PIANTE E FOTOSINTESI. Vincenzino Siani



Documenti analoghi
La fotosintesi: energia dal Sole

FOTOSINTESI: LA FASE LUMINOSA

Diversità tra i viventi

La cellula è l unità fondamentale di tutti gli organismi viventi ed è la più piccola struttura ad essere classificabile come vivente.

Le piante. Piante senza fiori Piante con fiori. La radice Il fusto La foglia Il fiore I frutti e i semi

Gli organismi viventi

Protocollo dei saperi imprescindibili

CELLULE EUCARIOTICHE

CARBOSSILAZIONE/OSSIGENAZIONE

A COSA SERVONO LE FOGLIE?

unità C2. Le trasformazioni energetiche nelle cellule

Scuola Media Piancavallo 2

LE PIANTE. acqua anidride carbonica

SCHEDA INSEGNAMENTO RIFERIMENTI GENERALI

TEST BIOLOGIA 1 ANNO ABEI Da inviare a connesso@alice.it entro e non oltre il 6 novembre 2015

Mangiamo perché abbiamo bisogno di energia, di materiali con cui costruire il nostro corpo, di materiali per riparare parti del nostro corpo, di

A livello della loro struttura chimica, come i grassi, anche i carboidrati sono composti ternari, formati cioè da tre molecole:

Azione 1- Italiano come L2-La lingua per studiare

CO 2 O 2 LA FOTOSINTESI

Indice. 1 Che cos è la biologia vegetale? 1. 4 I tessuti La natura della vita Radici e suoli Le cellule Fusti 85.

- Cloroplasti: fotosintesi clorofilliana - Cromoplasti: pigmentazione di fiori e frutti - Leucoplasti: riserva

CLASSIFICAZIONE A 6 REGNI

Verifica - Conoscere le piante

«Macromolecole» Lipidi

TIPI DI CELLULE : PROCARIOTE ED EUCARIOTE

PROGRAMMA di BIOLOGIA/MICROBIOLOGIA per la classe IIIB Tecnologico

Incremento delle rese e della produttività del suolo. Migliore infiltrazione dell acqua

Helena Curtis N. Sue Barnes

I G L U C I D I ASPETTI GENERALI

GLI ESSERI VIVENTI DALLA CELLULA ALLA CLASSIFICAZIONE. Istituto Comprensivo di Buddusò - Scuola Primaria - Ins. Dore

L APPARATO CIRCOLATORIO

Struttura e funzioni della cellula. Corso di Biofisica, Università di Cagliari 1

Giochi delle Scienze Sperimentali 2013

PLASTIDI E FOTOSINTESI

LA CELLULA: Plastidi e Fotosintesi. Seminario prof. De Micco

GENOMA. c varia da pochi kb nei virus a milioni di kb in piante e animali

La catena alimentare. Sommario

INTRODUZIONE ALLA BIOLOGIA DELLE PIANTE SUPERIORI

Le piante. Sulla terra esistono vari tipi di piante: legnose ed erbacee a seconda delle dimensioni e della forma del fusto.

Dove sono i nutrienti? : I GRUPPI DI ALIMENTI

CLOROPLASTO struttura:

I L I P I D I. Lipidi complessi: fosfolipidi e glicolipidi; sono formati da CHO e altre sostanze.

Le Biomolecole I parte. Lezioni d'autore di Giorgio Benedetti

Respirazione cellulare

Caratteristiche chimiche e nutrizionali dei pascoli toscani e aspetti della loro digestione nei ruminanti

Laboratori ScienzExpress: il Museo in Classe

ASSORBIMENTO E TRASPORTO DI ACQUA

BIOLOGIA VEGETALE per la Facoltà di Farmacia Università di Torino Domande di Ripasso in preparazione dell esame

OpenLab presenta: Biotecnologie e risorse rinnovabili: un approccio innovativo alla risoluzione di un problema globale

DNA - RNA. Nucleotide = Gruppo Fosforico + Zucchero Pentoso + Base Azotata. Le unità fondamentali costituenti il DNA e l RNA sono i Nucleotidi.

ACQUA, ARIA E TERRENO

Energia nelle reazioni chimiche. Lezioni d'autore di Giorgio Benedetti

1

Plas-di. cloroplas- amiloplas- ezioplas- proplas-di. leucoplas- cromoplas-

3B BIO classe partecipante al progetto Generazione Web

PLASTIDI E FOTOSINTESI

ENDOSIMBIOSI. E non è finita qui

ALIMENTAZIONE NELL UOMO

Ciao, il mio nome è Sheppy e aiuterò il professore nella sua lezione! Salve, io sono il prof KinderCovi e oggi vi accompagnerò nel mondo dellʼacqua

Gli Alimenti Classificazione degli alimenti Alimenti semplici o principi alimentari o principi nutritivi o nutrienti inorganici organici

Istituto F. Algarotti. Programma di Scienze. Classe 1 A FM

FISIOLOGIA VEGETALE. Gli ormoni vegetali

FISIOLOGIA VEGETALE. Le risposte delle piante all ambiente

SCUOLA PRIMARIA CURRICOLO DI SCIENZE CLASSE PRIMA. INDICATORI COMPETENZE ABILITA CONOSCENZE 1. Esplorare e descrivere oggetti e materiali

I vegetali sono i produttori dell ecosistema Terra

BIOLOGIA GENERALE. Alessandro Massolo Dip. Biologia Animale e Genetica c/o Prof. F. Dessì-Fulgheri (Via Romana 17) massolo@unifi.

Macromolecole Biologiche. I domini (III)

aggregati di macromolecole dato virus contiene un solo tipo di acido nucleico (DNA o RNA)

CONVENZIONE UNIVERSITÀ DI PERUGIA DELTATECH. Rapporto Attività di Ricerca. Prove ad impatto su laminati compositi con.

Carboidrati puri : zucchero e amido nei cibi, cellulosa nel legno, carta e cotone = C 6 O 6 (H 2 O) 6

Ministero del Lavoro, della Salute e delle Politiche Sociali

Scuola E. DE AMICIS S. Maria del Giudice anno scolastico 2011/12 Classe IV INS. Bandini Monica

SISTEMI ENERGETICI. L ATP privato di uno dei suoi 3 radicali fosforici diventa ADP (adenosindifosfato).

Le proteine. Le proteine sono i mattoncini che costituiscono gli organismi viventi.

Acqua azzurra, acqua chiara. Istituto Comprensivo della Galilla Scuola Media Dessì - Ballao

CURRICOLO SCUOLA PRIMARIA SCIENZE COMPETENZE

FISIOLOGIA VEGETALE. La fotosintesi

LA GENETICA: DNA e RNA LA GENETICA. DNA e RNA. Prof. Daniele Verri

VEGETALI U N S O T U R I O L O P S I T T O S U N O D. Vegetali V5 I SEMI V1 V2 V3 V8 U1

Seriare e classificare oggetti in base alle loro proprietà. Osservare momenti significativi nella vita di piante e animali.

LA MATERIA Suggerimenti didattici e schede

PROGRAMMA DI BIOLOGIA. CLASSE 2^ F a. s Prof.ssa RUBINO ALESSANDRA

Ψ ATMOSFERA < Ψ SUOLO

Programmazione individuale per competenze CLASSE 3^A CMB. Materia: Biologia, microbiologia e biotecnologie

Origine ed evoluzione della vita

GLUCONEOGENESI. Sintesi (GENESI) di nuove (NEO) molecole di glucosio

Trasformazioni materia

a cura di : Gaia,Giulia, Lorenzo e Simone 2^ B ( LA MIGLIORE)

Riproduzione molecolare. Riproduzione cellulare. Riproduzione degli organismi. Gametogenesi (femminile e maschile) Fecondazione


ASPETTI TERMODINAMICI DEI SISTEMI BIOLOGICI

Corso di Botanica per Scienze Veterinarie

si comporta come perenne grazie alla sua propagazione attraverso i tuberi

LE BIOMOLECOLE DETTE ANCHE MOLECOLE ORGANICHE; CARBOIDRATI PROTEINE. sono ACIDI NUCLEICI. molecole complesse = POLIMERI. formate dall'unione di

L ALIMENTAZIONE ANTINFIAMMATORIA PER IL PODISTA. Dott.ssa Elisa Seghetti Biologa Nutrizionista - Neurobiologa

-assicurare il fabbisogno plastico necessario alla riparazione protezione e ricambio dei tessuti.

Lavori intelligenti per il risparmio energetico

La cellula vegetale: i PLASTIDI

L ambiente è costituito da: una componente abiotica - (aria, acqua, terra, rocce, ecc.)

Corso P1 - Operatore della Ristorazione N. RIF /RA

Transcript:

PIANTE E FOTOSINTESI Vincenzino Siani ricevuto il 2 novembre 2006

PIANTE E FOTOSINTESI Vincenzino Siani Le piante e le alghe verdi fissano per fotosintesi il carbonio dell atmosfera in prodotti organici detti carboidrati, essenziali riserve di cibo per gli esseri viventi. Alla loro sintesi concorrono luce, acqua, aria, minerali del suolo; dai carboidrati partono le catene trofiche che attraversano gli ecosistemi del pianeta. Figura 1. La Fotosintesi e i suoi prodotti Classificate in dieci differenti Divisioni, le Piante hanno una lunga storia evolutiva testimoniata da organi specializzati per la fotosintesi, per l ancoraggio al substrato e per il sostegno, chiari adattamenti alla vita terrestre. Tabella 1. Classificazione delle piante Divisione Classe Briofite Bryophyta (briofite) Hepathicae (epatiche) Anthocerotae (antocerote) Musci (muschi) Piante vascolari non a seme Piante vascolari a seme Psylophyta (psilofite) Lycophyta (licofite) Sphaenophyta (equiseti) Pterophyta (felci) Cycadophyta (cicadacee) Ginkgophyta (ginkgofite) Coniferophyta (conifere) Gnetophyta (gnetacee) Anthophyta (angiosperme) Dicotyledones (dicotiledoni) Monocotyledones (monocotiledoni)

Le Angiosperme, o piante a fiore, comprendono circa 235000 specie e sono il gruppo più rappresentato sul pianeta; la loro struttura è esemplificata nella Figura 2 da una pianta di fava (Vicia faba). Figura 2. Struttura della pianta Radice, fusto e foglie sono costituiti da tessuti con struttura e funzione ben definite: le radici formano il sistema radicale; fusto e foglie costituiscono il germoglio. Sui fusti si distinguono nodi e internodi: sul nodo sono inserite una o più foglie alle cui ascelle si formano le gemme. Xilema e floema, tessuti vascolari, decorrono insieme e formano un sistema circolatorio continuo attraverso il corpo della pianta. Il tessuto specializzato per la fotosintesi è il mesofillo. (da P. H. Raven, R. F. Evert, S. E. Eichhorn: Biologia delle Piante. Zanichelli, Bologna, 1990)

Le Foglie Nelle Angiosperme, la Fotosintesi si realizza quasi esclusivamente nelle foglie, i cui caratteri variano con l habitat. Tuttavia, pure in tale variabilità, in Mesofite, Idrofite e Xerofite si distinguono Epidermide, Mesofillo e Fasci conduttori, strutture e tessuti fogliari che adempiono funzioni differenti. Figura 3. Sezione trasversale di una foglia di oleandro (Nerium oleander), una dicotiledone xerofita. (da P. H. Raven, R. F. Evert, S. E. Eichhorn: Biologia delle Piante. Zanichelli, Bologna, 1990) Epidermide Le cellule epidermiche della foglia, strettamente addossate le une alle altre, sono ricoperte dalla cuticola che riduce la traspirazione e la conseguente perdita di acqua. Su entrambe le facce della foglia, spesso più numerosi sulla faccia inferiore, vi sono gli stomi, minute camere, le cui apertura e chiusura sono regolate dalle cosiddette cellule di guardia. Figura 4. Epidermide fogliare di Lilium: stomi e cellule di guardia Figura 5. Cellule epidermiche con stomi aperti e chiusi

Gli stomi comunicano con gli spazi intercellulari interni della foglia, sedi della fotosintesi, e rappresentano una specie di interfaccia fra questi e l ambiente esterno: aprendosi, accolgono piccoli volumi di aria contenenti CO 2, (sostanza di partenza per le reazioni che portano alla sintesi di carboidrati) e riversano nell ambiente l acqua e l ossigeno derivati dalla fotosintesi. Il numero degli stomi varia con la specie e l ambiente e può raggiungere valori molto grandi: in una foglia di tabacco vi sono circa 12000 stomi per cm 2 di superficie. Sebbene le aperture stomatiche rappresentino, comunque, soltanto circa l 1% della superficie totale della foglia, più del 90% dell acqua traspirata abbandona la pianta attraverso gli stomi. Insieme agli stomi, sulla faccia inferiore della foglia, possono trovarsi anche numerosi peli epidermici (tricomi), utili per limitare le perdite di acqua. Nelle Dicotiledoni gli stomi sono disposti sulla foglia senza un ordine particolare; nelle Monocotiledoni invece si allineano regolarmente in file parallele all asse fogliare maggiore. Figura 6. Tricomi e stomi sulla pagina inferiore di una foglia di Juglans nigra Mesofillo Il parenchima a palizzata del mesofillo è la sede della fotosintesi; fra le cellule che lo costituiscono si dirama un esteso sistema di spazi comunicanti con l esterno attraverso gli stomi. Tale disposizione strutturale favorisce gli scambi gassosi tra le cellule, ricche di cloroplasti, e l atmosfera, incrementando l efficienza fotosintetica. Fasci conduttori Il mesofillo fogliare è attraversato da fasci conduttori (nervature), vero e proprio sistema circolatorio fogliare. Le nervature sono costituite da xilema e floema: lo xilema è rivolto verso la faccia superiore della foglia, il floema verso quella inferiore. Le nervature si distinguono in minori e maggiori: le prime, di piccolo calibro, decorrono a stretto contatto con le cellule del mesofillo e svolgono azione di drenaggio delle sostanze prodotte dalla fotosintesi; le seconde, di maggior calibro, appaiono più o meno rilevate sulla faccia inferiore della foglia e adempiono la sola funzione di trasporto. Figure 7. Nervature di una foglia di vite Figura 8. Nervature in una foglia di una pianta tropicale

La cellula vegetale La cellula vegetale si differenzia dalle altre cellule eucariotiche perchè provvista di parete rigida, di vacuoli citoplasmatici (con funzione di accumulo di acqua, minerali, zuccheri e proteine) e, soprattutto, di plastidi. Figura 9. Cellule vegetali eucariotiche Figura 10. Cellule epidermiche e stomi di Tradescantia Plastidi I plastidi, organuli in cui avvengono i processi della fotosintesi, si differenziano in cloroplasti, cromoplasti, leucoplasti e proplastidi. I cloroplasti hanno sede nel citoplasma, sono di forma discoidale e contengono clorofille e pigmenti carotenoidi. Una singola cellula del mesofillo può contenere 40-50 cloroplasti; un millimetro quadrato di foglia circa 500000. Figura 11. Cellule epidermiche di Elodea e cloroplasti La struttura interna del cloroplasto è complessa: lo stroma, sostanza fondamentale, è attraversato da un sistema di membrane in forma di sacchi appiattiti, chiamate tilacoidi; tutti i tilacoidi sono riuniti a formare un unico sistema intercomunicante. Nei cloroplasti si distinguono i grana, serie di tilacoidi a forma di disco, sovrapposti l uno sull altro come pile di monete. Le clorofille e i pigmenti carotenoidi sono parte integrante dei tilacoidi. I cloroplasti, quando la pianta è fotosinteticamente attiva, possono contenere granuli di amido e goccioline lipidiche, fungendo da temporanee riserve di sostanze energetiche. I granuli di amido sono generalmente assenti in piante tenute al buio per 24 ore o più; ricompaiono già dopo 3-4 ore di riesposizione della pianta alla luce. Oltre che per carboidrati e grassi, i cloroplasti svolgono un ruolo attivo anche nella sintesi degli aminoacidi.

I cloroplasti sono i siti della fotosintesi e sedi di temporaneo accumulo di amido; inoltre, svolgono un ruolo nella sintesi degli aminoacidi e degli acidi grassi. Figura 12, Figura 13. Cloroplasto in una foglia di Zea mays. Al microscopio elettronico si distinguono l involucro del plastidio, lo stroma, i tilacoidi stromatici, i grana, alcune goccioline lipidiche. Figura 14. Cloroplasto in una foglia di girasole (Helianthus annuus) Figura 15. Sezione di cloroplasto con membrane, stroma, tilacoidi e grana, strutture in cui ha sede la fotosintesi. I cromoplasti sono plastidi colorati: mancano di clorofilla, ma sintetizzano e accumulano pigmenti carotenoidi, responsabili del colore giallo, arancio e rosso di molti fiori, delle foglie senescenti e di alcune frutta e radici. Figura 16. Foglie secche

I leucoplasti sono plastidi non pigmentati; alcuni sintetizzano amido, altri possono accumulare vari tipi di sostanze, compresi oli e proteine. Esposti alla luce, i leucoplasti possono trasformarsi in cloroplasti. I proplastidi sono piccoli plastidi, incolori o di colore verde pallido che si trovano nelle cellule meristematiche in divisione delle radici e dei fusti; sono precursori di cloroplasti, cromoplasti e amiloplasti. Fotosintesi Nelle cellule del mesofillo si realizza la fotosintesi la cui equazione generale è la seguente: CO 2 + 2H 2 A + energia luminosa > (CH 2 O) + H 2 O + 2A Per H 2 A s intende qualsiasi sostanza ossidabile, capace cioè di cedere elettroni. Nelle alghe e nelle piante verdi, dove l acqua funziona da donatrice di elettroni, l equazione globale e bilanciata della fotosintesi porta alla produzione di glucosio (C 6 H 12 O 6 ) e va scritta nella maniera seguente: 6CO 2 + 12H 2 O + energia luminosa > C 6 H 12 O 6 + 6H 2 O + 6O 2 Nella fotosintesi si distingue una fase luminosa e una fase oscura ; la prima comprende l insieme delle reazioni che richiedono luce, la seconda quelle che non ne necessitano. Nel corso della prima fase, clorofille e carotenoidi, situati nelle membrane dei cloroplasti, assorbono luce solare: gli elettroni stimolati raggiungono un livello energetico superiore e trasferiscono energia a una molecola di pigmento speciale detta centro di reazione. La fase oscura si svolge nello stroma e porta alla riduzione dell anidride carbonica con formazione di composti organici. In tale processo (ciclo di Calvin), uno zucchero a 5 atomi di carbonio, il ribulosio-1,5-difosfato (RuDP), si combina con l anidride carbonica per formare due molecole di un composto a tre atomi di carbonio, il 3-fosfoglicerato (PGA). In un giro del ciclo si ha la riduzione di una molecola di CO 2 ; in tre giri del ciclo si forma una molecola di gliceraldeide- 3-fosfato. Due molecole di gliceraldeide-3-fosfato possono combinarsi per formare una molecola di glucosio. Le piante che fissano il carbonio attraverso il ciclo di Calvin formano un composto a tre atomi di carbonio e, pertanto, sono dette piante C 3. Adottano una via metabolica C 3 molte piante erbacee fra cui il grano (Triticum vulgare), il riso (Oryza sativa), l avena (Avena sativa) e la segale (Secale cereale). Altre piante ottengono la fissazione della CO 2 atmosferica attraverso reazioni fra CO 2 e fosfoenolpiruvato (PEP): il primo composto che si forma è l ossalacetato, a 4 atomi di carbonio, per cui tali piante sono dette C 4. Tra le piante C 4 vi sono il granturco (Zea mays), la canna da zucchero (Saccharum officinale) e il sorgo (Sorghum vulgare). Le piante C 4 sono più efficienti delle C 3 nell utilizzazione della CO 2. Molte piante succulente, tipiche di habitat semiaridi e aridi e con temperature elevate, adottano il metabolismo CAM (Crassulacean Acid Metabolism), una variante del ciclo C 4. Nelle piante CAM la fissazione della CO 2 avviene attraverso una reazione con la PEP carbossilasi, con formazione di acido malico, composto a quattro atomi di carbonio, accumulato nei vacuoli cellulari. Tali processi avvengono nel corso della notte, quando, assente il sole, all apertura degli stomi non conseguono grosse dispersioni idriche. Durante il dì, a stomi chiusi, la CO 2 fissata è trasferita al RuDP del ciclo di Calvin e segue tale percorso di reazioni fino alla sintesi del glucosio. Tra le piante vascolari il metabolismo CAM è più diffuso di quello C 4, in particolare fra le dicotiledoni. Seguono il metabolismo CAM anche piante non succulente come, ad esempio, l ananas (Ananas comosus) o piante non appartenenti alle angiosperme (Welwitschia mirabilis, Isoetes e alcune felci).

Figura 17. Carnegiea gigantea a Saguaro Cactus Forest Figura 18. Fichi d India Pertanto, attraverso la fotosintesi, realizzata con modalità diverse a seconda dell habitat di vita, le piante organicano il carbonio dell aria, dando vita a sostanze, principalmente carboidrati, che rappresentano la base dell alimentazione degli esseri viventi oggi presenti sul pianeta Terra. Glossario Angiosperme Mesofite Idrofite Xerofite Stomi Tricomi Dicotiledoni Monocotiledoni Nervature Xilema Floema Eucariote Meristema Gruppo di piante i cui semi sono formati all interno di un ovario maturo (frutto) Piante che vivono in ambienti né troppo umidi né troppo freschi Piante che vivono completamente o parzialmente in acqua Piante che vivono in ambienti aridi Minuscole aperture nell epidermide delle foglie e dei fusti attraverso cui si effettuano gli scambi gassosi Appendici dell epidermide delle piante (peli, squame, vescicole d acqua, ecc.) Una delle due classi di Angiosperme: le dicotiledoni sono caratterizzate dall avere due cotiledoni, foglie con nervatura retinervia e fiori costituiti da 4 o 5 pezzi fiorali Pianta il cui embrione ha un solo cotiledone; membro di una delle due grandi classi di Angiosperme Fascio vascolare che fa parte della rete del tessuto conduttore e di sostegno di una foglia o di un altro organo espanso Tessuto vascolare attraverso il quale vengono trasportati acqua e minerali: è costituito da elementi vasali Tessuto conduttore delle sostanze elaborate in piante vascolari, costituito da cellule cribrose o tubi cribrosi, da diversi tipi di cellule parenchimatiche, da fibre e sclereidi Cellula che ha il nucleo circondato da membrana, organuli circondat da membrane e cromosomi nei quali il DNA è associato a proteine. Piante, animali, funghi e protisti rappresentano i 4 regni di eucarioti. Tessuto indifferenziato della pianta dal quale si formano nuove cellule.