Struttura elettronica e tavola periodica

Documenti analoghi
Sommario delle lezione 3. Struttura dell atomo. Configurazione elettronica

Sommario delle lezione 3. Struttura dell atomo. Configurazione elettronica

Struttura elettronica e tavola periodica

Sommario della lezione 4. Proprietà periodiche. Massa atomica e massa molecolare. Concetto di mole. Prime esercitazioni

Sommario della lezione 4. Proprietà periodiche. Massa atomica e massa molecolare. Concetto di mole. Prime esercitazioni

Sommario delle lezioni 2 e 3. Materia e definizioni. Struttura dell atomo. Configurazione elettronica

Atomi, molecole e ioni

ATOMO. Legge della conservazione della massa Legge delle proporzioni definite Dalton

Esperto prof. C. Formica

1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f... 6s...

ATOMO. Legge della conservazione della massa Legge delle proporzioni definite Dalton

Come si dispongono gli elettroni negli atomi

La struttura dell atomo

L atomo. Il neutrone ha una massa 1839 volte superiore a quella dell elettrone. 3. Le particelle fondamentali dell atomo

mvr = n h e 2 r = m v 2 e m r v = La configurazione elettronica r = e 2 m v 2 (1) Quantizzazione del momento angolare (2) 4 πε.

Lavoisier (1770) Legge della conservazione della massa in una trasf. chimica es. C + O 2 CO 2 Dalton (1808) Teoria atomica

n l c = velocità di propagazione nel vuoto = m/s l = lunghezza d onda [cm]

Nel 1926 Erwin Schrödinger propose un equazione celebre e mai abbandonata per il calcolo delle proprietà degli atomi e delle molecole

Elettronica II Legame covalente e bande di energia nei solidi p. 2

Le Caratteristiche della Luce

ATOMO. Avogadro (1811) Volumi uguali di gas diversi contengono un ugual numero di MOLECOLE (N A =6,022*10 23 )

A Z. L'atomo Entità subatomiche Carica elettrica Massa (u.m.a) Protone Neutrone elettrone. +1e e.

Come sono disposti gli elettroni intorno al nucleo in un atomo?

Il sistema periodico degli elementi

tavola periodica Tale disposizione tabulare degli elementi è nota come Da tale disposizione venne elaborata la legge periodica che affermava che:

COMPORTAMENTO DUALISTICO della MATERIA

Teoria Atomica Moderna. Chimica generale ed Inorganica: Chimica Generale. sorgenti di emissione di luce. E = hν. νλ = c. E = mc 2

Le proprietà periodiche degli elementi

Struttura dell atomo e Sistema Periodico degli elementi unità 1, 2 e 3, modulo C del libro

ATOMI E PARTICELLE SUBATOMICHE

LA STRUTTURA DEGLI ATOMI GLI SPETTRI ATOMICI DI EMISSIONE

La struttura degli atomi

La teoria atomica moderna: il modello planetario L ELETTRONE SI MUOVE LUNGO UN ORBITA INTORNO AL NUCLEO

Comunicazioni Docente - Studenti

Il principio di indeterminazione di Heisenberg

Classe4:chimicaStrutturaAtomica1. Controlla se sai definire i seguenti termini: teoria atomica di Dalton (atomo di Dalton),

Struttura dell atomo e Sistema Periodico degli elementi unità 1, 2 e 3, modulo C del libro

ATOMO POLIELETTRONICO. Numero quantico di spin m s

Struttura dell atomo atomo particelle sub-atomiche - protoni positiva - neutroni } nucleoni - elettroni negativa elemento

Corso di CHIMICA LEZIONE 3

Il legame chimico. Lezioni 17-20

Massa atomica. Unità di massa atomica: 1/12 della massa del 12 C

L ATOMO: CONFIGURAZIONE ELETTRONICA

2.1 (p. 37) Bohr descrisse un orbitale atomico come una traiettoria circolare seguita dall elettrone. Un orbitale è una

Esploriamo la chimica

CARICA EFFICACE Z eff = Z - S

Capitolo 8 La struttura dell atomo

Le proprietà periodiche degli elementi

Le proprietà periodiche degli elementi

Struttura atomica, configurazione elettronica e periodicità chimica

L atomo di Bohr. Argomenti. Al tempo di Bohr. Spettri atomici 19/03/2010

Struttura Elettronica degli Atomi Meccanica quantistica

Modelli atomici Modello atomico di Rutheford Per t s d u i diare la t s rutt ttura t a omica Ruth th f or (

Scienziati in Erba Chimica

ESERCIZI PREPARATORI PER IL COMPITO DI CHIMICA MODULO 2

COMPETENZE ABILITÀ CONOSCENZE. descrivere la. Comprendere ed applicare analogie relative ai concetti presi in analisi. struttura.

Si arrivò a dimostrare l esistenza di una forma elementare della materia (atomo) solo nel 1803 (John Dalton)

A DIPARTIMENTO DI FARMACIA C.d.L. in Farmacia CORSO DI CHIMICA GENERALE ED INORGANICA Primo parziale 29 Aprile 2015 COGNOME NOME

Atomo. Evoluzione del modello: Modello di Rutherford Modello di Bohr Modello quantomeccanico (attuale)

LA STRUTTURA DELL ATOMO

orbitali d Kr Rb At Ra

Comune ordine di riempimento degli orbitali di un atomo

1 3 STRUTTURA ATOMICA

Teorie sull atomo: sviluppo storico

Bohr 1913 Gli elettroni viaggiano su orbite fisse

Bohr 1913 Gli elettroni viaggiano su orbite fisse

STRUTTURA DELL ATOMO

Quarta unità didattica. Disposizione degli elettroni nell atomo

26/10/2012. Onde elettromagnetiche. b) proprietà periodiche C) configurazione elettronica. f(x,t)=a sin(kx+ωt+φ) k=2π/λ; ω=2π/t= 2πν

λν = c, ove c velocità della luce.

Sommario della lezione 2. Materia e definizioni. Struttura dell atomo

La Teoria dell Atomo di Bohr Modello di Bohr dell atomo di idrogeno:

Tabella periodica degli elementi

Corso di CHIMICA LEZIONE 2

La rappresentazione degli orbitali Orbitali s ( l = 0 )

the power of ten Prof.ssa Patrizia Gallucci

Teoria Atomica di Dalton

La struttura dell atomo

Le proprietà periodiche degli elementi

Teoria atomica. Dr. Lucia Tonucci Ingegneria delle Costruzioni

STRUTTURA ATOMICA. Per lo studio della struttura dell atomo ci si avvale della Spettroscopia.

Immagini e testi tratti dai website di: genome.wellcome.ac.uk, dnaftb.org, unipv.it, unimi.it, wikipedia.it, unibs.it, unisi.it, unina.

J.J. Thomson (1897): dimostra l esistenza dell elettrone E. Ruthenford (1911): dimostra l esistenza del nucleo

ESERCIZI W X Y Z. Numero di massa Neutroni nel nucleo Soluzione

Modello atomico ad orbitali e numeri quantici

Chimica e Propedeutica Biochimica

Configurazioni elettroniche e tavola periodica

La Struttura degli Atomi

LEZIONE 2. Configurazioni elettroniche e tavola periodica

Sommario della lezione 7. Misure di concentrazione. Nomenclatura

A DIPARTIMENTO DI FARMACIA CORSO DI CHIMICA GENERALE ED INORGANICA Compito scritto 22 Settembre 2015

L ATOMO SECONDO LA MECCANICA ONDULATORIA IL DUALISMO ONDA-PARTICELLA. (Plank Einstein)

Atomi, molecole e ioni

L evoluzione del modello di atomo

Struttura elettronica e tavola periodica

TAVOLA PERIODICA DEGLI ELEMENTI

Generalità delle onde elettromagnetiche

Transcript:

Struttura elettronica e tavola periodica

Teoria atomica della materia Teoria atomica di Dalton 1.Ciascun elemento è composto da particelle estremamente piccole chiamate atomi. 2.Tutti gli atomi di un dato elemento sono identici tra loro, hanno la stessa massa e le stesse proprietà, ma gli atomi di un elemento sono differenti dagli atomi di tutti gli altri elementi. 3.Gli atomi di un elemento non si trasformano in atomi di un differente elemento mediante reazioni chimiche; gli atomi non sono né creati né distrutti durante le reazioni chimiche. 4.I composti sono formati quando gli atomi di più di un elemento si uniscono; mentre un dato composto ha sempre lo stesso numero relativo e lo stesso numero di atomi.

Legge delle proporzioni definite In un dato composto il numero relativo e il tipo di atomi sono costanti. Legge delle proporzioni multiple Se due elementi A e B si combinano per formare un composto, le masse di B che si combinano con quelle date di A sono in rapporto di numeri interi. Se due elementi danno origine a due o più composti (ad esempio H 2 O e H 2 O 2 ) mantenendo costante la massa di un elemento (in questo caso la massa dell'idrogeno presente nei due composti ), notiamo che le masse del secondo elemento (in questo caso dell'ossigeno presente nei due composti ), sono esprimibili con un rapporto di numeri interi e piccoli.

Esperimento di Thomson elettrone Si ottenne il rapporto carica/massa. Con l esperimento di Millikan venne determinato il valore della carica.

Esperimento di Rutherford Nucleo estremamente denso, carico positivamente e circondato da cariche negative. Raggio del nucleo 10-13 cm

Esperimento di Rutherford

Primi modelli atomici

Onde elettromagnetiche La lunghezza d onda (λ) è la distanza tra due massimi consecutivi 1 nm = 10-9 m λν = c La frequenza (ν) è il numero di cicli d onda nell unità di tempo. La sua unità di misura è l hertz (Hz = ciclo/s).

Spettro elettromagnetico

Quantizzazione dell energia E = hν λν = c E = hc/λ dove h è la costante di Planck h = 6.626 x 10-34 Js

E = hc/λ L energia è correlata alla lunghezza d onda.

Ogni elemento ha uno spettro caratteristico che può essere usato per identificarlo Come si vede negli spettri atomici di ciascun elemento compaiono solo alcune lunghezze d onda definite. I fotoni possono avere solo alcune energie ben definite.

Modello atomico di Bohr Modello planetario quantizzato. Si ha orbita per un elettrone quando: forza attrattiva tra nucleo ed elettrone = forza centrifuga della rotazione dell elettrone elettrone intorno al nucleo momento angolare dell elettrone elettrone = multiplo intero della costante di Planck Riproduce perfettamente lo spettro dell atomo d idrogenod... e basta.

Modello planetario orbita sole pianeta forza centrifuga = forza di gravitazione tra sole e pianeta - elettrone orbita nucleo +

Modello di Bohr Un elettrone di massa m e si muove su un orbita circolare ad una distanza r dal nucleo. Se l elettrone ha velocità v, m e vr sarà il suo momento angolare. Bohr postulò che nell atomo di idrogeno erano permesse solo quelle orbite il cui momento angolare è un multiplo intero di h, la costante di Planck, diviso 2π: m e vr = n (h/2π) E= -k/n 2 E n = -R H /n 2

E n = -R H /n 2 dove R H è la costante di Rydberg e n è detto numero quantico principale e può assumere solo valori interi. Normalmente, per l atomo di idrogeno n=1 stato fondamentale n=2 stato eccitato n=3 stato eccitato

Postulato di De Broglie La luce ha proprietà corpuscolari (Einstein) Gli elettroni hanno proprietà ondulatorie (Davisson-Germer) De Broglie correla entrambi gli aspetti λ = h mv h (costante di Planck) = 6,626 10-34 Js

Dualismo onda-materia (de( Broglie) Ad ogni particella, di massa m che si muove con velocità v, è associata un onda di lunghezza λ: λ = h mv Conseguenza: elettroni per gli elettroni in un atomo sono possibili solo onde stazionarie

Principio di indeterminazione di Heisenberg p x x Δ x Δp h x

ΔxΔv Il principio d indeterminazione d di 2 h mπ Heisenberg Per una particella in movimento non è possibile determinare con precisione la posizione se non a scapito della velocità. Per una particella di massa m che si muove lungo l asse x alla velocità v Δx = incertezza sulla posizione Δν = incertezza sulla velocità h = 6,626. 10-34 Js

Equazione di Schrödinger Per una particella che si muove lungo la dimensione x,, con energia E e con potenziale V(x): h 8π 2 2 m d 2 ψ( x ) dx 2 + V( x ) ψ( x ) = Eψ( x ) ψ(x ) è la funzione d onda d che descrive la particella.

L equazione d onda d di Schrödinger L elettrone ha un comportamento ondulatorio In forma compatta H Ψ = E Ψ E un equazione differenziale

ψ(x ) è una funzione d onda d che descrive la particella, ma in se non ha un significato fisico, è solo un artificio matematico. Tuttavia: 2 ψ( x ) = P( x ) P(x) è la probabilita di trovare la particella alla coordinata x

H è un modo di scrivere l energia H = Ecinetica +Epotenziale ( 1/2mv 2 e 2 /r ) Ψ funzione d onda soluzione dell equazione d onda Esistono infinite soluzioni E energia associata a Ψ o più Ψ (funzioni d onda degeneri) Ψ non ha significato fisico, Ψ 2 rappresenta la probabilità di trovare l elettrone in una data regione nello spazio Ψ descrive una regione nello spazio dove ha probabilità di esistere l elettrone (orbitale)

L atomo di idrogeno ψ 2 per n=1

L equazione di Shrodinger è un equazione differenziale del second ordine, ordine, la cui soluzione non è un unica funzione, ψ(x), ma una famiglia di funzioni d onda d che si distinguono per diversi valori di alcuni parametri (numeri quantici), ψ n,l,m,m (x ). Numeri quantici: n (principale) = 1, 2, 3, l (momento angolare) = 0, 1, (n-1) m (momento magnetico) = -l,,, 0,,, +l+

Significato fisico di n, l ed m l n è associato all energia dell orbitale (volume) l è associato alla forma dell orbitale m l è associato all orientazione nello spazio dell orbitale

Il numero quantico principale n R E n = 2 n

Il numero quantico secondario l

Il numero quantico secondario l

Il numero quantico secondario l

Il numero quantico secondario l

Il numero quantico m s Esperimento di Stern-Gerlach Atomi con numero dispari di elettroni m s = ± 1/2

Numero quantico di spin Una particella carica, che ruota su stessa, genera un campo magnetico. S N Un elettrone possiede un numero quantico di campo magnetico di spin,, che può avere solo due valori, m s = + +½ e m s = -½.

principale, n, 1; individua i livelli di energia possibili. orbitale, l; 0 l (n-1); geometria della regione dello spazio in cui è più probabile trovare l elettrone. magnetico, m; - l m + l; indica piccole variazioni di energia dell elettrone in presenza di un campo magnetico. di spin, s; può assumere due valori: s = +1/2, s= -1/2

Ogni elettrone, in un atomo, è definito dai suoi numeri quantici: n = 1, 2, 3, l = 0, 1, (n-1) m = -l,, 0,, +l s = +½, -½ ψ n,l,m (x) In un atomo non possono esistere più elettroni con tutti i numeri quantici uguali. (Principio di esclusione di Pauli)

n=1 l=0 orbitali s (sharp) m=0 1 orbitale 1s n=2 l=0 orbitali s (sharp) m=0 1 orbitale 2s l=1 orbitali p (principal) m=-1,0,+1 3 orbitali 2p n=3 l=0 orbitali s (sharp) m=0 1 orbitale 3s l=1 orbitali p (principal) m=-1,0,+1 3 orbitali 3p l=2 orbitali d(diffuse) m=-2,-1,0,+1,+2 5 orbitali 3d

n=4 l=0 orbitali s (sharp) m=0 1 orbitale 4s l=1 orbitali p (principal) m=-1,0,+1 3 orbitali 4p l=2 orbitali d(diffuse) m=-2,-1,0,+1,+2 5 orbitali 4d l=3 orbitali f (fundamental) m=-3,-2,-1,0,+1,+2,+3 7 orbitali 4f. 1s 2s 2p 3s 3p 3d 4s 4p 4d

Orbitale atomico: Legato alla probabilità di trovare un elettrone in una certa zona dello spazio. s (orbitale sferico) Orbitali atomici: p (tre orbitali a lobo orientati lungo gli assi cartesiani) d (5 orbitali orientati nello spazio).. In ciascun orbitale possono trovarsi, al massimo, due elettroni

1s 2s 2p 3s 3p 3d 4s 4p 4d 1 orbitale s può contenere due elettroni 3 orbitali p possono contenere sei elettroni 5orbitali d possono contenere dieci elettroni 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6

Le energie degli orbitali nell atomo di H e negli atomi idrogenoidi atomo idrogenoide, costituito da un nucleo di un solo protone e quindi da un solo elettrone. È un atomo fittizio per il quale è relativamente facile definire le funzioni orbitali atomici

Gli atomi polielettronici Gli elettroni: Interagiscono Non Non vale vale la la trattazione fatta fatta per per l atomo d idrogeno Si Si assume comunque l esistenza degli degli orbitali Si Si schermano Un Un elettrone in in un un orbitale s s è più più vicino al al nucleo di di uno uno presente negli negli orbitali p Va Va considerata, sugli sugli elettroni più più esterni, la la carica nucleare efficace Z eff eff La La sequenza energetica degli degli orbitali dipende anche dal dal tipo tipo di di orbitale cioè cioè da da ll

Sequenza energetica negli atomi polielettronici

Si può immaginare di costruire la struttura elettronica di un atomo andando a collocare un elettrone dopo l altro nell orbitale libero ad energia più bassa. In questa operazione si devono tenere presenti due principi della meccanica quantistica. Principio di Pauli: due elettroni di un dato atomo devono differire almeno per il numero quantico di spin. Ciò significa che un dato orbitale, definito da n, l e m, può ospitare due elettroni, uno con s = + ½, l altro con s = - ½. Regola di Hund: nel costruire la struttura elettronica, gli orbitali, corrispondenti ad un dato valore di l, devono essere occupati ciascuno con un elettrone con spin = +1/2, e solo successivamente completati col secondo elettrone avente spin di segno opposto.

E 5s 5p 4d 4s 4p 3d 3p 3s 2s 1s 2p Ossigeno, ha 8 elettroni. 1s 2 2s 2 2p 4

Le configurazioni elettroniche Si ottengono applicando: Il principio di aufbau al diagramma delle energie Il riempimento del diagramma energetico avviene iniziando dal livello più basso 1s e via di seguito Il principio di Pauli In un orbitale possono esistere solo due elettroni e devono avere spin opposto La regola di Hund A parità di energia gli elettroni si distribuiscono negli orbitali occupando il massimo volume

Individua il numero atomico ed il nome degli elementi che hanno le configurazioni elettroniche seguenti: a. 1s 2 2s 2 2p 6 3s 2 3p 4 b. 1s 2 2s 2 2p 6 3s 2 c. 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 5 Z = 16, S Z = 12, Mg Z = 25, Mn Un atomo che possiede 20 elettroni ha configurazione elettronica: a.1s 2 2s 2 2p 6 3s 2 3p 4 b. 1s 3 2s 2 2p 6 3s 3 3p 6 c. 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 d. 1s 2s 2p 6 3s 3p 6 3d 5

Costruisci la configurazione elettronica degli elementi seguenti : a. Mg (Z = 12) b. Mn (Z = 25) c. F (Z = 9) d. Si (Z = 14) e. Ne (Z = 10) f. S (Z = 16) a. Li (Z = 3) b. K (Z = 19) c. Ca (Z = 20) d. B (Z = 5) e. Al (Z = 13) g. As (Z = 33)

Spesso le configurazioni elettroniche sono abbreviate; iniziano col simbolo del gas nobile precedente.

Primi schemi di classificazione Triadi di Döbereiner Ca Sr Ba (40 + 137) 2 = 88 40 88 137

Primi schemi di classificazione Legge delle ottave di Newlands La legge delle ottave non andava oltre l elemento calcio

Nel 1869 Dmitri Mendeleev presentò la prima tabella periodica organizzata in modo da arrangiare gli elementi secondo i pesi atomici crescenti

Mendeleev stabilì che se il peso atomico di un elemento lo faceva posizionare nel posto sbagliato, allora il peso atomico era errato (corresse le masse atomiche di Be, In e U). Legge Periodica Se gli elementi vengono considerati secondo il peso atomico crescente, esiste un andamento periodico nelle loro proprietà fisiche e chimiche. era così sicuro della sua classificazione che predisse le proprietà fisiche di tre elementi che erano ancora sconosciuti.

MoseleyÍs X-ray spectra of several elements Nel 1913 Henry Moseley, mediante il suo lavoro con i raggi X, determinò l attuale carica nucleare degli elementi (numero atomico). Arrangiò poi gli elementi in ordine di numero atomico crescente

La tabella periodica

Periodo Gruppo

Legge Periodica Se gli elementi vengono considerati secondo il numero atomico crescente, esiste un andamento periodico nelle loro proprietà fisiche e chimiche.

I gruppo A: I metalli alcalini Li Na K Rb Cs Fr

II gruppo A: I metalli alcalinoterrosi Be Mg Ca Sr Ba Ra

VII gruppo B: Gli alogeni F Cl Br I At

I gas nobili He Ne Ar Kr Xe Rn

I metalli di transizione Lantanidi Attinidi

Gli ioni con le strutture dei gas nobili 56 Ba [Xe]6s 2 Ba 2+ [Xe] + 2e - 9 F[He]2s 2 2p 5 + 1e - F - [He]2s 2 2p 6

I cationi dei gas metalli di transizione I metalli di transizione non formano ioni con configurazioni dei gas nobili. Quando gli atomi dei metalli di transizione formano ioni positivi si perdono per primi gli elettroni del sottolivello s più esterno. 25 Mn [Ar]4s 2 3d 5 Mn 2+ [Ar]3d 5

Proprietà periodiche Il raggio atomico è definito come la metà della distanza minima di avvicinamento tra gli atomi di una sostanza elementare.

Raggi ionici (cationi) Gli ioni positivi sono più piccoli degli atomi dei metalli dai quali si formano.

Raggi ionici (anioni) Gli ioni negativi sono più grandi degli atomi dei metalli dai quali si formano.

Energia di i ionizzazione di un atomo (o potenziale di ionizzazione): A(g) A + (g)) + e - (g) ΔH = I 1 Affinità elettronica di un atomo: A - (g) A(g) ) + e - (g) ΔH = A

Energie di ionizzazione (kj/mole)

Affinità elettronica (kj/mole)

Elettronegatività: tendenza di un atomo ad attrarre su di se gli elettroni di un legame. Elettronegatività Energia di ionizzazione + Affinità elettronica

L Elettronegatività È una misura empirica della tendenza di un atomo in una molecola ad attrarre gli elettroni di legame

Elettronegatività secondo Pauling Se nella molecola AB il legame fosse omopolare, l'energia di legame, E AB, dovrebbe risultare pari alla media delle energie di legame della molecola A 2 e della molecola B 2 : In realtà, sperimentalmente si osserva che E AB è quasi sempre maggiore della media delle energie di legame E A ed E B.

L' "extra" energia, ΔE, è dovuta al contributo del carattere ionico presente nel legame della molecola AB. Poiché il carattere ionico del legame covalente è da mettere in relazione con la differenza di elettronegatività dei due atomi legati, Pauling definì la differenza di elettronegatività, ΔE.N., 0.208 è un fattore di conversione per trasformare le kcal in ev (1eV = 23.1 kcal/mole). Dato che, il metodo suggerito da Pauling consente di valutare solo differenze di elettronegatività, Pauling pose pari a 4 l'elettronegatività del fluoro, l'elemento più elettronegativo, e a partire da esso ricavò i valori degli altri elementi.

Elettronegativit Elettronegatività H 2,2 2,2 Na Na 0,9 0,9 K 0,8 0,8 Li Li 1,0 1,0 Rb Rb 0,8 0,8 Cs Cs 0,8 0,8 Be Be 1,6 1,6 Mg Mg 1,3 1,3 Ca Ca 1,0 1,0 Sr Sr 1,0 1,0 Ra Ra 0,9 0,9 Ba Ba 0,9 0,9 Sc Sc 1,4 1,4 Y 1,1 1,1 Ac Ac 1,1 1,1 La La 1,1 1,1 Ti Ti 1,5 1,5 Zr Zr 1,3 1,3 Hf Hf 1,3 1,3 V 1,6 1,6 Nb Nb 1,6 1,6 Ta Ta 1,5 1,5 Cr Cr 1,7 1,7 Mo Mo 2,2 2,2 W 2,4 2,4 Mn Mn 1,6 1,6 Tc Tc 1,9 1,9 Re Re 1,9 1,9 Fe Fe 1,8 1,8 Ru Ru 2,2 2,2 Os Os 2,2 2,2 Co Co 1,9 1,9 Rh Rh 2,3 2,3 Ir Ir 2,2 2,2 Ni Ni 1,9 1,9 Pd Pd 2,3 2,3 Pt Pt 2,3 2,3 Cu Cu 1,9 1,9 Ag Ag 1,9 1,9 Au Au 2,5 2,5 Zn Zn 1,7 1,7 Cd Cd 1,7 1,7 Hg Hg 2,0 2,0 B 2,0 2,0 Al Al 1,5 1,5 Ga Ga 1,8 1,8 In In 1,8 1,8 Tl Tl 2,0 2,0 C 2,6 2,6 Si Si 1,8 1,8 Ge Ge 2,0 2,0 Sn Sn 2,0 2,0 Pb Pb 2,3 2,3 N 3,0 3,0 P 2,2 2,2 As As 2,2 2,2 Sb Sb 2,1 2,1 Bi Bi 2,0 2,0 O 3,4 3,4 S 2,6 2,6 Se Se 2,6 2,6 Te Te 2,1 2,1 Po Po 2,0 2,0 F 4,0 4,0 Cl Cl 3,2 3,2 Br Br 3,0 3,0 I 2,7 2,7 At At 2,2 2,2 Ne Ne 0 Ar Ar 0 Kr 0 Xe Xe 0 Rn Rn 0 He He 0 Fr 0,7 0,7