Morfologia matematica. Morfolog ia binaria Morfologia a toni di grigio Tras formata dis tanza

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Morfologia matematica. Morfolog ia binaria Morfologia a toni di grigio Tras formata dis tanza"

Transcript

1 Morfologia matematica Morfolog ia binaria Morfologia a toni di grigio Tras formata dis tanza

2 Definizioni preliminari A E n, t E n Traslazione di A rispetto ad un vettore t A t = { c E n c=a+t, a A } Riflessione di A A r = { c c=-a, a A } Complemento di A A c = E n -A A A (2,1) Le operazioni e definizione sugli insiemi sono date per note A r Visione Artificiale 10/11 Morfologia matematica 2

3 Somma di Minkowski (Dilation) A B = { c E n c=a+b, a A, b B } A B = U A b, b B Si dimostra facilmente: A B = B A A B= { (0,0), (1,0) } A (0,0) A (1,0) A B Visione Artificiale 10/11 Morfologia matematica 3

4 Dilation L insieme B viene normalmente definito elemento strutturante A B= {(-1,0), (1,0) } A (-1,0) A (1,0) A B Visione Artificiale 10/11 Morfologia matematica 4

5 Dilation Visione Artificiale 10/11 Morfologia matematica 5

6 Erosion (Differenza di Minkowski) AΘB = { c E n c+b A, per ogni b B } AΘB = A -b b B Θ Ō A B= { (0,0), (1,0) } A (-1,0) A-B Visione Artificiale 10/11 Morfologia matematica 6

7 Erosion Visione Artificiale 10/11 Morfologia matematica 7

8 Proprietà Se l origine (0,0) appartiene all elemento strutturante (AΘB) A (A B) Visione Artificiale 10/11 Morfologia matematica 8

9 Erosion Erosion Dilation Visione Artificiale 10/11 Morfologia matematica 9

10 Proprietà (A+B)+C=A+(B+C) (A B)+C=(A+C) (B+C) (A-B)-C=A-(B+C) (A B)-C=(A-C) (B-C) A+B= A b A-B= A -b A B (A+C) (B+C) A B (A-C) (B-C) (A B)+C (A+C) (B+C) (A B)-C (A-C) (B-C) A+(B C)=(A+B) (A+C) A-(B C)=(A-C) (B-C) (A+B) c =A c -B r A+B t =(A+B) t A-B t =(A-B) -t A-(B C) (A-C) (B-C) Per semplicità di notazione si è usato +e- per gli operatori Erosion e Dilation Visione Artificiale 10/11 Morfologia matematica 10

11 Closing C(A, K) = (A+K)-K = A K A C(A,K)=C(C(A,K),K) K A A+K (A+K)-K Visione Artificiale 10/11 Morfologia matematica 11

12 Closing C(A, K) = (A+K)-K K A A+K (A+K)-K Visione Artificiale 10/11 Morfologia matematica 12

13 Closing C(A, K) = (A+K)-K K A A+K (A+K)-K Visione Artificiale 10/11 Morfologia matematica 13

14 Closing K A A+K (A+K)-K Visione Artificiale 10/11 Morfologia matematica 14

15 Closing Visione Artificiale 10/11 Morfologia matematica 15

16 Opening O(A, K) = (A-K)+K = A K O(O(A,K),K)=O(A,K) A K A A-K (A-K)+K Visione Artificiale 10/11 Morfologia matematica 16

17 Opening O(A, K) = (A-K)+K K A A-K= =(A-K)+K Visione Artificiale 10/11 Morfologia matematica 17

18 Opening O(A, K) = (A-K)+K K A A-K (A-K)+K Visione Artificiale 10/11 Morfologia matematica 18

19 Opening Visione Artificiale 10/11 Morfologia matematica 19

20 Opening e closing Visione Artificiale 10/11 Morfologia matematica 20

21 Esempio Visione Artificiale 10/11 Morfologia matematica 21

22 Hit or Miss A (J,K) = (A-J) (A c -K) con il vincolo J K= Permette di trovare strutture regolari (template matching) Dilation e erosion possono essere considerati come casi particolari Visione Artificiale 10/11 Morfologia matematica 22

23 Esempio Ricerca di punti isolati (8-connessi) A-J=A A A c J K A c -K Risultato finale Visione Artificiale 10/11 Morfologia matematica 23

24 Esempio Ricerca di punti isolati (4-connessi) A A c J K A c -K Risultato finale Visione Artificiale 10/11 Morfologia matematica 24

25 Esempio J e K possono essere visti come una unica maschera con tre tipi di valori Punti necessariamente di immagine Punti di background Punti non rilevanti M Visione Artificiale 10/11 Morfologia matematica 25

26 Hit or Miss - Esempio Pixel compatibili con la maschera di background Pixel compatibili con la maschera per l immagine Visione Artificiale 10/11 Morfologia matematica 26

27 Estrazione di contorni Edge(A) = A (AΘB) B A Edge(A) Visione Artificiale 10/11 Morfologia matematica 27

28 Estrazione di contorni Visione Artificiale 10/11 Morfologia matematica 28

29 Riempimento di regioni X k = (X k-1 B) A C X 0 = p Il procedimento termina quando X k == X k-1 X B X 0 A Visione Artificiale 10/11 Morfologia matematica 29

30 Componenti connesse Visione Artificiale 10/11 Morfologia matematica 30

31 Convex hull Visione Artificiale 10/11 Morfologia matematica 31

32 Esercizi 1) Eliminare i conduttori sottili 2) Congiungere i conduttori vicini 3) Trovare le componenti connesse 4) Trovare il convex hull di ogni componente Visione Artificiale 10/11 Morfologia matematica 32

33 Umbra (estensione alle immagini gray scale) A E n, F E n-1, x F, y E Top di un insieme A (T[A]:F E): T[A](x) = max { y (x, y) A } Umbra di f (f:f E): U[f] = { (x, y) F x E y f(x) } T[A] A U[A] E n U[U[A]] U[ A] Insieme A Top di A Umbra di A Visione Artificiale 10/11 Morfologia matematica 33

34 Umbra Si noti che data una funzione f:r 2 R si può facilmente definire una nuova funzione f:r 3 {0, 1} equivalente g(x, y, z) = 1 z f(x, y) z U[f(x, y)] g(x, y, z) = 0 z > f(x, y) z U[f(x, y)] Posso cioè ricondurre la morfologia a toni di grigio alla morfologia matematica in uno spazio a 3 dimensioni Visione Artificiale 10/11 Morfologia matematica 34

35 Gray scale dilation Dati: F,K E n-1, f:f E, k:k E F,K R 2, f:f R, k:k R (nel caso delle immagini) Si definisce dilation di f tramite k (f k)(x) = max{f(x-z)+k(z) z K, x-z F} Dal punto di vista computazionale la complessità è equivalente ad una convoluzione Visione Artificiale 10/11 Morfologia matematica 35

36 Esempio - dilation (f k)(6) = max{f(6-0)+k(0), f(6-1)+k(1), f(6-2)+k(2)}= max{f(6)+k(0), f(5)+k(1), f(4)+k(2)}= max{5+0, 6+1, 5+0} = 7 x f k f k Visione Artificiale 10/11 Morfologia matematica 36

37 Esempio - dilation (f k)(5) = max{f(5-(-1))+k(-1), f(5-0)+k(0), f(5-1)+k(1)}= max{f(6)+k(-1), f(5)+k(0), f(4)+k(1)}= max{5-1, 6+0, 5-1} = 6 x f k f k Visione Artificiale 10/11 Morfologia matematica 37

38 Esempio - dilation k U[k] f U[f] U[f] U[k] f k = T[U[f] U[k]] Visione Artificiale 10/11 Morfologia matematica 38

39 Esempio - dilation Visione Artificiale 10/11 Morfologia matematica 39

40 Gray scale erosion Dati: F,K E n-1, f:f E, k:k E Si definisce erosion di f tramite k (fθk)(x) = min{f(x+z)-k(z) z K, x+z F} Si dimostra che una definizione equivalente è: fθk = T{U[f]ΘU[k]} Visione Artificiale 10/11 Morfologia matematica 40

41 Esempio - erosion (fθk)(5) = min{f(5-(-1))-k(-1), f(5-0)-k(0), f(5-1)-k(1)}= min{f(6)-k(-1), f(5)-k(0), f(4)-k(1)}= min{5+1, 6-0, 5+1} = 6 x f k f-k Visione Artificiale 10/11 Morfologia matematica 41

42 Esempio - erosion Visione Artificiale 10/11 Morfologia matematica 42

43 Esempio - opening Visione Artificiale 10/11 Morfologia matematica 43

44 Esempio - closing Visione Artificiale 10/11 Morfologia matematica 44

45 Esempi di operatori Ripreso da Visione Artificiale 10/11 Morfologia matematica 45

46 Esempi Erosion Dilation Closing Opening Visione Artificiale 10/11 Morfologia matematica 46

47 Esempi Gradiente morfologico G = (f b) (fθb) Top-hat transformation H = f O(f,b) Gradiente morfologico Se b i =0 i il gradiente morfologico è la differenza fra il massimo locale e il minimo locale Visione Artificiale 10/11 Morfologia matematica 47

Fondamenti di Elaborazione di Immagini Morfologia Matematica. Raffaele Cappelli

Fondamenti di Elaborazione di Immagini Morfologia Matematica. Raffaele Cappelli Fondamenti di Elaborazione di Immagini Morfologia Matematica Raffaele Cappelli raffaele.cappelli@unibo.it Contenuti Introduzione alla morfologia matematica Notazione e concetti di base Gli operatori di

Dettagli

Morfologia e Image Processing. Multimedia

Morfologia e Image Processing. Multimedia Morfologia e Image Processing Morfologia Matematica Nell ambito dell image processing il termine morfologia matematica denota lo studio della struttura geometrica dell immagine. E uno strumento utile per

Dettagli

Morphological Image processing

Morphological Image processing Morphological Image processing Morfologia matematica La parola morfologia comunemente denota una parte della biologia che tratta con la forma e la struttura di organismi In analogia al termine biologico

Dettagli

Corso di Elaborazione di Segnali Multimediali Elaborazione Morfologica delle Immagini

Corso di Elaborazione di Segnali Multimediali Elaborazione Morfologica delle Immagini Corso di Elaborazione di Segnali Multimediali Elaborazione Morfologica delle Immagini Raffaele Gaetano 3 Giugno 2014 L analisi di immagini Tra le discipline informatiche, l analisi di immagini ha come

Dettagli

Corso di Visione Artificiale. Filtri III parte. Samuel Rota Bulò

Corso di Visione Artificiale. Filtri III parte. Samuel Rota Bulò Corso di Visione Artificiale Filtri III parte Samuel Rota Bulò Filtri morfologici I filtri morfologici trattano le immagini come insiemi di punti (x,y). Un'immagine è quindi vista come un insieme Un filtro

Dettagli

ESTENSIONE ALLE IMMAGINI A LIVELLI DI GRIGIO

ESTENSIONE ALLE IMMAGINI A LIVELLI DI GRIGIO Capitolo 8 - Operatori Morfologici per Immagini a Livelli di Grigio 1 ESTENSIONE ALLE IMMAGINI A LIVELLI DI GRIGIO Gli operatori morfologici possono essere generalizzati al fine di elaborare non solo immagini

Dettagli

Morfologia e Image Processing. Multimedia

Morfologia e Image Processing. Multimedia Morfologia e Image Processing Morfologia Matematica Nell ambito dell image processing il termine morfologia matematica denota lo studio della struttura geometrica dell immagine. E uno strumento utile per

Dettagli

Morfologia Matematica su immagini in scala di grigio

Morfologia Matematica su immagini in scala di grigio Morfologia Matematica su immagini in scala di grigio Dilation, erosion, opening, closing Top-Hat, Bottom-Hat Algoritmi Morfologici in scala di grigio Dalle immagini binarie alle immagini in scala di grigio

Dettagli

Morfologia e Image Processing

Morfologia e Image Processing Morfologia e Image Processing Multimedia Prof. Battiato Morfologia Matematica Nell ambito dell image processing il termine morfologia matematica denota lo studio della struttura geometrica dell immagine.

Dettagli

Morfologia. Stefano Ferrari. Università degli Studi di Milano

Morfologia. Stefano Ferrari. Università degli Studi di Milano Morfologia Stefano Ferrari Università degli Studi di Milano stefanoferrari@unimiit Tecniche di calcolo e sistemi operativi e informatica anno accademico 2017 2018 Elaborazioni morfologiche La morfologia

Dettagli

Morfologia Matematica applicata alle Immagini Digitali

Morfologia Matematica applicata alle Immagini Digitali Morfologia Matematica applicata alle Immagini Digitali Daniela Garofalo Viviana Zimbone MORFOLOGIA MATEMATICA Branca della matematica rivolta all elaborazione delle immagini. Fornisce strumenti utili per:

Dettagli

Capitolo 9 LA MORFOLOGIA APPLICATA ALLE IMMAGINI DIGITALI

Capitolo 9 LA MORFOLOGIA APPLICATA ALLE IMMAGINI DIGITALI Capitolo 9 LA MORFOLOGIA APPLICATA ALLE IMMAGINI DIGITALI La morfologia è una branca della biologia che ha a che fare con la forma degli animali e delle piante; nel nostro caso è un mezzo che ci serve

Dettagli

Esercizi relativi al capitolo 7

Esercizi relativi al capitolo 7 Esercizi relativi al capitolo 7 7.1 Vettori di R n Determinare i vettori ottenuti mediante le seguenti combinazioni lineari: 1. v = 2v 1 v 2 +v 3 +3v 4 con v 1 = (1, 1, 2), v 2 = ( 1, 2, 0), v 3 = (3,

Dettagli

Introduzione a Matlab

Introduzione a Matlab Introduzione a Matlab Operazioni di Base & Edge Detection Fondamenti di Visione Artificiale a.a. 25/26 2/5/6 Estrazione dei Contorni Lezione V: indice Filtri e Kernel Line Detection Edge Detection Edge

Dettagli

Politecnico di Milano (sede di Mantova) ME=TePCeS2 1.07.05001 REAZIONI VINCOLARI ME=TePCeS2 1.07.05001 y,v,v,q H I K 5F J L 11F 11F 15F 15F 5F 5F 11F 11F 11F 26F 26F 15F F G 2F 5F 11F 5F 5F 15F 26F C 3W

Dettagli

Corso di laurea in Scienze Biologiche Compito di Istituzioni di Matematiche assegnato il 12 giugno 2000

Corso di laurea in Scienze Biologiche Compito di Istituzioni di Matematiche assegnato il 12 giugno 2000 assegnato il 1 giugno 1 Risolvere il sistema di disequazioni ( ) 1 x 1 3 9 3 log (13 x) > 3 x 9 x 4 + 1 < Scrivere le equazioni delle circonferenze che passano per il punto A = (, ) e sono tangenti alle

Dettagli

soluzione in 7 step Es n 208

soluzione in 7 step Es n 208 soluzione in 7 soluzione in 7 soluzione in 7 AH 5 CA CH 5 6 4,8 5 36 3,04 5,96 5 cm soluzione in 7 AH 5 CA CH 5 6 4,8 5 36 3,04 5,96 5 cm 3 : 4,8 5 4,8 : HB 4,8 soluzione in 7 AH 5 CA CH 5 6 4,8 5 36 3,04

Dettagli

Esercizi di Geometria - Foglio 1 Corso di Laurea in Fisica 24 Settembre 2003

Esercizi di Geometria - Foglio 1 Corso di Laurea in Fisica 24 Settembre 2003 Esercizio 1.1 Esercizi di Geometria - Foglio 1 Corso di Laurea in Fisica 24 Settembre 2003 1. Teoria elementare degli insiemi Descrivere in modo esplicito i seguenti insiemi: (i) L = {x x e una lettera

Dettagli

Esercizi di Geometria - Foglio 1 Corso di Laurea in Fisica 30 Settembre 2008

Esercizi di Geometria - Foglio 1 Corso di Laurea in Fisica 30 Settembre 2008 Esercizi di Geometria - Foglio 1 Corso di Laurea in Fisica 30 Settembre 2008 1. Logica e teoria elementare degli insiemi Esercizio 1.1 (i In un aula ci sono 30 ragazzi e 30 ragazze. asserzioni: Si considerino

Dettagli

Esercizi di Geometria 1 - Foglio 1

Esercizi di Geometria 1 - Foglio 1 Esercizi di Geometria 1 - Foglio 1 Alessandro Rubin (alex.rubin@outlook.com) Si ringrazia Ricardo Tzantzoglou per il codice L A TEX condiviso 22 dicembre 2017 Esercizio 1. Sia V uno spazio vettoriale sul

Dettagli

Basi di dati I 8 luglio 2016 Esame Compito A Tempo a disposizione: un ora e trenta minuti.

Basi di dati I 8 luglio 2016 Esame Compito A Tempo a disposizione: un ora e trenta minuti. Basi di dati I 8 luglio 2016 Esame Compito A Tempo a disposizione: un ora e trenta minuti. Cognome: Nome: Matricola: Domanda 1 (20%) Considerare la base di dati relazionale contenente le seguenti relazioni:

Dettagli

Tutorato di Calcolatori Elettronici Battista Biggio - Sebastiano Pomata. Corso di Laurea in Ingegneria Elettronica

Tutorato di Calcolatori Elettronici Battista Biggio - Sebastiano Pomata. Corso di Laurea in Ingegneria Elettronica Tutorato di Calcolatori Elettronici Battista Biggio - Sebastiano Pomata Corso di Laurea in Ingegneria Elettronica Mappe di Karnaugh Reti Logiche Latch e Flip-Flop Reti Sequenziali Tutorato di Calcolatori

Dettagli

Operazioni morfologiche

Operazioni morfologiche Elaborazione di Segnali Multimediali a.a. 2013/2014 Operazioni morfologiche L.Verdoliva Le tecniche di enhancement studiate finora si basano tipicamente su operazioni di tipo lineare, tuttavia spesso può

Dettagli

Soluzioniagliesercizi Capitolo 2 Soluzione 2.1. Soluzione 2.2. Soluzione 2.3. Soluzione 2.4.

Soluzioniagliesercizi Capitolo 2 Soluzione 2.1. Soluzione 2.2. Soluzione 2.3. Soluzione 2.4. I Soluzioni agli esercizi apitolo 2 Soluzione 2.. Partendo dall espressione a destra dell uguale si applica ripetutamente il teorema di e Morgan ed infine la proprietà distributiva. Soluzione 2.2. cb +

Dettagli

Liceo Scientifico Severi salerno

Liceo Scientifico Severi salerno Liceo Scientifico Severi salerno VERIFICA ORALE MATEMATICA Docente: Pappalardo Vincenzo Data: /0/09 Classe: B. Determina per quali valori del parametro k le seguenti equazioni rappresentano una affinità:

Dettagli

INTRODUZIONE. Gli operatori della morfologia binaria sono operatori fra insiemi definiti a partire dell immagine binaria.

INTRODUZIONE. Gli operatori della morfologia binaria sono operatori fra insiemi definiti a partire dell immagine binaria. Capitolo 7 - Operatori Morfologici per Immagini Binarie INTRODUZIONE Gli operatori della morfologia binaria sono operatori fra insiemi definiti a partire dell immagine binaria. L immagine binaria, I, viene

Dettagli

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA b) Dal testo sappiamo già che si tratta di un isometria. Rappresentando i punti si vede che sia

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA b) Dal testo sappiamo già che si tratta di un isometria. Rappresentando i punti si vede che sia CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA FOGLIO DI ESERCIZI GEOMETRIA 008/09 Esercizio.. Dati i punti i O0, 0), A, ), B, ), determinare l isometria fx, y) = x, y ) tale che fo) = O, fa) = A, fb)

Dettagli

Segmentazione di impronte digitali. Annalisa Franco

Segmentazione di impronte digitali. Annalisa Franco Segmentazione di impronte digitali Annalisa Franco annalisa.franco@unibo.it http://bias.csr.unibo.it/vr/ 2 La segmentazione Scopo di questa esercitazione è l implementazione di una tecnica di segmentazione

Dettagli

Proposizioni logiche e algebra di Boole

Proposizioni logiche e algebra di Boole Proposizioni logiche e algebra di Boole Docente: Ing. Edoardo Fusella Dipartimento di Ingegneria Elettrica e Tecnologie dell Informazione Via Claudio 21, 4 piano laboratorio SECLAB Università degli Studi

Dettagli

ELABORAZIONE DELLE IMMAGINI:

ELABORAZIONE DELLE IMMAGINI: Università degli Studi di Catania Facoltà di Scienze Matematiche,Fisiche e Naturali Corso di Laurea in Informatica, Secondo Livello ELABORAZIONE DELLE IMMAGINI: EDGE DETECTION Corso di Analisi Numerica

Dettagli

Fondamenti di Informatica

Fondamenti di Informatica Fondamenti di Informatica Algebra di Boole di Boole e Circuiti e Circuiti Logici Logici Prof. XXX Prof. Arcangelo Castiglione A.A. 2016/17 A.A. 2016/17 L Algebra di Boole 1/3 Un po di storia Il matematico

Dettagli

Premesse matematiche. 2.1 Gradiente

Premesse matematiche. 2.1 Gradiente Premesse matematiche 2.1 Gradiente ia f(x, y, z) : R 3 una funzione scalare delle coordinate spaziali (x, y, z). L ampiezza della funzione f(x, y, z) dipende dal punto di osservazione e risulta in genere

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a. 2011-2012 Prova scritta del 28-1-2013 TESTO E SOLUZIONI 1. Per k R considerare il sistema lineare X 1 X 2 + kx 3 =

Dettagli

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari UNIVERSITÀ DI ROMA TOR VERGATA Analisi Matematica II per Ingegneria Prof. C. Sinestrari Risposte (sintetiche) ai quesiti degli esercizi del 12.X.2018 1. (a) Ω è aperto, Ω = {0, 1, 2}, Ω = Ω, Ω = [0, 1]

Dettagli

Fondamenti di Informatica B

Fondamenti di Informatica B Fondamenti di Informatica B Lezione n.2 Alberto Broggi Gianni Conte A.A. 25-26 Fondamenti di Informatica B Algebra booleana Circuiti logici Elementi primitivi Esercizi con elementi logici Lezione n.2n

Dettagli

Note sulle funzioni convesse/concave

Note sulle funzioni convesse/concave Note sulle funzioni convesse/concave 4th December 2008 1 Definizioni e proprietà delle funzioni convesse/concave. Definizione 1.1 Un insieme A IR n è detto convesso se per ogni x 1 e x 2 punti di A, il

Dettagli

Decisori (razionali) interagenti

Decisori (razionali) interagenti Decisori (razionali) interagenti UNA INTRODUZIONE ALLA TEORIA DEI GIOCHI Edizioni PLUS, 2006 (pag. web: Edizioni Plus) Definizioni formali Fioravante PATRONE http://www.fioravante.patrone.name/default.htm

Dettagli

Soluzioni f(y)e iyx dy. f(y)e iy( x) dy = 1. = F 1 f( x)

Soluzioni f(y)e iyx dy. f(y)e iy( x) dy = 1. = F 1 f( x) Soluzioni 8. Allora Quindi Usiamo la convenzione 3 F f(k) = f(k) = F f(x) = f(x) = F f(x) = = = F f( x) f(x)e ikx dx f(k)e ikx dk f(y)e iyx dy f(y)e iy( x) dy F f = F F f( x) = f( x) (a) f pari significa

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 075-585 2708 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia/

Dettagli

Morphological Image Processing. C. Andrés Méndez April, 2013

Morphological Image Processing. C. Andrés Méndez April, 2013 Morphological Image Processing C. Andrés Méndez April, 2013 Where to find the presentations? http://profs.sci.univr.it/~mendezguerrero Introduction In many areas of knowledge Morphology deals with form

Dettagli

Limiti e continuità Test di autovalutazione

Limiti e continuità Test di autovalutazione Test di autovalutazione 1. Sia A R tale che sup A = 2 e inf A = 0. Allora, necessariamente 2 A (b) esiste x A tale che 0 < x < 2 (c) esiste x A tale che x > 1 0 A 2. Il prodotto delle funzioni x e ln x

Dettagli

A Politecnico di Torino II Facoltà di Architettura Esame di Istituzioni di Matematiche I 13 Gennaio 2009

A Politecnico di Torino II Facoltà di Architettura Esame di Istituzioni di Matematiche I 13 Gennaio 2009 A Esame di Istituzioni di Matematiche I 13 Gennaio 2009 Determinare l equazione del piano passante per il punto A = (2, 1, 3) e perpendicolare al vettore v dato da v = Au, dove A = 2 1 3 0 1 2, u = 1 3.

Dettagli

Reti logiche: introduzione

Reti logiche: introduzione Corso di Calcolatori Elettronici I Reti logiche: introduzione ing. Alessandro Cilardo Corso di Laurea in Ingegneria Biomedica Circuiti e porte logiche Esempio di rete di commutazione: Circuiti e porte

Dettagli

Supplemento straordinario n. 2 al B.U. della Regione Calabria - Parti I e II - n. 22 del 30 novembre 2002

Supplemento straordinario n. 2 al B.U. della Regione Calabria - Parti I e II - n. 22 del 30 novembre 2002 20063 # %%&% ' # % '!! #% #% $ % ' $&$$ ' 79.4 4 5574;, 430/0 574 09940,:947, 430,,, 430/0 25,39 / 82, 9 203940/ 70.:5074 /0 7 1 :9,79 8 84 099. 0 3903/434,70 3:4; 25,39 / 82, 9 20394 4 / 70.:5074 / 7

Dettagli

Morphological Image Processing

Morphological Image Processing Morphological Image Processing Introduction In many areas of knowledge Morphology deals with form and structure (biology, linguistics, social studies, etc) Mathematical Morphology deals with set theory

Dettagli

Esercizi di Logica Matematica

Esercizi di Logica Matematica Esercizi di Logica Matematica Francesco Bottacin 1 Logica Proposizionale Esercizio 1.1. Eliminare le parentesi non necessarie nelle seguenti formule: 1. ((A B) ( C)) 2. (A (B ( C))) 3. ((A B) (C D)) 4.

Dettagli

Relazioni e Principio di Induzione

Relazioni e Principio di Induzione Relazioni e Principio di Induzione Giovanna Carnovale October 12, 2011 1 Relazioni Dato un insieme S, un sottoinsieme fissato R del prodotto cartesiano S S definisce una relazione ρ tra gli elementi di

Dettagli

Esercitazioni di Algebra e Geometria

Esercitazioni di Algebra e Geometria Esercitazioni di Algebra e Geometria Anno Accademico 2010 2011 Dott.ssa Elisa Pelizzari e-mail elisa.peli@libero.it Esercitazioni: lunedì 14.30 16.30 venerdì 14.30 16.30 Ricevimento studenti: venerdì 13.30

Dettagli

LiDAR ed immagini multispettrali ad alta definizione per la valutazione di rocciosità e pietrosità superficiale

LiDAR ed immagini multispettrali ad alta definizione per la valutazione di rocciosità e pietrosità superficiale LiDAR ed immagini multispettrali ad alta definizione per la valutazione di rocciosità e pietrosità superficiale Rossano Ciampalini Dipartimento di Scienza del Suolo e Nutrizione della Pianta Università

Dettagli

Università degli Studi di Roma La Sapienza

Università degli Studi di Roma La Sapienza Università degli Studi di Roma La Sapienza Dipartimento di Informatica e Sistemistica A. Ruberti Proff. Gianni Di Pillo and Laura Palagi Note per il corso di OTTIMIZZAZIONE (a.a. 2007-08) Dipartimento

Dettagli

11 settembre Soluzione esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

11 settembre Soluzione esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura 3 ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Elementi di Informatica A. A. 2016/2017

Elementi di Informatica A. A. 2016/2017 Elementi di Informatica A. A. 2016/2017 Ing. Nicola Amatucci Università degli studi di Napoli Federico II Scuola Politecnica e Delle Scienze di Base nicola.amatucci@unina.it Algebra di Boole Elementi di

Dettagli

Prova d Esame di Ricerca Operativa

Prova d Esame di Ricerca Operativa Prova d Esame di Ricerca Operativa (Prof. Fasano Giovanni) Università Ca Foscari Venezia - Sede di via Torino 4 giugno 2018 Regole per l esame: la violazione delle seguenti regole comporta il ritiro dell

Dettagli

Modello Generale della Telecamera

Modello Generale della Telecamera A.a. 2009/2010 Modello Generale della Telecamera Proiezione prospettica Consideriamo un punto dello spazio 3D, M=[x,,z] T, le cui coordinate sono espresse nel sistema di riferimento (sdr) solidale con

Dettagli

Istituzioni di Matematiche seconda parte

Istituzioni di Matematiche seconda parte Istituzioni di Matematiche seconda parte anno acc. 2012/2013 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Istituzioni di Matematiche 1 / 31 index Proprietà elementari dei

Dettagli

Trasformare e migliorare

Trasformare e migliorare Trasformare e migliorare Elaborazione di immagini Da f(x,y) a g(x,y) pixel trasformati secondo un determinato algoritmo f(x,y) g(x,y) Scopi dell elaborazione Eliminazione dei disturbi Esaltazione dei particolari

Dettagli

26 - Funzioni di più Variabili Limiti e Derivate

26 - Funzioni di più Variabili Limiti e Derivate Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 26 - Funzioni di più Variabili Limiti e Derivate Anno Accademico 2013/2014 M.

Dettagli

(a) Le derivate parziali f x. f y = x2 + 2xy + 3 si annullano contemporaneamente in (1, 2) e ( 1, 2). Le derivate seconde di f valgono.

(a) Le derivate parziali f x. f y = x2 + 2xy + 3 si annullano contemporaneamente in (1, 2) e ( 1, 2). Le derivate seconde di f valgono. Esercizio 1 Si consideri la funzione f(x, y) = x 2 y + xy 2 + y (a) Determinare i punti di massimo e minimo relativo e di sella del grafico di f. (b) Determinare i punti di massimo e minimo assoluto di

Dettagli

Vettori e matrici. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Vettori e matrici. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Vettori e matrici Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utentiunifeit/lorenzopareschi/ lorenzopareschi@unifeit Lorenzo Pareschi Univ Ferrara

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA DISEQUAZIONI E SISTEMI Dr. Erasmo Modica erasmo@galois.it SISTEMI DI EQUAZIONI DI PRIMO GRADO Definizione: Si definisce

Dettagli

Operazioni morfologiche

Operazioni morfologiche Elaborazione dei Segnali Multimediali a.a. 2009/2010 Operazioni morfologiche L.Verdoliva Le tecniche di enhancement studiate finora si basano tipicamente su operazioni di tipo lineare, tuttavia spesso

Dettagli

OTTIMIZZAZIONE in unione con COMPLEMENTI DI RICERCA OPERATIVA

OTTIMIZZAZIONE in unione con COMPLEMENTI DI RICERCA OPERATIVA Corsi di Laurea in Ingegneria Matematica, Informatica, dell Automazione e Telecomunicazioni OTTIMIZZAZIONE in unione con COMPLEMENTI DI RICERCA OPERATIVA Edoardo Amaldi DEI - Politecnico di Milano amaldi@elet.polimi.it

Dettagli

Algebra di Commutazione

Algebra di Commutazione Algebra di Commutazione Maurizio Palesi Maurizio Palesi 1 Algebra Booleana - Introduzione Per descrivere i dispositivi digitali è necessario avere Un modello che permette di rappresentare insiemi di numeri

Dettagli

Corso di Calcolatori Elettronici I A.A Algebra di Boole Lezione 4

Corso di Calcolatori Elettronici I A.A Algebra di Boole Lezione 4 Corso di Calcolatori Elettronici I A.A. 2010-2011 Algebra di Boole Lezione 4 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Segnali in circuiti elettronici digitali da: G. Bucci. Calcolatori

Dettagli

Operazioni tra matrici e n-uple

Operazioni tra matrici e n-uple CAPITOLO Operazioni tra matrici e n-uple Esercizio.. Date le matrici 0 4 e dati λ = 5, µ =, si calcoli AB, BA, A+B, B A, λa+µb. Esercizio.. Per ognuna delle seguenti coppie di matrici A, B e scalari λ,

Dettagli

Soluzione esercizi 28 ottobre 2011

Soluzione esercizi 28 ottobre 2011 ANALISI Soluzione esercizi 8 ottobre 0 4.. Esercizio. Siano α e β due numeri reali tali che la loro somma e la loro differenza siano razionali: provare che allora essi sono entrambi razionali. Il teorema

Dettagli

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler)

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) La funzione esponenziale f con base a é definita da f(x) = a x dove a > 0, a 1, e x é un numero reale. Ad esempio, f(x) = 3 x e g(x) = 0.5

Dettagli

L2 = basso [25 percentile] percentile] L5 = alto [90 percentile]

L2 = basso [25 percentile] percentile] L5 = alto [90 percentile] Restituzione dei Risultati relativi a Esame di Stato primo Ciclo Secondaria di primo grado anno scolastico 20092010 Istituto scolastico: VA1M02100X Denominazione: MARIA IMMACOLATA : 204110390801 Livello:

Dettagli

Fondamenti di Informatica

Fondamenti di Informatica Fondamenti di Informatica Algebra di Boole e Circuiti Logici Prof. Christian Esposito Corso di Laurea in Ingegneria Meccanica e Gestionale (Classe I) A.A. 2016/17 Algebra di Boole e Circuiti Logici L Algebra

Dettagli

Algebra di Boole Cenni all Algebra di Boole. Algebra Booleana: definizione

Algebra di Boole Cenni all Algebra di Boole. Algebra Booleana: definizione Algebra Booleana: operazioni e sistema algebrico Algebra di Boole Cenni all Algebra di Boole Introduzione Rappresentazione di una funzione combinatoria Proprietà dell algebra di commutazione Forme canoniche

Dettagli

Prova scritta di Algebra lineare e Geometria- 16 Aprile 2010

Prova scritta di Algebra lineare e Geometria- 16 Aprile 2010 CdL in Ingegneria del Recupero Edilizio ed Ambientale - - Ingegneria Edile-Architettura (M-Z)- Ingegneria delle Telecomunicazioni - - Ingegneria Informatica (A-F), (R-Z) Prova scritta di Algebra lineare

Dettagli

Elementi di Calcolo Combinatorio. Dato un insieme I n, con P n si indica il numero di tutte le possibili permutazioni semplici di I n.

Elementi di Calcolo Combinatorio. Dato un insieme I n, con P n si indica il numero di tutte le possibili permutazioni semplici di I n. 1 Elementi di Calcolo Combinatorio Def.: Dato un insieme I n, con P n si indica il numero di tutte le possibili permutazioni semplici di I n. ( n 1)... 3 2 1 P n n In quanti modi diversi si possono disporre

Dettagli

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler)

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) La funzione esponenziale f con base a é definita da f(x) = a x dove a > 0, a 1, e x é un numero reale. Ad esempio, f(x) = 3 x e g(x) = 0.5

Dettagli

Anno Accademico Fisica I 12 CFU Esercitazione n.1 Operazioni con i vettori

Anno Accademico Fisica I 12 CFU Esercitazione n.1 Operazioni con i vettori Anno Accademico 2017-2018 Fisica I 12 CFU Esercitazione n.1 Operazioni con i vettori Esercizio n.1 (28-11-2007, 8 CFU con soluz.) In un sistema di riferimento Oxyz, assegnati i punti A e B di coordinate

Dettagli

SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO

SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO FACOLTÀ DI INGEGNERIA CORSO DI AZZERAMENTO - MATEMATICA ANNO ACCADEMICO 010-011 ESERCIZI RELATIVI A SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO Esercizio 1: Fissato su una retta un sistema di riferimento

Dettagli

Algebra di Boole. Cenni all Algebra di Boole

Algebra di Boole. Cenni all Algebra di Boole Algebra di Boole Cenni all Algebra di Boole Introduzione Rappresentazione di una funzione combinatoria Proprietà dell algebra di commutazione Forme canoniche Teorema di espansione di Shannon Algebra Booleana:

Dettagli

Algebra di Boole. Tavole di verità. Fondamenti di Informatica Algebra di Boole. Si basa su tre operazioni logiche: AND (*) OR (+) NOT (!

Algebra di Boole. Tavole di verità. Fondamenti di Informatica Algebra di Boole. Si basa su tre operazioni logiche: AND (*) OR (+) NOT (! Fondamenti di Informatica Algebra di Boole Prof.ssa Enrica Gentile Informatica e Comunicazione Digitale a.a. 2-22 Algebra di Boole Si basa su tre operazioni logiche: AND (*) OR () NOT (!) Gli operandi

Dettagli

FONDAMENTI DI INFORMATICA Lezione n. 2

FONDAMENTI DI INFORMATICA Lezione n. 2 FONDMENTI DI INFORMTIC Lezione n. 2 LGEBR BOOLEN CIRCUITI LOGICI ELEMENTI PRIMITIVI QULCHE ESERCIZIO CON ELEMENTI LOGICI In questa lezione sono ripresi i concetti principali di base dell algebra booleana

Dettagli

SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO

SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO DIPARTIMENTO DI INGEGNERIA CIVILE PRECORSO DI MATEMATICA ANNO ACCADEMICO 013-014 ESERCIZI RELATIVI A SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO Esercizio 1: Fissato su una retta un sistema di riferimento

Dettagli

Programmazione Matematica: VI Estensioni dell algoritmo del Simplesso

Programmazione Matematica: VI Estensioni dell algoritmo del Simplesso Programmazione Matematica: VI Estensioni dell algoritmo del Simplesso Daniele Vigo D.E.I.S. Università di Bologna dvigo@deis.unibo.it rev. 1.0 Aprile 2004 Algoritmo del Simplesso L algoritmo del Simplesso

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prima prova di esonero TESTO E SOLUZIONI

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prima prova di esonero TESTO E SOLUZIONI UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a. 011-01 Prima prova di esonero TESTO E SOLUZIONI 1. Per h, k R si consideri il sistema lineare kx 1 + hx + X 4 = 1

Dettagli

Geometria BAER Canale A-K Esercizi 9

Geometria BAER Canale A-K Esercizi 9 Geometria BAER 2016-2017 Canale A-K Esercizi 9 Esercizio 1. Si considerino i punti del piano A (1, 1), B (4, 1), C ( 1/2, 2) (a) Si determini se i punti A, B, C sono allineati e, in caso affermativo, si

Dettagli

Prova del 3 Marzo, Traccia della soluzione. Problema n. 1

Prova del 3 Marzo, Traccia della soluzione. Problema n. 1 IIASS International Institute for Advanced Scientific Studies Eduardo R. Caianiello Circolo di Matematica e Fisica Dipartimento di Fisica E.R. Caianiello Università di Salerno Premio Eduardo R. Caianiello

Dettagli

Rappresentazione dell'informazione

Rappresentazione dell'informazione Rappresentazione dell'informazione Corrispondenza tra informazione I e sua rappresentazione P(I), composta da cifre ai di un alfabeto di simboli A I P(i) = {ai}, ai A Esempi di alfabeto: {a, b,..., z}

Dettagli

1 Minimizzazione di espressioni logiche con le proprietà dell algebra

1 Minimizzazione di espressioni logiche con le proprietà dell algebra 1 Minimizzazione di espressioni logiche con le proprietà dell algebra di Boole 1.1 Esercizi con soluzione Esercizio 1.1 - Data la seguente funzione F: F = a bcd + abcd + ab cd + a bc d 1. Utilizzando le

Dettagli

La matematica del CAD. Vettori e Matrici

La matematica del CAD. Vettori e Matrici La matematica del CAD Vettori e Matrici IUAV Disegno Digitale Camillo Trevisan I programmi CAD riducono tutti i problemi geometrici in problemi analitici: la proiezione di un punto su un piano viene, ad

Dettagli

ALGEBRA DI BOOLE. In caso di errori di battitura o se si volesse contribuire a migliorare la seguente guida contattare:

ALGEBRA DI BOOLE. In caso di errori di battitura o se si volesse contribuire a migliorare la seguente guida contattare: ALGEBRA DI BOOLE Indice Introduzione... 2 PRORIETA E TEOREMI DELL ALGEBRA DI BOOLE... 3 FUNZIONI LOGICHE PRIMARIE... 4 Funzione logica AND... 4 Funzione logica OR... 4 Funzione logica NOT... 5 FUNZIONI

Dettagli

Fondamenti di Informatica. Algebra di Boole

Fondamenti di Informatica. Algebra di Boole Fondamenti di Informatica Prof. Marco Lombardi A.A. 2018/19 L 1/3 Un po di storia Il matematico inglese George Boole nel 1847 fondò un campo della matematica e della filosofia chiamato logica simbolica

Dettagli

Operazioni puntuali. Tipi di elaborazioni Operatori puntuali Look Up Table Istogramma

Operazioni puntuali. Tipi di elaborazioni Operatori puntuali Look Up Table Istogramma Tipi di elaborazioni Operatori puntuali Look Up Table Istogramma Analisi di Basso Livello In ingresso abbiamo le immagini provenienti dai sensori. In uscita si hanno un insieme di matrici ognuna delle

Dettagli

1. Esercizi sui numeri reali

1. Esercizi sui numeri reali 1. Esercizi sui numeri reali 1.1. Ricavare la formula risolutiva per le equazioni di secondo grado. 1.. Scrivere in altro modo a, a R. 1.3. Dato a R, scrivere le soluzioni dell equazione x = a. 1.4. Se

Dettagli

Codifica binaria: - numeri interi relativi -

Codifica binaria: - numeri interi relativi - Codifica binaria: - numeri interi relativi - Ingegneria Meccanica e dei Materiali Università degli Studi di Brescia Prof. Massimiliano Giacomin Tipologie di codici Per la rappresentazione di: caratteri

Dettagli

Estrazione dei bordi

Estrazione dei bordi Estrazione dei bordi L algoritmo di Marr-Hildreth L algoritmo di Canny Operatori per l estrazione dei bordi (edge operators) Lo scopo di questi operatori è quello di generare un immagine dei bordi (edge

Dettagli

Algebra di Boole. Da Boole a Shannon

Algebra di Boole. Da Boole a Shannon Corso di Calcolatori Elettronici I A.A. 2012-2013 Algebra di Boole Prof. Roberto Canonico Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Elettrica e delle Tecnologie dell Inforazione

Dettagli

PreCorso di Matematica - PCM Corso A

PreCorso di Matematica - PCM Corso A PreCorso di Matematica - PCM Corso A DOCENTE: M. Auteri Numeri positi e negativi..... 6 5 4 3 2 1 0 1 2 3 4 5 6..... 0 2, 4, 5 2.14, 3.76, 21.9351-2, -4, -5-2.43, -12.54, -17.9136 Docente: Auteri, PreCorso

Dettagli

Algebra di commutazione

Algebra di commutazione Algebra di commutazione Algebra Booleana - Introduzione Per descrivere i dispositivi digitali è necessario avere Un modello che permetta di rappresentare insiemi di numeri binari; Le funzioni che li mettano

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 8: soluzioni Esercizio 1. a) Disegnare la retta r di equazione cartesiana x 2y 4 = 0. b) Determinare l equazione cartesiana della retta r 1 passante per P

Dettagli

Introduzione ai sistemi informatici 4/ed Donatella Sciuto, Giacomo Buonanno, Luca Mari. Copyright 2008 The McGraw-Hill Companies CAPITOLO 2

Introduzione ai sistemi informatici 4/ed Donatella Sciuto, Giacomo Buonanno, Luca Mari. Copyright 2008 The McGraw-Hill Companies CAPITOLO 2 CAPITOLO 2 Soluzioni agli esercizi del libro: 2) 6 3) Utilizzando i simboli 0, 1 e 2 e considerando che sono necessarie 2 cifre per rappresentare 9 possibilità, è possibile ad esempio la codifica (00-lunedì),

Dettagli

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler)

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) La funzione esponenziale f con base a é definita da f(x) = a x dove a > 0, a 1, e x é un numero reale. Ad esempio, f(x) = 3 x e g(x) = 0.5

Dettagli