L ACQUA E LE CELLULE VEGETALI

Documenti analoghi
TRASPORTO DELL ACQUA NELLA PIANTA

IL TRASPORTO DELL ACQUA NELLA PIANTA

Ascesa della linfa grezza

L acqua e la cellule vegetale. Importanza dell acqua per la pianta e meccanismi di movimento

Qual è il meccanismo che consente l ascesa dell acqua dal suolo all atmosfera attraverso la pianta? Teoria della tensione-coesione

L ACQUA E LE CELLULE VEGETALI

FISIOLOGIA VEGETALE. I movimenti dell acqua e dei soluti

IL TRASPORTO DELL ACQUA

L acqua e la cellule vegetale. Importanza dell acqua per la pianta e meccanismi di movimento

L H 2 O nelle cellule vegetali e

Foglia dorsoventrale (dicotiledoni) Anatomia della foglia

TRASPORTO DI SOSTANZE NELLE PIANTE

Agronomia. Agrometeorologia. - Evapotraspirazione (1) -

Un altro concetto fondamentale in fisiologia vegetale è il potenziale idrico

Stomi. costituiti da due cellule di guardia circondate da due cellule sussidiarie che aiutano a controllare le aperture stomatiche.

Ψ t = Ψ p + Ψ s + Ψ m

L acqua nel suolo. Gassosa (vapore acqueo, solitamente meno di 5 g/kg Solida (ghiaccio) Liquida Non è mai pura Si può definire soluzione circolante

Assorbimento e trasporto nelle piante

Capitolo 14 Le proprietà delle soluzioni

Trasporto dei fotosintetati ai tessuti in crescita e di riserva.

TESSUTI TEGUMENTALI. Possono essere - esterni - interni

Diffusione e osmosi. Roberto Cirio. Corso di Laurea in Chimica e Tecnologia Farmaceutiche Anno accademico Corso di Fisica

Le proprietà colligative delle soluzioni

Passaggi di stato. P = costante

1. Perché le sostanze si sciolgono?

Esploriamo la chimica

Ψ m = potenziale di matrice dovuto alle forze di imbibizione o adsorbimento di acqua. Ψ m è importante nel suolo ma nelle cellule è trascurabile.

Lo stato liquido. Un liquido non ha una forma propria, ma ha la forma del recipiente che lo contiene; ha però volume proprio e non è comprimibile.

Le proprietà colligative delle soluzioni Sappiamo dall esperienza quotidiana che una soluzione ha caratteristiche diverse dal solvente puro.

FENOMENI DI TRASPORTO DELLA MATERIA

Acqua. E la molecola più abbondante nel corpo E vitale. Uova di rana in ambiente acquoso

Protezione Civile - Regione Friuli Venezia Giulia. Protezione Civile - Regione Friuli Venezia Giulia

Valitutti, Falasca, Tifi, Gentile. Chimica. concetti e modelli.blu

Corso di Chimica Generale CL Biotecnologie

Corso di Laurea Magistrale in Medicina e Chirurgia Biofisica e Fisiologia I

Il binomio di van t Hoff Le proprietà colligative dipendono dal numero di particelle effettivamente presenti nella soluzione. Nel caso in cui il solut

Lo stato liquido. i liquidi molecolari con legami a idrogeno: le interazioni tra le molecole si stabiliscono soprattutto attraverso legami a idrogeno

1. Perché le sostanze si sciolgono 2. Soluzioni acquose ed elettroliti 3. La concentrazione delle soluzioni 4. L effetto del soluto sul solvente: le

Lezione 11 Soluzioni. Diffusione ed osmosi.

Tessuti vegetali. Insiemi di cellule, associate tra loro sin dalla nascita, costituenti unità strutturali e funzionali

MEMBRANE MEMBRANE. elio giroletti. Elio GIROLETTI - Università degli Studi di Pavia, Dip. Fisica nucleare e teorica

L argomento può essere affrontato nella seconda parte del curriculum scolastico.

2. Richiami sui rapporti acqua-suolo

CdL Professioni Sanitarie A.A. 2012/2013. Unità 9: Gas e processi di diffusione

L utilizzo di metodi a pressione di vapore per la determinazione della curva di ritenzione idrica

Tessuti Fondamentali: Cellule parenchimatiche: possiedono pareti sottili formate da una parete primaria e da una lamella mediana condivisa.

ASSORBIMENTO IONICO NELLE RADICI. Le radici allungandosi variano sia anatomicamente che fisiologicamente lungo gli assi longitudinali:

Struttura del territorio circolatorio terminale

SOLUZIONI. Soluzione diluita: è costituita da un liquido (solvente) in cui è disciolta una piccola quantità di un altra sostanza (soluto).

L umidità atmosferica: misura

1. Lo studio dei gas nella storia 2. I gas ideali e la teoria cinetico-molecolare 3. La pressione dei gas 4. La legge di Boyle o legge isoterma 5.

Corso di Laurea Magistrale in Medicina e Chirurgia. Biofisica e Fisiologia I A.A ESERCITAZIONE. Prof. Clara Iannuzzi

POTENZA METABOLICA. Fisica Applicata, Area Infermieristica, M. Ruspa

Il vacuolo. Come organulo osmoregolatore, funzionale al. mantenimento del turgore cellulare

LE SOLUZIONI. Una soluzione è un sistema omogeneo costituito da almeno due componenti

Movimenti dell acqua e dei soluti nella cellula vegetale

Tessuti vascolari per il trasporto delle soluzioni circolanti all'interno dell'organismo. Xilema

A. Trasporto dell acqua. Il trasporto dell acqua attraverso la pianta può essere così schematizzato:

Tessuto (sistema) conduttore L evoluzione delle piante sulla terraferma è legata allo sviluppo di un efficiente sistema di conduzione interna dei

STATI DI AGGREGAZIONE DELLA MATERIA E PROPRIETÀ DEI FLUIDI

Presentazione. Osmotico letteratura sintetica

Scaricato da

delle curve isoterme dell anidride carbonica

FORESTE E CAMBIAMENTI CLIMATICI SFA (GAB) II anno II semestre A.A

Valitutti, Falasca, Tifi, Gentile. Chimica. concetti e modelli.blu

TESSUTI DI CONDUZIONE

Tensione di vapore evaporazione

Chimica e Tecnologia Farmaceutiche Esercitazioni di Fisica a.a Emanuele Biolcati

Fluidi (FMLP: Cap. 11 Meccanica dei fluidi)

Soluzioni unità 3, modulo D del libro

Le membrane cellulari La componente proteica: Diffusione delle proteine nella membrana

Trasformazioni fisiche della materia: i passaggi di stato

PASSAGGI DI STATO. sublimazione fusione ebollizione. solidificazione. condensazione. brinamento. Calore processi fisici endotermici ( H>0).

IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO

Il potenziale di membrana a riposo

Evoluzione delle piante

Azoto. La molecola di azoto e formata da due atomi di azoto, legati insieme con un triplo legame:

Lo stato liquido: il modello

Lezione n. 4. La superficie liquida

I fluidi Approfondimento I

Bilancio di energia: il Primo Principio della Termodinamica. Termodinamica dell Ingegneria Chimica

LE MOLECOLE DELLA VITA

Le soluzioni e il loro comportamento

FONDAMENTI ANATOMO-FISIOLOGICI DELL ATTIVITA PSICHICA

Lezione 14 Termologia Cambiamenti di stato. Dilatazioni termiche. Trasmissione del calore.

L Irrigazione delle colture Scopi dell irrigazione

scheda 1 Percorso 1 Che cos è l acqua Diagramma di stato dell acqua Obiettivo Come si comporta l acqua a varie temperature

LE PROPRIETA DELLA MATERIA

Capitolo 16 L energia si trasferisce

Se la curvatura è minore, la tensione totale deve essere più grande per mantenere la stessa componente della tensione verso il basso

La sinterizzazione rappresenta il processo che porta dalle polveri ad un compatto in genere più denso, meno poroso e più resistente (è il passaggio

GLI STATI DELLA MATERIA

La nutrizione minerale. Ovvero gli ioni inorganici necessari alla pianta e modalità di assorbimento e assimilazione

BIOFISICA DELLE MEMBRANE

La misura della temperatura

1. Introduzione 1.1 Scopo della tesi

Densita. FLUIDI : liquidi o gas. macroscop.:

struttura e composizione della membrana cellulare Prof. Davide Cervia - Fisiologia Fisiologia della cellula: trasporti di membrana

Le proprietà colligative

Tessuti adulti. 1.Tessuti tegumentali o di rivestimento 2.Tessuti parenchimatici 3.Tessuti meccanici 4.Tessuti conduttori 5.

Transcript:

L ACQUA E LE CELLULE VEGETALI

L acqua L acqua gioca un ruolo cruciale nella vita dei vegetali Piccoli perturbamenti nel flusso d acqua possono causare deficit idrici e danni consistenti a numerosi processi cellulari In ogni pianta il bilancio fra l acqua assunta e quella persa è un processo delicato e rappresenta una vera e propria sfida per le piante terrestri, infatti, il loro bisogno di catturare l anidride carbonica dall atmosfera (fotosintesi) le espone inevitabilmente alla minaccia della disidratazione

La disponibilità di acqua limita la produttività delle piante da raccolto

H 2 O 0.96 Å H O 105 H 2s 2 2p 4 tendenza all ibridizzazione sp 3 H δ+ O δ- δ+ H 1.75 Å O δ- H δ+ energia del legame idrogeno tra due molecole di H 2 O 4.5 kcal/mol legame idrogeno δ+ H Quali sono le caratteristiche che rendono speciale la molecola d acqua? L H 2 O non ha carica netta, ma le cariche parziali opposte la rendono una molecola polare

Legami idrogeno tra le molecole di acqua

Proprietà solventi dell acqua L acqua è un solvente eccellente: è in grado di sciogliere quantitativi enormi di un gran numero di sostanze rispetto a quanto non possano fare altri solventi simili. Questo è dovuto in parte alle piccole dimensioni della molecola dell acqua e in parte alla sua natura polare

Grazie alla sua polarità e capacità di formare legami H, l H 2 O ha un alto calore specifico: energia richiesta per innalzare la temperatura di una sostanza di un determinato valore (cosi le cellule della pianta non cambiano rapidamente temperatura) ha un alto calore latente di evaporazione: energia richiesta per separare le molecole dalla fase liquida e spostarle nella fase gassosa un processo che avviene durante la traspirazione-

TENSIONE SUPERFICIALE Le molecole d acqua in un interfaccia aria-acqua sono più attratte dalle vicine molecole d acqua che dalla fase gassosa dall altra parte della superficie Le molecole d acqua esercitano una forza nell interfaccia aria-acqua influenzando sia la forma della superficie ma creando una pressione sul resto del liquido Tensione superficiale = genera le forze necessarie per spingere un flusso d acqua attraverso il sistema vascolare delle piante

L esteso numero di legami H dell H 2 O determina le proprietà: Coesione attrazione tra molecole di H 2 O Adesione attrazione delle molecole di H 2 O da parte di una fase solida Le molecole di H 2 O all interfaccia con l aria sono maggiormente attratte dalle altre molecole di H 2 O che non dalla fase gassosa tendenza a ridurre l area superficiale la condizione che esiste all interfaccia è detta TENSIONE SUPERFICIALE CAPILLARITA Il movimento dell acqua verso l alto in un tubo capillare Più piccolo è il tubo maggiore sarà la salita per capillarità Forza di tensione capacità di resistere a forze di trazione (es. acqua nella siringa) Pressione idrostatica 1 atm = 760 mm Hg = 1.013 bar = 1.013 10 5 Pa = 0.1013 MPa

CAPILLARITA La capillarità è un fenomeno che permette all'acqua di salire in tubicini molto sottili. Questo fenomeno è spiegato dall'esistenza di forze di attrazione tra le molecole dell'acqua e le pareti del tubicino: tali forze sono dette forze di adesione. Anche tra una molecola d'acqua e l'altra esistono forze di attrazione dette forze di coesione. Quando l'acqua è contenuta in un tubo dal diametro grande, il numero delle molecole d'acqua a contatto con il vetro è relativamente piccolo. Quando invece si tratta di un tubo capillare, il numero di molecole dell'acqua a contatto con il vetro è molto più grande, quindi prevalgono le forze di adesione sulle forze di coesione.

Forza di Tensione La coesione impartisce all acqua anche una grande forza di tensione definita come la capacità di resistere a forze di trazione Si può utilizzare una siringa incapucciata per generare pressioni positive e negative su un fluido come l acqua. Premendo il pistone il fluido si comprime e si genera una pressione idrostatica positiva. La pressione viene misurata in unità definite Pascal o più semplicemente Megapascal (MPa). La pressione equivale alla forza per unità di superficie (1Pa = 1N m -2 ) e all energia per unità di volume (1Pa = 1J m -3 )

La pressione di vapore (o tensione di vapore) di una sostanza è la pressione parziale del suo vapore che si verifica quando si raggiunge l equilibrio fra la fase liquida e la fase gassosa. Pressione di vapore

Il movimento dell acqua può avvenire per: DIFFUSIONE (gradiente di concentrazione) FLUSSO DI MASSA (gradiente di pressione) OSMOSI (gradiente di potenziale idrico)

Diffusione di una sostanza da una zona di alta concentrazione ad una zona di concentrazione minore

Diffusione processo attraverso il quale le molecole in soluzione tendono, a seguito della loro agitazione termica, ad occupare tutto il volume di solvente. La diffusione determina lo spostamento di molecole da regioni ad alta concentrazione a regioni a bassa concentrazione cioè secondo gradiente LEGGE DI FICK la velocità del movimento di diffusione è direttamente proporzionale al gradiente di concentrazione J s = - D s ΔC s Δx densità di flusso [ mol m -2 s -1 ] D s = coefficiente di diffusione misura quanto facilmente una sostanza s si muove attraverso un mezzo [m 2 s -1 ]

dalla legge di Fick si ricava t c=1/2 = d 2 D s K K = 1 Man mano che la sostanza diffonde lontano dal punto di partenza il gradiente di concentrazione diventa meno forte e quindi il movimento netto diventa più lento Diffusione trasporto a breve distanza

Flusso di massa movimento di gruppi di molecole in risposta a gradienti di pressione (correnti di convezione, flusso di un fiume, caduta della pioggia) Equazione di Poiseuille Velocità di flusso = π r 4 8 η ΔP Δx [m 3 s -1 ] r raggio della tubatura η viscosità del liquido (per H 2 O η = 10-9 MPa s -1 ) ΔP Δx gradiente di pressione Flusso di massa trasporto a lunga distanza

OSMOSI Il termine osmosi indica in chimica e in fisica il fenomeno consistente nel movimento di diffusione di due liquidi miscibili di diversa concentrazione, attraverso un setto poroso o una membrana, semipermeabile. Ogni soluzione possiede una pressione osmotica che è direttamente proporzionale alla sua molalità. Quando sui due lati della membrana si trovano soluzioni a diversa concentrazione, la differenza di pressione osmotica muove le molecole di solvente dalla soluzione più diluita verso la soluzione più concentrata, fino a quando le concentrazioni delle due soluzioni diventano identiche

OSMOSI L osmosi avviene in risposta ad una forza motrice. Alla forza motrice per il movimento contribuiscono sia il gradiente di concentrazione sia il gradiente di pressione che determinano la direzione e la velocità del flusso diffusione acquaporina La forza motrice è espressa come il Gradiente del Potenziale Chimico o più comunemente dai fisiologi vegetali come il: GRADIENTE DI POTENZIALE IDRICO flusso di massa

I fisiologi vegetali hanno definito il potenziale idrico come Potenziale chimico dell H 2 O Volume molale parziale dell H 2 O Potenziale chimico µ energia per mole [joule per mole] µ = µ* + µ c + µ E + µ P + µ g µ j = µ* j + 2.3RTlogC j + z j FE + V j P + m j gh

Ψ w = µ w - µ* w V w Potenziale idrico si misura in unità di pressione [MPa] Ψ t = Ψ s + Ψ P + Ψ g Ψ s f(concentrazione) = - π = - RTC s Ψ P f(pressione) = P idrostatica = P assoluta P atmosferica all interno delle cellule P è chiamata PRESSIONE DI TURGORE cioè la pressione esistente nelle cellule e dovuta alla spinta del protoplasto contro la parete Ψ g f (gravità) = ρ w gh Ψ = P π + ρ w gh ρ w g = 0.01 MPa m -1 se h < 5-10 m Ψ = P π - π indica la riduzione del potenziale idrico dovuto ai soluti disciolti

L acqua entra nella cellula secondo il gradiente di potenziale idrico L acqua può uscire dalla cellula anche in risposta ad un gradiente di potenziale idrico

Abbassa il potenziale osmotico Il potenziale idrico della soluzione è maggiore (meno negativo) rispetto alla cellula, l acqua si sposterà dalla soluzione di saccarosio verso la cellula Il potenziale idrico della soluzione sarà più negativo di quello della cellula e quindi l acqua si sposterà dalla cellula verso la soluzione Processo industriale dell osmosi inversa, dove una pressione applicata dall esterno serve a separare l acqua dai suoi soluti

La velocità di trasporto dell acqua in una cellula dipende dalla differenza di potenziale idrico ΔΨ w e dalla conduttività idraulica delle membrane cellulari (Lp) Più grande è la conduttività idraulica e maggiore è la velocità di flusso. Jw = Lp(ΔΨw) All aumentare della quantità d acqua assorbita aumenta il potenziale idrico e la forza motrice diminuisce Il trasporto dell acqua diminuisce col tempo

Deficit idrici portano: - Inibizione della divisione cellulare - Inibizione della sintesi proteica e di parete - Accumulo di soluti - Chiusura degli stomi e all inibizione della fotosintesi

meccanismi e forze motrici per il trasporto dell acqua gradiente di concentrazione del vapor d acqua nella traspirazione gradiente di pressione nel trasporto a lunga distanza nello xilema gradiente di potenziale idrico nella radice gradiente di pressione nel suolo

L acqua nel suolo Il contenuto idrico e la velocità di movimento dell acqua nel suolo dipendono per la maggior parte dal tipo e dalla struttura del suolo.

Ψsuolo > Ψradice > Ψfusto > Ψfoglia > Ψaria

Potenziale idrico del suolo dipende da: Potenziale osmotico π generalmente basso ( 0.01 MPa, in suoli salini può raggiungere 0.2 MPa) Pressione idrostatica l acqua del suolo è sempre sotto tensione P 0 (in suoli aridi può raggiungere -3 MPa) Da dove deriva la pressione negativa dell acqua del suolo? L acqua possiede un alta tensione superficiale che tende a ridurre l interfaccia aria-acqua. Man mano che il contenuto idrico del suolo diminuisce l acqua recede negli interstizi fra le particelle del suolo e la superficie aria-acqua si restringe portando alla formazione di menischi ricurvi. Più acqua viene rimossa dal suolo e più si formano menischi sempre più stretti, portando a tensioni sempre più alte (pressioni sempre più negative) P = - 2 τ r τ tensione superficiale (7.28 10-8 MPa m) r raggio di curvatura del menisco

Potenziale idrico del suolo o potenziale di matrice

Il Ψw delle piante deve essere più negativo Ψw del suolo, altrimenti il suolo estrarrebbe acqua dalla pianta Come fanno le piante dei suoli aridi ad ottenere un Ψw sufficientemente bassi? Abbassando i valori di Ψs, accumulando gli ioni nel vacuolo e bilanciando l osmolarità del citosol con soluti biocompatibili (prolina, betaine) Piante con bassi Ψs (-2.5MPa): Alofite piante che accumulano grandi concentrazioni di zuccheri (barbabietole da zucchero, canna da zucchero)

Nel suolo l H 2 O si muove per flusso di massa La velocità del flusso idrico dipende dal ΔP/ Δx (gradiente di pressione ) e dalla conduttività idraulica del suolo. La conduttività misura la facilità con la quale l acqua si muove attraverso il suolo. I suoli sabbiosi hanno alte conduttività idrauliche, quelli argillosi basse (piccoli spazi tra le particelle) capacità di campo quantità di H 2 O che il suolo è capace di trattenere punto permanente di appassimento valore del Ψ del suolo al di sotto del quale la pianta non può più ripristinare la P di turgore

I peli radicali sono delle estrusioni microscopiche di cellule epidermiche della radice in contatto intimo con le particelle del suolo. Aumentano l area di superficie necessaria per l assorbimento dell acqua da parte della pianta. I peli radicali sono delle cellule delicate che si rompono facilmente quando il suolo viene smosso. Questo è il motivo per cui le pianticelle appena trapiantate necessitano di essere protette dalla disidratazione durante i primi giorni dopo il trapianto. I peli radicali, crescendo nel suolo, permettono inoltre alla pianta di affrontare meglio gli stress idrici

I peli radicali aumentano enormemente la superficie disponibile per l assorbimento. Assorbimento dell H 2 O dalle radici Banda di Caspary parete cellulare radiale nell endodermide impregnata di suberina L H 2 O può seguire tre vie apoplastica transmembrana simplastica L H 2 O entra prevalentemente nella zona apicale che non è suberinizzata Conduttanza idraulica radicale L root = Jv è la velocità di flusso dell acqua - ΔΨ è la differenza di potenziale idrico attraverso la radice J v ΔΨ

Pressione radicale o pressione idrostatica positiva I soluti assorbiti dalle radici aumentano la π dello xilema determinando una diminuzione di Ψ assorbimento di H 2 O dalle radici aumento di P nello xilema si osserva guttazione dalle foglie La pressione xilematica positiva causa l essudazione di succo xilematico da strutture localizzate vicino a tracheidi terminali idatodi,

tessuto vascolare xilema responsabile del trasporto di H 2 O e nutrienti dalle radici alle foglie floema responsabile del trasporto di H 2 O e di vari composti nella pianta

XILEMA struttura specializzata per il trasporto dell H 2 O con la massima efficienza sovrapposizione di elementi vasali a formare un vaso elementi vasali le tracheidi e gli elementi vasali sono cellule morte che non possiedono membrane e organuli. Tubi cavi rinforzati da pareti secondarie lignificate tracheidi Tracheidi angiosperme, gimnosperme Vasi angiosperme

punteggiature appaiate vie a bassa resistenza per il trasporto dell H 2 O

Spostamento dell H 2 O nello xilema Flusso di massa Pressione radicale? non è sufficiente (0.1 MPa e si annulla se la traspirazione è elevata) L H 2 O si muove per la forte TENSIONE (pressione idrostatica negativa) che si sviluppa in seguito alla traspirazione e che tende ad aspirare l H 2 O nello xilema TEORIA DELLA COESIONE-TENSIONE Parete secondaria necessaria per evitare il collasso dello xilema forza esercitata sulle pareti dall H 2 O sotto tensione

Teoria della coesione-tensione

Nella pianta intera l acqua è portata alle foglie tramite lo xilema dei fasci vascolari fogliari, che si ramifica in una rete di venature In seguito all evaporazione dell H 2 O si sviluppa sulla superficie delle pareti cellulari una pressione negativa che permette al succo xilematico di raggiungere la foglia P = - 2 τ r

TEORIA DELLA COESIONE-TENSIONE L acqua all interno della pianta forma una colonna di liquido continua dalle radici alle foglie. Tale continuità idraulica permette il trasferimento istantaneo delle variazioni di P La forza motrice per il movimento dell acqua è la tensione superficiale che si sviluppa a livello della superficie di evaporazione Il raggio dei menischi ricurvi è sufficientemente piccolo da supportare colonne di acqua molto alte (r = 0.12 µm supporta una colonna di 120 m) L evaporazione determina un gradiente di pressione o tensione lungo la via di traspirazione. Ciò causa un influsso di acqua dal suolo alla superficie di traspirazione. L acqua nello xilema è in uno stato metastabile e può dar luogo al fenomeno della cavitazione

Cavitazione I gas disciolti nell H 2 O sotto tensione tendono a passare nella fase vapore formando bolle che si espandono. La notte, quando la traspirazione è bassa, diminuisce la tensione nello xilema e i gas si ridisciolgono. Anche la presenza di una pressione radicale limita la cavitazione.

LIMITAZIONE DELLA CAVITAZIONE La cavitazione è un fenomeno consistente nella formazione di zone di vapore all'interno di un liquido. Ciò avviene a causa dell'abbassamento locale di pressione ad un valore inferiore alla tensione di vapore del liquido stesso, che subisce così un cambiamento di fase a gas, formando cavità contenenti vapore. Nella cavitazione la pressione del liquido scende improvvisamente, mentre la temperatura e la pressione di vapore restano costanti. Per questo motivo la "bolla" da cavitazione resiste solo finché non esce dalla zona di bassa pressione idrostatica: appena ritorna in una zona del fluido in quiete, la pressione di vapore non è sufficiente a contrastare la pressione idrostatica e la bolla da cavitazione implode immediatamente.

l H 2 O, evaporata dalla superficie delle cellule negli spazi aeriferi, esce dalla foglia per diffusione t c=1/2 = d 2 D w (10-3 m)2 2.4 10-5 m 2 s -1 = 0.042 s la forza motrice per la perdita di H 2 O è il GRADIENTE DI CONCENTRAZIONE del vapor d acqua tra gli spazi aeriferi e l aria C wv(foglia) - C wv(aria) Strato limite dell aria Rima stomatica La velocità di traspirazione dipende, oltre che dal gradiente di concentrazione, dalla resistenza alla diffusione E = C wv(foglia) - C wv(aria) r s + r b E [mol m -2 s -1 ] r [m -1 s] C w [mol m -3 ]

Potenziale idrico dell aria Ψ = RT V w ln(rh) RH umidità relativa dell aria V volume molare dell acqua allo stato liquido RH = C wv C wv(sat.) 0 < RH < 1 RH è la concentrazione del vapor d acqua dell aria espresso come la concentrazione di saturazione del vapor d acqua un aumento di T determina la diminuzione di RH (l aria trattiene più acqua) diminuisce Ψ e altra acqua evaporerà dalla superficie fogliare

quando l aria è ferma, l apertura degli stomi non determina una grande variazione del flusso di traspirazione quando l aria è in movimento (vento), l apertura degli stomi comporta un forte incremento della traspirazione perché lo strato limite è più sottile.

La resistenza stomatica è il mezzo principale per la regolazione degli scambi gassosi attraverso le superfici fogliari. Questo controllo biologico è esercitato da un paio di cellule epidermiche specializzate, le cellule di guardia che circondano la rima stomatica

cellule di guardia a manubrio complesso dello stoma cellule di guardia reniformi STOMI rima stomatica cellule sussidiarie Cellule di guardia presenti nelle graminacee e in poche altre monocotiledoni presenti nelle dicotiledoni e nelle altre monocotiledoni

le pareti delle cellule di guardia sono ispessite ( 5 µm) rispetto a quelle delle altre cellule epidermiche ( 1-2 µm) orientamento delle microfibrille di cellulosa in cellule normali sono orientate trasversalmente rispetto all asse principale della cellula nelle cellule reniformi le microfibrille si aprono a ventaglio l ingrandimento cellulare è rinforzato e le cellule si curvano verso l esterno L apertura degli stomi è causata da un aumento di turgore delle cellule di guardia

Rappresentazione generale del potenziale idrico e delle sue componenti, in diversi punti, durante la via di trasporto che dal suolo porta all atmosfera passando attraverso la pianta