Appendice 6 - Multimetri digitali

Documenti analoghi
Facoltà di Ingegneria Università degli Studi di Firenze. Dipartimento di Elettronica e Telecomunicazioni. Multimetri Numerici. Ing.

Voltmetri e multimetri digitali

I MULTIMETRI DIGITALI

Multimetri elettronici

Multimetri digitali. Fig.1.1- Riduzione dell effetto di carico per la strumentazione elettronica.

Laboratorio di Fisica I. Elementi di Teoria. 11/12/12 1 G.Montagnoli -

Contatori Elettronici frequenzimetri

Fondamenti della Misurazione e Metrologia

Parte II (Il multimetro digitale)

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II

1^ LEGGE di OHM - CONDUTTORI in SERIE e in PARALLELO

Esercitazione Multimetro analogico e digitale

Multimetri digitali. Fig.1.1- Riduzione dell effetto di carico per la strumentazione elettronica.

Esperimentazioni di Fisica II. Esercitazione 0 Utilizzo strumentazione di laboratorio. Misure di resistenze.

Verificheremo che a seconda dei valori della resistenza in questione è possibile:

Page. Mis A FF ELETTRONICA APPLICATA E MISURE. Un esempio: misura di resistenza di un resistore

Interazione tra strumenti e sistemi in misura: effetto di carico

Calcolare la potenze attiva e la relativa incertezza su di un dato carico sapendo che: P=Veff*Ieff*cos( )

Il multimetro digitale. Scienze Tecniche per l Immagine I Modulo Misure Elettriche. Antonio Moschitta

Meccanismo di d Arsonval. Strumenti elettromeccanici p.1/40

Meccanismo di d Arsonval. Strumenti elettromeccanici p.1/35

Strumentazione e misure Elettroniche 03EMN Ponte di Wheatstone

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA DC1. Circuiti in corrente continua

ESERCITAZIONE DI LABORATORIO A: VERIFICA DI STRUMENTAZIONE DI LABORATORIO

Metodologie informatiche per la chimica

Multimetro digitale - schema a blocchi

Descrizione della cassetta e degli strumenti di misura

Elaborazione dei dati sperimentali. Problemi di Fisica

Valutazione dell incertezza di categoria A e B

NOZIONI BASILARI DI ELETTROTECNICA

Misure di potenza. Misure di potenza. Misure di potenza a BF. Misure di potenza a RF Politecnico di Torino 1

Sottosistema 1 I 1 I - Z 2 - Z G1 (I 2 +I 1 ) + Z G2. Z G1 Massa

Voltmetri Numerici per tensioni continue

La legge di Ohm. Alessio Bianchi 24 maggio 2017


D.A.M. Bros Robotics -

Componenti in corrente continua

Taratura del divisore di tensione

MULTIMETRO AGILENT HP 34401

Corso PAS Misure, strumenti ed Errori di misura. Didattica del Laboratorio di Fisica F. Garufi 2014

elettrici/elettronici di base DEFINIZIONE DEI PREREQUISITI: Conoscere, le principali grandezze elettriche e le loro unità di misura.

TECNOLOGIA, DISEGNO E PROGETTAZIONE STRUMENTI DI MISURA

f u (variabile da 0,1MHz a 50 MHz)

LABORATORIO DI FISICA II Modulo di Circuiti e Misure elettriche

ESPERIENZA DI LABORATORIO N 1. 1) Misura diretta mediante tester della resistenza elettrica dei resistori R1, R2, R3 e calcolo degli errori di misura.

Multimetro M3500A - Descrizione di alcune applicazioni tipiche

5 DETERMINAZIONE DELL'INCERTEZZA TIPO COMPOSTA Grandezze d'ingresso incorrelate Grandezze d'ingresso correlate...

Uso del tester e del multimetro digitale

Tecniche volt-amperometriche in DC. Tecniche volt-amperometriche in AC. Tecniche di zero: ponte in DC. Tecniche di zero: ponte in AC


LABORATORIO DI FISICA

Macchine Elettriche. Esercitazione sulla macchina sincrona isotropa

ESERCITAZIONE DI LABORATORIO SUL TEOREMA DI THEVENIN

Capitolo IX. Convertitori di dati

Uso del tester e del multimetro digitale

LIMITATORE DI CARICO DIGITALE

Laboratorio di Fisica Modulo B

Tutorato di Chimica Analitica 2016/2017

III Esperienza: 2-3 Aprile Circuiti RC ed RC in regime sinusoidale Circuiti attenuatori passa banda

DVM6243 LC METER DIGITALE PORTATILE

Capitolo 8 Misura di Potenza in Trifase

Sistemi di Elaborazione delle Informazioni

Corso di Laboratorio di Elettromagnetismo e Circuiti - A. A Esercitazione n.1 Misure in corrente continua

Questi appunti costituiscono soltanto una traccia sintetica del Corso di Laboratorio di Fisica, a prescindere dalle opportune spiegazioni e dai

Voltmetri, amperometri e multimetri

Alimentatori di tensione continua

Misure di forze elettromotrici

MISURATORE DIGITALE DI LCR

ESAME DI MISURE ELETTRICHE PRIMA PROVA IN ITINERE 4 MAGGIO 2012

Capitolo Descrizione tecnica del sensore MAF a filo caldo

IL MULTIMETRO ANALOGICO: MISURA DELLA RESISTENZA (4) 1

MISURA dell EFFETTO JOULE

LSS ADC DAC. Piero Vicini A.A

Strumenti di Misura. Strumento di Misura

Impostazione di una Misurazione e Interpretazione dei Risultati individuato il misurando metodo di misura misurando oggetto di misurazione

APPENDICE MATEMATICA E TRIGONOMETRIA A.1.1 FREQUENZE DELLA SCALA CROMATICA TEMPERATA

MISURATORE DIGITALE MODELLO 45.UT23 MANUALE D USO. Non misurate tensioni superiori al massimo consentito dalla scala del tester.

Strumenti di Misura. Strumento di Misura

Il Monitoraggio Costiero Italiano

Strumenti di Misura. Strumento di Misura

Terminologia e definizioni generali

transducers Via Nomis di Cossilla TORINO ITALY Tel. (011) FAX (011)

Collaudo statico di un ADC

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA DC3. Circuiti in corrente continua

Esercitazione N. 2 Misurazione di resistenza con ponte di Wheatstone

Ciò significa che uno strumento molto sensibile riesce a percepire piccole variazioni della grandezza presa in esame.

1. CONVERSIONE ANALOGICO DIGITALE: SCHEMA, FUNZIONALITÀ E CARATTERISTICA DELL ADC

Misura di capacità e fattore di perdita

Il wattmetro e le misure di potenza

Insegnamento Informatica CdS Scienze Giuridiche

ISO - TECH IDM 91E TESTER DIGITALE ISTRUZIONI PER L'USO

Voltmetri, amperometri e multimetri

Conversione binario-ottale/esadecimale. Conversione binario-ottale/esadecimale. Rappresentazione di Numeri Interi Positivi (numeri naturali)

Misura del periodo di oscillazione e della costante elastica della molla di un oscillatore armonico semplice.

Misure Elettriche ed Elettroniche

Transcript:

Appunti di Misure Elettriche Appendice 6 - Multimetri digitali Introduzione...1 Risoluzione adimensionale...1...2 Risoluzione dimensionale...2...2 Struttura generale di un DMM...3 Funzionamento da voltmetro...3 Funzionamento da amperometro...3 Funzionamento da ohmetro...4 Misura di piccole resistenze...4...5 Misura di grandi resistenze...5 Valutazione dell accuratezza...5...5...6 INTRODUZIONE Sono strumenti numerici che consentono la misurazione di resistenze, tensioni, correnti continue e alternate. Sono basati essenzialmente su un ADC, mediante il quale viene eseguita la misurazione di una tensione continua, realizzando un voltmetro digitale. Hanno accuratezza elevata, tempo di misurazione ridotto, possibilità di utilizzazione diretta del risultato da parte di un PC. RISOLUZIONE ADIMENSIONALE Ci sono almeno due modalità per esprimere la risoluzione in uno strumento numerico: N max : valore numerico massimo con cui il risultato può essere rappresentato (non prevedibile) C: cifre adottate per rappresentare N max Poiché un DMM (Digital MultiMeter) presenta più portate, è utile caratterizzare la sua risoluzione indipendentemente dalla portata utilizzata. Si definisce risoluzione adimensionale δ: dove B è base di numerazione utilizzata δ = log B N MA

Appunti di Misure Elettriche - Appendice 6 La risoluzione coincide con il numero C di cifre usate per rappresentare N max solo se N max =B C, ossia se N max corrisponde al numero massimo rappresentabile con C cifre: infatti C δ = log B N MA = log B B = C La risoluzione viene normalmente approssimata alla mezza unità (ad esempio δ=5 ½ cifre), ma in questo modo si indica che il conteggio massimo non può assumere tutti i valori rappresentabili con C cifre in base B. Consideriamo un DMM con visualizzatore decimale (B=10) a C=6 cifre; se sul display non sono previsti tutti i valori, allora convenzionalmente si scrivere che δ=5 ½ cifre. Questo indica solo che non sono rappresentabili tutti i valori compresi tra 0 e 99999, senza però specificare il valore massimo, che va letto sul manuale. RISOLUZIONE DIMENSIONALE Una volta fissato il fondo scala (FS) dello strumento è possibile valutare la cosiddetta risoluzione dimensionale, espressa come la minima variazione del misurando che provoca una modifica del risultato della misurazione. Essa, per un passo di quantizzazione costante, è definita nel modo seguente: = N MA Si tratta semplicemente del peso della cifra meno significativa del risultato, come mostrato nell esempio che segue. FS Consideriamo un DMM con B=10, C=6, δ=5 ½ cifre, N max =303099. Si abbiano i seguenti valori di FS: 1.99999 V 2.99999 V 3.03099 V Questi valori, pur essendo tutti diversi, hanno la caratteristica di avere, come ultima cifra significativa (a destra) quella corrispondente a 10 µv; di conseguenza, in tutti e tre i casi risulta =10µV (=peso assunto dalla cifra meno significativa). 2

Multimetri digitali STRUTTURA GENERALE DI UN DMM Lo schema a blocchi di un DMM con 2 o 4 morsetti di collegamento (per misure di V, I, AC o DC) è il seguente: Come si vede osservando la parte sinistra di questo schema, sono disponibili 5 morsetti di ingresso, numerati da 1 a 5. Di questi morsetti, il morsetto 2 funziona da riferimento ed è quindi indicato con il simbolo L (Low). Il blocco di ingresso minimizza l effetto di carico che lo strumento provoca nel circuito sotto misura e condiziona, al solito, il segnale di ingresso per eseguire la misurazione nelle condizioni migliori. FUNZIONAMENTO DA VOLTMETRO In questo caso, la tensione di misura va applicata tra i morsetti H e L (1 e 2) e può variare dalle centinaia di V ad alcuni mv o µv. Nel caso di misure di tensione in corrente alternata, un DMM fornisce in generale il vero valore efficace (True RMS Value) ottenibile tramite elaborazione analogica oppure digitale: elaborazione analogica: tramite circuiti integrati si realizza l espressione analitica che rappresenta l espressione stessa di valore efficace (quadrato+media+sqrt) elaborazione digitale: si converte ogni campione del segnale di ingresso in forma numerica e lo si elabora tramite microprocessore FUNZIONAMENTO DA AMPEROMETRO In questo caso, i morsetti di ingresso sono A e L (5 e 2); le correnti tollerabili vanno dai na a qualche A. La corrente incognita viene fatta passare per una resistenza nota, interna allo strumento e dell ordine di 0.1 Ω, ai capi della quale si manifesta una d.d.p., misurata dal dispositivo ADC. Analogamente, valori efficaci di correnti alternate vengono valutate, con elaborazione analogica o digitale, misurando il valore efficace delle cadute di tensione ai capi del resistore interno noto 3

Appunti di Misure Elettriche - Appendice 6 FUNZIONAMENTO DA OHMETRO I morsetti coinvolti sono nuovamente H e L (come nel caso del voltmetro). I valori misurabili vanno dai µω ai GΩ. Particolari cautele bisogna però usare per misure agli estremi del campo appena specificato. Per quanto riguarda il metodi di misura, nella resistenza incognita viene fatta circolare una corrente nota e viene quindi misurata la caduta di tensione (c.d.t.) prodotta. La conoscenza della corrente è dedotta valutando la c.d.t. ai capi di una resistenza nota. Deduciamo dunque che questa misura si traduce nella misura di due tensioni e nell elaborazione dei risultati successivi. Per ridurre l influenza delle resistenze di contatto e dei conduttori di collegamento, sono disponibili 4 morsetti: con 1 e 2 si fornisce la corrente di misurazione, mentre da 3 e 4 (Ω sense) preleviamo la tensione ai capi di R, secondo lo schema seguente: La figura mostra la presenza di resistenze di contatto e collegamento (R I ) e di resistenze parassite del circuito voltmetrico (R V ). Tuttavia, le c.d.t. sulle resistenze R I non influenzano la misura della tensione ai capi di 3 e 4 e, inoltre, dato che la resistenza di ingresso ai capi di 3 e 4 è molto elevata, le resistenze R V hanno anch esse effetto trascurabile. Alcuni strumenti presentano la funzione cosiddetta di Autorange: prima misurazione: valore più opportuno della corrente da erogare seconda misurazione: effettiva valutazione di R (aumento di Tmis) Misura di piccole resistenze Per misurare resistenze molto piccole o con elevate risoluzioni si fanno due misurazioni: prima misurazione: Si valuta la c.d.t su R causata dalla corrente fornita dallo strumento. Tiene conto di eventuali sorgenti di disturbo dovute ad esempio a differenze di temperature nei contatti tra metalli diversi seconda misurazione: Si valuta la stessa c.d.t. in assenza di corrente per tenere conto delle eventuali sorgenti di tensione di disturbo. Si sottrae tale valore da quello ottenuto nella prima fase. 4

Multimetri digitali R I =5Ω, δ = 5 ½ cifre. In tal caso è necessario valutare resistenze con una risoluzione dimensionale dell ordine dei 10µΩ. Con una corrente di 10mA ciò richiede la misura di tensioni con risoluzione 100nV, inferiore o paragonabile ai fenomeni di disturbo Misura di grandi resistenze Per estendere superiormente il campo dei valori massimi misurabili lo strumento pone in parallelo a R una resistenza nota R N. E avremo: R NR M R = R N R M dove R M è risultato della misurazione. La c.d.t. assume valori accettabili anche utilizzando correnti non troppo piccole, e quindi valutabili in modo accurato Sono possibili elaborazioni sui risultati della misurazione (ad esempio la differenza tra due valori misurati, µ e σ di n misure) per aumentare l accuratezza del risultato E possibile fissare il campo dei valori entro cui deve essere contenuto il risultato (SAM) E possibile esprimere il valore misurato in db rispetto a un valore di riferimento VALUTAZIONE DELL ACCURATEZZA Non esiste una normativa precisa per specificare l accuratezza di un DMM. Di solito, essa viene fornita mediante la seguente espressione dell incertezza: = k1 + k 2 dove k 1 = componente dell incertezza dipendente dal valore misurato (tabelle di k 1 ) k 2 = componente dell incertezza dipendente solo dalla portata scelta (tabelle di k 2 ) Consideriamo un DMM con portata P=30 V, con risoluzione δ=5 ½ cifre e con max =30.3099V. La risoluzione dimensionale =100 µv. Dalle tabelle fornite dal costruttore si deduce: Deduciamo allora che l incertezza vale k 1 =0.005% k 2 =4 = 5 10 5 V + 4 10 4 V Dividendo per il valore assoluto del misurando, otteniamo l incertezza relativa: 5

Appunti di Misure Elettriche - Appendice 6 ' = = k 1 + k 2 Questa incertezza relativa risulta dunque costituita da un termine non dipendente dal valore misurato e da uno che può diventare prevalente quando è prossimo al downrange L effetto delle componenti sull incertezza relativa è mostrato in figura seguente: ' x Come noto, anche per il DMM sarà conveniente usare lo strumento in FS, ossia impostando la minima portata compatibile con il valore assunto dal misurando. Un DMM deve essere messo a punto periodicamente, seguendo una procedura specificata dettagliatamente dal costruttore e svolta in un certo campo di valori della temperatura ambiente (T amb ). Anche per k 1 e k 2 vengono forniti dei range validi di T amb e la durata della loro validità. Se T amb è differente da quella prevista possono essere adottati coefficienti correttivi opportuni. A causa delle inevitabili tensioni di offset lo strumento può fornire un indicazione non nulla anche a circuito aperto: questo valore può essere valutato e la misura corretta. Esiste un comando denominato Autozero (on/off) che permette di eseguire questa procedura di valutazione dell offset Nella misura di grandezze variabili, l accuratezza del risultato si degrada in funzione della frequenza del segnale di ingresso (f IN ), come illustrato nel prossimo esempio. Consideriamo un DMM con portata P=30 V, con risoluzione δ=5 ½ cifre e con max =30.3099V. Dalle tabelle fornite dal costruttore si deduce che, per una 100Hz f in 20kHz, risulta k 1 =0.20% e k 2 =70. Al contrario, per 20kHz f in 50kHz risulta k 1 =0.26% e k 2 =140. L aumento di valori dei coefficienti indica evidentemente un peggioramente dell accuratezza all aumentare della frequenza. Autore: SANDRO PETRIZZELLI e-mail: sandry@iol.it sito personale: http://users.iol.it/sandry succursale: http://digilander.iol.it/sandry1 6