugli integrali stocastici Appunti utili per gli esercizi sugli integrali stocastici Michele Gianfelice a.a. / Integrale di Itô Consideriamo lo spazio di probabilità ltrato ; F; ff t g t ; P dove: := C ([; T ] ; R) è lo spazio di

Dettagli

Metodi Stocastici per la Finanza

Metodi Stocastici per la Finanza Metodi Stocastici per la Finanza Tiziano Vargiolu vargiolu@math.unipd.it 1 1 Università degli Studi di Padova Anno Accademico 2012-2013 Lezione 2 Indice 1 Dal modello alla formula di Black-Scholes 2 Calibrazione

Dettagli

la vasca si riempie e, per tali valori di k il tempo necessario affinché la vasca si riempia.

la vasca si riempie e, per tali valori di k il tempo necessario affinché la vasca si riempia. Esercizio In una vasca della capacità di 0 dm 3 e che inizialmente contiene 00 lt. di acqua, una pompa immette k lt. (k > 0) di acqua al minuto. Da un foro sul fondo l acqua esce con portata proporzionale

Dettagli

Verso l integrale stocastico

Verso l integrale stocastico Verso l integrale stocastico Una versione più corretta di è la sua forma integrale ds(t) = σs(t)dx(t) + µs(t)dt S(t) = S() + σs(u)db(u) + µs(u)du Ricordando che S è un processo che descrive la dinamica

Dettagli

Il calore nella Finanza

Il calore nella Finanza Il calore nella Finanza Franco Moriconi Università di Perugia Facoltà di Economia Perugia, 12 Novembre 2008 Quotazioni FIAT Serie giornaliera dal 6/11/2007 al 6/11/2008 F. Moriconi, Il calore nella Finanza

Dettagli

1) D0MINIO FUNZIONE. Determinare il dominio della funzione f (x) = 4 x 2 4x + 3 x 2 6x + 8 Deve essere. x 2 6x + 5 (x 1) (x 5)

1) D0MINIO FUNZIONE. Determinare il dominio della funzione f (x) = 4 x 2 4x + 3 x 2 6x + 8 Deve essere. x 2 6x + 5 (x 1) (x 5) ) DMINIO FUNZIONE Determinare il dominio della funzione f (x) = x x + x x + 8 x x + (x ) (x ) Deve essere = quindi x (, ] (, ] (, + ). x x + 8 (x ) (x ) Determinare il dominio della funzione f (x) = x

Dettagli

Distribuzioni di Probabilità

Distribuzioni di Probabilità Distribuzioni di Probabilità Distribuzioni discrete Distribuzione uniforme discreta Distribuzione di Poisson Distribuzioni continue Distribuzione Uniforme Distribuzione Gamma Distribuzione Esponenziale

Dettagli

Classificazione Singolarità isolate, Serie di Laurent, Residui, Teorema dei residui e applicazioni

Classificazione Singolarità isolate, Serie di Laurent, Residui, Teorema dei residui e applicazioni Classificazione Singolarità isolate, Serie di Laurent, Residui, Teorema dei residui e applicazioni Docente:Alessandra Cutrì Richiamo:Zeri di Funzioni olomorfe (o analitiche) Sia f : A C C A aperto connesso,

Dettagli

x log(x) + 3. f(x) =

x log(x) + 3. f(x) = Università di Bari, Corso di Laurea in Economia e Commercio Esame di Matematica per l Economia L/Z Dr. G. Taglialatela 03 giugno 05 Traccia dispari Esercizio. Calcolare Esercizio. Calcolare e cos log d

Dettagli

Appunti ed esercizi sulle coniche

Appunti ed esercizi sulle coniche 1 LA CIRCONFERENZA 1 Appunti ed esercizi sulle coniche Versione del 1 Marzo 011 1 La circonferenza Nel piano R, fissati un punto O = (a, b) e un numero r > 0, la circonferenza (o cerchio) C di centro O

Dettagli

Rischi di mercato. Francesco Menoncin

Rischi di mercato. Francesco Menoncin Rischi di mercato Francesco Menoncin 6-0-0 Sommario Le risposte devono essere C.C.C (Chiare, Concise e Corrette). Il tempo a disposizione è di (due) ore. Esercizi. Su un mercato completo con tre stati

Dettagli

Metodi Stocastici per la Finanza

Metodi Stocastici per la Finanza Metodi Stocastici per la Finanza Tiziano Vargiolu vargiolu@math.unipd.it 1 1 Università degli Studi di Padova Anno Accademico 2013-2014 Lezione 4 Indice 1 Convergenza in legge di processi stocastici 2

Dettagli

Calcolo integrale: esercizi svolti

Calcolo integrale: esercizi svolti Calcolo integrale: esercizi svolti Integrali semplici................................ Integrazione per parti............................. Integrazione per sostituzione......................... 4 4 Integrazione

Dettagli

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2017/18 - Prova scritta

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2017/18 - Prova scritta Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA A.A. 2017/18 - Prova scritta 2018-09-12 La durata della prova è di tre ore. Le risposte devono essere adeguatamente giustificate.

Dettagli

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 16 febbraio 2016 - Soluzioni compito 1

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 16 febbraio 2016 - Soluzioni compito 1 ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 6 febbraio 206 - Soluzioni compito E Calcolare, usando i metodi della variabile complessa, il seguente integrale

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = x 2 + y 3 4y. 4 1, y 2 2(1 + }

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = x 2 + y 3 4y. 4 1, y 2 2(1 + } Analisi Matematica II Corso di Ingegneria Gestionale Compito del 8-09-07 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Esercizi con catene di Markov Pietro Caputo 12 dicembre 2006

Esercizi con catene di Markov Pietro Caputo 12 dicembre 2006 Esercizi con catene di Markov Pietro Caputo dicembre 006 Esercizio. Si considerino i lanci di un dado (6 facce equiprobabili). Sia X n il minimo tra i risultati ottenuti nei lanci,,..., n. Si calcoli la

Dettagli

9. Test del χ 2 e test di Smirnov-Kolmogorov. 9.1 Stimatori di massima verosimiglianza per distribuzioni con densità finita

9. Test del χ 2 e test di Smirnov-Kolmogorov. 9.1 Stimatori di massima verosimiglianza per distribuzioni con densità finita 9. Test del χ 2 e test di Smirnov-Kolmogorov 9. Stimatori di massima verosimiglianza per distribuzioni con densità finita Supponiamo di avere un campione statistico X,..., X n e di sapere che esso è relativo

Dettagli

POLITECNICO DI MILANO

POLITECNICO DI MILANO POLITECNICO DI MILANO FACOLTA DI INGEGNERIA DEI SISTEMI Corso di Laurea Specialistica in Ingegneria Matematica PRICING AMERICAN OPTIONS UNDER STOCHASTIC VOLATILITY AND JUMP-DIFFUSION DYNAMICS WITH THE

Dettagli

0.1 Arco di curva regolare

0.1 Arco di curva regolare .1. ARCO DI CURVA REGOLARE 1.1 Arco di curva regolare Se RC(O, i, j, k ) è un riferimento cartesiano fissato per lo spazio euclideo E, e se v (t) = x(t) i + y(t) j + z(t) k è una funzione a valori vettoriali

Dettagli

(d) mostrare che l energia meccanica si conserva; (e) utilizzando la conservazione dell energia calcolare l altezza massima dal suolo;

(d) mostrare che l energia meccanica si conserva; (e) utilizzando la conservazione dell energia calcolare l altezza massima dal suolo; 1 Esercizio Un sasso di massa m.5 Kg viene lanciato dalla cima di una torre alta h 2 m con velocità iniziale di modulo v 12 m/s, ad un angolo ϕ 6 o rispetto all orizzontale. La torre si trova in prossimità

Dettagli

Istituzioni di geometria superiore - prova scritta del 4 febbraio y 2 ) 4xe (x. e γ(t) = t2 + 1 log (t 4 + 2) div g (X) ω g.

Istituzioni di geometria superiore - prova scritta del 4 febbraio y 2 ) 4xe (x. e γ(t) = t2 + 1 log (t 4 + 2) div g (X) ω g. Istituzioni di geometria superiore - prova scritta del 4 febbraio 6 Prima parte Su R dotato delle coordinate cartesiane {x, y} si considerino la metrica g data da e il campo vettoriale g = dx dx + e x

Dettagli

1. Scrivere in forma algebrica il seguente numero complesso:

1. Scrivere in forma algebrica il seguente numero complesso: TERZA LEZIONE (8/10/009) Argomenti trattati: NUMERI COMPLESSI - rappresentazione algebrica e trigonometrica, soluzioni di disequazioni, Formule di De Moivre, radici n esime, equazioni. 1 Esercizi svolti

Dettagli

Dispense di Matematica Finanziaria, a.a

Dispense di Matematica Finanziaria, a.a 1/ 29, a.a. 2016-2017 Prof. Aggr. MEMOTEF, Sapienza Università di Roma 1/ 29 Le opzioni come strumento finanziario elementare I 2/ 29 Tra i contratti (o prodotti finanziari) derivati, ossia il cui valore

Dettagli

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2009/2010 Calcolo 1, Esame scritto del 19.01.2010

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2009/2010 Calcolo 1, Esame scritto del 19.01.2010 NOME:... MATRICOLA:.... Corso di Laurea in Fisica, A.A. 009/00 Calcolo, Esame scritto del 9.0.00 Data la funzione fx = e /x x x +, a determinare il dominio massimale di f ; b trovare tutti gli asintoti

Dettagli

Circonferenze del piano

Circonferenze del piano Circonferenze del piano 1 novembre 1 Circonferenze del piano 1.1 Definizione Una circonferenza è il luogo dei punti equidistanti da un punto fisso, detto centro. La distanza di un qualunque punto della

Dettagli

x =0 x 1 x 2 Esercizio (tratto dal Problema 1.4 del Mazzoldi)

x =0 x 1 x 2 Esercizio (tratto dal Problema 1.4 del Mazzoldi) 1 Esercizio (tratto dal Problema 1.4 del Mazzoldi) Un punto materiale si muove con moto uniformemente accelerato lungo l asse x. Passa per la posizione x 1 con velocità v 1 1.9 m/s, e per la posizione

Dettagli

Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 2/12/2013

Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 2/12/2013 Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del /1/13 Exercise 1 punti 1 circa Un foglio browniano è un processo gaussiano a valori reali X s, t, indicizzato da s, t in [,

Dettagli

Zero-coupon bond e tassi di interesse a breve termine

Zero-coupon bond e tassi di interesse a breve termine Zero-coupon bond e tassi di interesse a breve termine Definizione. Uno zero-coupon bond con data di maturità T > 0, detto anche T -bond, è un contratto che prevede il pagamento alla scadenza T del suo

Dettagli

METODI MATEMATICI. SECONDA PROVA IN ITINERE del 27 gennaio 2003

METODI MATEMATICI. SECONDA PROVA IN ITINERE del 27 gennaio 2003 METODI MATEMATICI SECONDA PROVA IN ITINERE del 27 gennaio 23 COGNOME e NOME NUMERO di MATRICOLA ) Si consideri la funzione f : R R definita da (t + 3) 2 χ [ 3, ] + χ ],[ + (t 3) 2 χ [,3]. Studiare a priori

Dettagli

ESERCIZI DI MATEMATICA APPLICATA

ESERCIZI DI MATEMATICA APPLICATA ANTONIO LEACI Analisi Complessa ( È data la funzione: f(z (z2 + e z sin z Si studi l analiticità di f(z nel piano complesso C Si determinino e si classifichino le eventuali singolarità Si calcoli il residuo

Dettagli

QUANTITA DI MOTO Corso di Fisica per Farmacia, Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2006

QUANTITA DI MOTO Corso di Fisica per Farmacia, Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2006 QUANTITA DI MOTO DEFINIZIONE(1) m v Si chiama quantità di moto di un punto materiale il prodotto della sua massa per la sua velocità p = m v La quantità di moto è una grandezza vettoriale La dimensione

Dettagli

Anno Scolastico 2014/15 - Classe 1D Verifica di matematica dell 11 Maggio Soluzioni degli esercizi. 2(x 2) 2(x 1) + 2 = 3x

Anno Scolastico 2014/15 - Classe 1D Verifica di matematica dell 11 Maggio Soluzioni degli esercizi. 2(x 2) 2(x 1) + 2 = 3x Anno Scolastico 2014/15 - Classe 1D Verifica di matematica dell 11 Maggio 2015 - Soluzioni degli esercizi Risolvere le seguenti equazioni. Dove è necessario, scrivere le condizioni di accettabilità e usarle

Dettagli

INTEGRALI IMPROPRI. Esercizi svolti. dx ; 2. Verificare la convergenza del seguente integrale improprio e calcolarne il valore:

INTEGRALI IMPROPRI. Esercizi svolti. dx ; 2. Verificare la convergenza del seguente integrale improprio e calcolarne il valore: INTEGRALI IMPROPRI Esercizi svolti. Usando la definizione, calcolare i seguenti integrali impropri: a b c d e / +5 d ; arctan + d ; 8+ 4 5/ +e + d ; 9 +8 + + d. d ;. Verificare la convergenza del seguente

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del

Analisi Matematica II Corso di Ingegneria Gestionale Compito del Analisi Matematica II Corso di Ingegneria Gestionale Compito del 30-0-08 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del

Analisi Matematica II Corso di Ingegneria Gestionale Compito del Analisi Matematica II Corso di Ingegneria Gestionale Compito del --9 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle. Esercizio.

Dettagli

Si consideri un bond con scadenza a 30 anni e con tasso effettivo annuale = 10%. Si assuma che sia quotato alla pari. Si calcoli la duration.

Si consideri un bond con scadenza a 30 anni e con tasso effettivo annuale = 10%. Si assuma che sia quotato alla pari. Si calcoli la duration. Esercizio Si consideri un bond con scadenza a 30 anni e con tasso effettivo annuale = 0%. Si assuma che sia quotato alla pari. Si calcoli la duration. La duration di uno zcb é pari alla sua vita residua

Dettagli

Equazione di Laplace

Equazione di Laplace Equazione di Laplace Operatore di Laplace in coordinate polari in R ) 1 Èutile,quandosihaundominioasimmetriaradiale,scrivere polari. Passaggio in coordinate polari: x, ) = cos ) 0, +1) y, ) = sin ) [,

Dettagli

LEZIONE 10. S(C,ρ) Figura 10.1

LEZIONE 10. S(C,ρ) Figura 10.1 LEZIONE 10 10.1. Sfere nello spazio. In questa lezione studieremo alcuni oggetti geometrici non lineari, circonferenze e sfere nello spazio A 3. Poiché le proprietà delle circonferenze nel piano sono del

Dettagli

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto SBarbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie Cap 2 Cinematica del punto 21 - Posizione, velocitá e accelerazione di una particella La posizione di una particella puó essere definita, ad

Dettagli

Strumenti per l Analisi Finanziaria Savona, 21 Febbraio 2002

Strumenti per l Analisi Finanziaria Savona, 21 Febbraio 2002 Strumenti per l Analisi Finanziaria Savona, 21 Febbraio 2002 O.Caligaris - P.Oliva L equazione di Black-Scholes Problema Stima del prezzo f di un opzione di acquisto o di vendita di un bene il cui valore

Dettagli

Analisi Matematica 3 (Fisica) Prova scritta del 17 febbraio 2012 Un breve svolgimento delle versioni A

Analisi Matematica 3 (Fisica) Prova scritta del 17 febbraio 2012 Un breve svolgimento delle versioni A Analisi Matematica 3 (Fisica) Prova scritta del 7 febbraio Un breve svolgimento delle versioni A Vi sarò grato per la segnalazione di eventuali errori. Esercizio. (a) Dimostrare che l equazione () (3 +

Dettagli

Correzione secondo compitino, testo B

Correzione secondo compitino, testo B Correzione secondo compitino, testo B 7 aprile 2010 1 Parte 1 Esercizio 1.1. Tra le funzioni del vostro bestiario, le funzioni che più hanno un comportamento simile a quello cercato sono le funzioni esponenziali

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

Ingegneria Tessile, Biella Analisi II

Ingegneria Tessile, Biella Analisi II Ingegneria Tessile, Biella Analisi II Esercizi svolti In questo file sono contenute le soluzioni degli esercizi sui campi vettoriali (cf foglio 5 di esercizi) Attenzione: in alcuni esercizi il calcolo

Dettagli

Matematica III Corso di Ingegneria delle Telecomunicazioni Prova scritta del

Matematica III Corso di Ingegneria delle Telecomunicazioni Prova scritta del Matematica III Corso di Ingegneria delle Telecomunicazioni Prova scritta del 04-06-007 Esercizio. (8 punti) Si consideri il seguente campo vettoriale F = + y + z i y ( + y + z ) j z ( + y + z ) k a) (5

Dettagli

ESAME SCRITTO DI FISICA MODERNA. 22 giugno Traccia di soluzione

ESAME SCRITTO DI FISICA MODERNA. 22 giugno Traccia di soluzione ESAME SCRITTO DI FISICA MODERNA giugno 08 Traccia di soluzione ) Ponendo α = /σ ), il valore medio della posizione è + ψ ˆx ψ = dx ψ ˆx x x ψ = dx ψ x)xψx) = α + dx x e αx x 0), ) e con un semplice cambio

Dettagli

Matematica con elementi di Informatica

Matematica con elementi di Informatica Equazioni differenziali Matematica con elementi di Informatica Tiziano Vargiolu Dipartimento di Matematica vargiolu@math.unipd.it Corso di Laurea Magistrale in Chimica e Tecnologie Farmaceutiche. () Equazioni

Dettagli

Metodi Monte Carlo in Finanza

Metodi Monte Carlo in Finanza Metodi Monte Carlo in Finanza Lucia Caramellino Indice 1 Metodi Monte Carlo: generalità 2 2 Simulazione di un moto Browniano e di un moto Browniano geometrico 3 3 Metodi numerici Monte Carlo per la finanza

Dettagli

Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 14/2/2013

Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 14/2/2013 Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 14/2/213 Exercise 1. punti 9+) Sia X = X t, x)) t,x un processo stocastico a valori reali, avente come parametro la coppia t,

Dettagli

Statistica Matematica 3

Statistica Matematica 3 Statistica Matematica 3 1 Regole bayesiane formali nella stima puntuale di un parametro reale Θ D R con D intervallo (limitato o no) P probabilità su T E P(Z) = Θ θ P(dθ) finito. Allora, per l internalità,

Dettagli

CAMPIONAMENTO E RICOSTRUZIONE DEI SEGNALI

CAMPIONAMENTO E RICOSTRUZIONE DEI SEGNALI INGEGNERIA E ECNOLOGIE DEI SISEMI DI CONROLLO Laurea Specialistica in Ingegneria Meccatronica CAMPIONAMENO E RICOSRUZIONE DEI SEGNALI Ing. Cristian Secchi el. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

CRESCITA DI POPOLAZIONI. Consideriamo una popolazione di esseri viventi e indichiamo con n(t) il numero di individui della popolazione al tempo t:

CRESCITA DI POPOLAZIONI. Consideriamo una popolazione di esseri viventi e indichiamo con n(t) il numero di individui della popolazione al tempo t: CRESCITA DI POPOLAZIONI Consideriamo una popolazione di esseri viventi e indichiamo con n(t) il numero di individui della popolazione al tempo t: n : R N Questa è una funzione costante a tratti, cioè una

Dettagli

Option Pricing con il modello di Heston

Option Pricing con il modello di Heston POLITECNICO DI MILANO Facoltà di Ingegneria dei Sistemi Option Pricing con il modello di Heston Relatore: Prof. Carlo Sgarra - Politecnico di Milano Correlatore: Dott. Martino De Prato - Mediobanca Elaborato

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I

TEMI D ESAME DI ANALISI MATEMATICA I TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare

Dettagli

TEORIA DEI SISTEMI SISTEMI LINEARI

TEORIA DEI SISTEMI SISTEMI LINEARI TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI SISTEMI LINEARI Ing. Cristian Secchi Tel.

Dettagli

Le derivate parziali in termodinamica

Le derivate parziali in termodinamica Capitolo 2 Le derivate parziali in termodinamica 2.1 La derivata di funzioni ad una variabile Sia f una funzione di una sola variabile La sua derivata è definita come f f(x (2.1 S(x = df dx = lim f(x +

Dettagli

Tabella 1: Best 5 out of 6 es.1 es.2 es.3 es.4 es.5 es.6 somma Meccanica Razionale 1: Scritto Generale

Tabella 1: Best 5 out of 6 es.1 es.2 es.3 es.4 es.5 es.6 somma Meccanica Razionale 1: Scritto Generale Tabella 1: Best 5 out of 6 es.1 es.2 es.3 es.4 es.5 es.6 somma 5 5 5 5 5 5 30 Meccanica Razionale 1: Scritto Generale 02.02.2011 Cognome e nome:....................................matricola:......... 1.

Dettagli

CORSO DI LAUREA IN MATEMATICA ESERCIZI SUI LIMITI 2

CORSO DI LAUREA IN MATEMATICA ESERCIZI SUI LIMITI 2 CORSO DI LAUREA IN MATEMATICA ESERCITAZIONI DI ANALISI MATEMATICA I ESERCIZI SUI LIMITI CALCOLARE IL VALORE DEI SEGUENTI LIMITI sine 4 log e e sin e 5 tan sin 5 7 tan 9 sin + e e + 4 6 8 + 0 n + log +

Dettagli

Corso di Modelli Matematici in Biologia Esame del 6 Luglio 2016

Corso di Modelli Matematici in Biologia Esame del 6 Luglio 2016 Corso di Modelli Matematici in Biologia Esame del 6 Luglio 206 Scrivere chiaramente in testa all elaborato: Nome, Cognome, numero di matricola. Risolvere tutti gli esercizi. Tempo a disposizione: DUE ORE.

Dettagli

Risoluzione di problemi ingegneristici con Excel

Risoluzione di problemi ingegneristici con Excel Risoluzione di problemi ingegneristici con Excel Problemi Ingegneristici Calcolare per via numerica le radici di un equazione Trovare l equazione che lega un set di dati ottenuti empiricamente (fitting

Dettagli

Calcolare il tasso interno di rendimento i del contratto finanziario:

Calcolare il tasso interno di rendimento i del contratto finanziario: May 4, 2018 Esercizi Esercizio 1 Calcolare il tasso interno di rendimento i del contratto finanziario: x/t = { 45, 40, 100 } / { 0, 1, 2 } essendo il tempo espresso in anni. Determinare, inoltre, importo

Dettagli

STIMA DELLA VARIANZA CAMPIONARIA

STIMA DELLA VARIANZA CAMPIONARIA STIMA DELLA VARIANZA CAMPIONARIA Abbiamo visto che una stima puntuale corretta per il valore atteso µ delle variabili aleatorie X i è x n = (x 1 +.. + x n )/n. Una stima puntuale della varianza σ 2 delle

Dettagli

Variabili aleatorie Parte I

Variabili aleatorie Parte I Variabili aleatorie Parte I Variabili aleatorie Scalari - Definizione Funzioni di distribuzione di una VA Funzioni densità di probabilità di una VA Indici di posizione di una distribuzione Indici di dispersione

Dettagli

Analisi Matematica 3/Analisi 4 - SOLUZIONI (20/01/2016)

Analisi Matematica 3/Analisi 4 - SOLUZIONI (20/01/2016) Corso di Laurea in Matematica Docente: Claudia Anedda Analisi Matematica 3/Analisi 4 - SOLUZIONI (//6) ) i) Dopo averla classificata, risolvere l equazione differenziale tẋ x = t cos(t), t >. ii) Scrivere

Dettagli

ESERCITAZIONE: FUNZIONI GONIOMETRICHE

ESERCITAZIONE: FUNZIONI GONIOMETRICHE ESERCITAZIONE: FUNZIONI GONIOMETRICHE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Circonferenza goniometrica La circonferenza goniometrica è una circonferenza di raggio unitario centrata nell

Dettagli

Analisi Matematica II (Prof. Paolo Marcellini)

Analisi Matematica II (Prof. Paolo Marcellini) Analisi Matematica II (Prof. Paolo Marcellini) Università degli Studi di Firenze Corso di laurea in Matematica Esercitazione del /3/4 Michela Eleuteri eleuteri@math.unifi.it web.math.unifi.it/users/eleuteri

Dettagli

Elementi di Probabilità e Statistica - 052AA - A.A

Elementi di Probabilità e Statistica - 052AA - A.A Elementi di Probabilità e Statistica - 05AA - A.A. 014-015 Prima prova di verifica intermedia - 9 aprile 015 Problema 1. Dati due eventi A, B, su uno spazio probabilizzato (Ω, F, P), diciamo che A è in

Dettagli

RICHIAMI SU PROCESSI ALEATORI E DENSITÀ SPETTRALE DI POTENZA

RICHIAMI SU PROCESSI ALEATORI E DENSITÀ SPETTRALE DI POTENZA RICHIAMI SU PROCESSI ALEATORI E DENSITÀ SPETTRALE DI POTENZA Paolo Bestagini Ph.D. Student bestagini@elet.polimi.it http://home.deib.polimi.it/bestagini Sommario 2 Segnali deterministici Continui Discreti

Dettagli

Derivate. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Derivate Analisi A 1 / 33

Derivate. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Derivate Analisi A 1 / 33 Derivate Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) Derivate Analisi A 1 / 33 Definizione: rapporto incrementale Sia f : domf R R. Dati x 1, x 2 domf con x 1 x

Dettagli

Analisi I - IngBM COMPITO A 6 luglio 2016 MATRICOLA... VALUTAZIONE =...

Analisi I - IngBM COMPITO A 6 luglio 2016 MATRICOLA... VALUTAZIONE =... Analisi I - IngBM - 2015-16 COMPITO A 6 luglio 2016 COGNOME... NOME... MATRICOLA... VALUTAZIONE... +... =... 1. Istruzioni Gli esercizi devono essere svolti negli appositi spazi del presente fascicolo;

Dettagli

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 2010 Tema A

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 2010 Tema A Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 21 Tema A Tempo a disposizione: 2 ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio va iniziato all inizio

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Università degli Studi di Siena Facoltà di Economia Esercizi di Matematica Finanziaria relativi ai capitoli V-X del testo Claudio Pacati a.a. 1998 99 c Claudio Pacati tutti i diritti riservati. Il presente

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Equazioni differenziali Analisi Matematica 1 1 / 30 Formulazione del problema In generale

Dettagli

Statistica - metodologie per le scienze economiche e sociali /2e S. Borra, A. Di Ciaccio - McGraw Hill

Statistica - metodologie per le scienze economiche e sociali /2e S. Borra, A. Di Ciaccio - McGraw Hill Statistica - metodologie per le scienze economiche e sociali /e S. Borra A. Di Ciaccio - McGraw Hill s. 9. Soluzione degli esercizi del capitolo 9 In base agli arrotondamenti effettuati nei calcoli si

Dettagli

Analisi Matematica III 04 Novembre In coordinate polari l insieme K è rappresentabile come unione dei seguenti insiemi normali

Analisi Matematica III 04 Novembre In coordinate polari l insieme K è rappresentabile come unione dei seguenti insiemi normali . ( punti) Si determini il valore dell integrale della funzione f(, y) + y, sull insieme di integrazione K {(, y) R : ( ) + y, + (y ) }. In coordinate polari l insieme K è rappresentabile come unione dei

Dettagli

1 Esercizi 22. , ossia s : x y = 4. Verifichiamo che il nuovo sistema è equiverso: = 1 ( ) 1 1. ) 2 (1 + 1) = 1 2 = 1 > 0, dunque equiverso.

1 Esercizi 22. , ossia s : x y = 4. Verifichiamo che il nuovo sistema è equiverso: = 1 ( ) 1 1. ) 2 (1 + 1) = 1 2 = 1 > 0, dunque equiverso. Esercizi. Nel sistema di riferimento RC = RC(O, i, j ) consideriamo la retta r di equazione x + y = orientata nel verso delle x decrescenti e sia A(3, ) un punto del piano. Determinare un sistema di riferimento

Dettagli

Funzioni reali di variabile reale

Funzioni reali di variabile reale Funzioni reali di variabile reale Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Funzioni reali di variabile reale 1 / 50 Funzioni Definizione Sia A un sottoinsieme di R.

Dettagli

Esercitazioni di Geometria A: curve algebriche

Esercitazioni di Geometria A: curve algebriche Esercitazioni di Geometria A: curve algebriche 24-25 maggio 2016 Esercizio 1 Sia P 2 il piano proiettivo complesso munito delle coordinate proiettive (x 0 : x 1 : x 2 ). Sia r la retta proiettiva di equazione

Dettagli

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti INTEGRALI INDEFINITI e DEFINITI Esercizi risolti E data la funzione f( = (a Provare che la funzione F ( = + arcsin è una primitiva di f( sull intervallo (, (b Provare che la funzione G( = + arcsin π è

Dettagli

CP110 Probabilità: Esame 13 settembre Testo e soluzione

CP110 Probabilità: Esame 13 settembre Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2011-12, II semestre 13 settembre, 2012 CP110 Probabilità: Esame 13 settembre 2012 Testo e soluzione 1. (6 pts) Una scatola contiene 10 palline, 8 bianche

Dettagli

Sol. (a) Abbiamo p 1 = 78 = Usiamo il criterio dell esercizio 1. Calcolando

Sol. (a) Abbiamo p 1 = 78 = Usiamo il criterio dell esercizio 1. Calcolando Teoria Elementare dei Numeri. Soluzioni Esercizi 6. Il gruppo Z p, radici primitive, logaritmo discreto. 1. Sia p > 2 un numero primo e sia ḡ Z p. (a) Verificare che ḡ è una radice primitiva di Z p se

Dettagli

Integrazione di funzioni razionali

Integrazione di funzioni razionali Esercitazione n Integrazione di funzioni razionali Consideriamo il rapporto P (x) di due polinomi di gradi n e m rispettivamente. Per determinare una primitiva della funzione f(x) P (x) possiamo procedere

Dettagli

Esistenza ed unicità per equazioni differenziali

Esistenza ed unicità per equazioni differenziali Esistenza ed unicità per equazioni differenziali Per concludere queste lezioni sulle equazioni differenziali vogliamo dimostrare il teorema esistenza ed unicità per il problema di Cauchy. Faremo la dimostrazione

Dettagli

TEST DI AUTOVALUTAZIONE VARIABILI ALEATORIE

TEST DI AUTOVALUTAZIONE VARIABILI ALEATORIE TEST DI AUTOVALUTAZIONE VARIABILI ALEATORIE I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Statistica 1 Parte A 1.1 Una variabile casuale e : 1.2 un sottoinsieme

Dettagli