Limiti e continuità Test di autovalutazione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Limiti e continuità Test di autovalutazione"

Transcript

1 Test di autovalutazione 1. Sia A R tale che sup A = 2 e inf A = 0. Allora, necessariamente 2 A (b) esiste x A tale che 0 < x < 2 (c) esiste x A tale che x > 1 0 A 2. Il prodotto delle funzioni x e ln x per x 0 + tende a zero (b) tende ad 1 (c) tende a non ammette limite 3. Sono date le funzioni f(x) = sin x 2 e g(x) = x. Allora: (b) domf g = R dom g f = R (c) im f g = [0, 1] im g f = 4. È data la funzione f(x) = ln(x 2 x 2 + 1). Allora: domf = R + (b) (c) dom f = (2, + ) f non è mai definita im f = R 5. Sia f : R R una funzione continua tale che f(7) = 3. Allora, necessariamente f(x) 0 per ogni x R (b) esiste x > 7 tale che f(x) < 0 (c) non esiste x < 7 tale che f(x) < 0 f(x) = 3 per ogni x R

2 6. La funzione x x + 1 per x + tende a 1 (b) tende a 0 (c) non ammette limite tende a + 7. La successione a n = 1 + ( 1)n n : (b) (c) non ammette limite ha lo stesso limite della successione b n = 1 + ( 1)n n è convergente è limitata tra 0 e 1 8. La funzione e 1/x3 per x 0 tende a (b) tende a + (c) ha lo stesso comportamento anche per x 0 + tende a 1 9. Si supponga che la funzione f(x) sia continua su R e soddisfi le condizioni f(x) = 176 e f(0) = 5. Allora: lim x f è monotona crescente in (, 0] (b) (c) k [ 36, 23], a R : f = k ǫ > 0, B > 0 : x < B = 176 < f(x) < ǫ f è limitata inferiormente 10. Sia f : R R tale che lim f(x) = 8. Allora necessariamente: x 3 δ > 0, ǫ > 0 : (b) ǫ > 0, δ > 0 : (c) se x + 3 < δ f(x) > 0, x > 3 x + 3 < δ = f(x) 8 < ǫ 0 < x + 3 < δ = f(x) 8 < ǫ allora f(x) 8 < ǫ

3 11. Sia A = {x R : x = π + 1, k Z \ {0}}. Allora, necessariamente k sup A = π (b) A non ammette massimo (c) min A = π 1 A è illimitato 12. L immagine della funzione f(x) = x3 + x 1 x (0, + ) (b) R (c) (, 0) ( 1, 1) è:

4 1. Sia A R tale che sup A = 2 e inf A = 0. Allora, necessariamente 2 A (b) esiste x A tale che 0 < x < 2 (c) esiste x A tale che x > 1 0 A RISPOSTA ESATTA: (c). La risposta (c) è vera per la proprietà dell estremo superiore: se 2 = sup A, allora qualunque sia ǫ > 0 esiste x A tale che 2 ǫ < x < 2. In particolare, preso ǫ = 1, si può trovare x A tale che 1 < x < 2. Le risposte e sono false: si pensi come controesempio all insieme A = (0, 2). L insieme A = {0, 2} costituisce un controesempio che dimostra la falsità della risposta (b).

5 2. Il prodotto delle funzioni x e ln x per x 0 + tende a zero (b) tende ad 1 (c) tende a non ammette limite RISPOSTA ESATTA:. Calcoliamo il limite ln x lim x ln x = lim x 0 + x = 0 x in quanto per x 0 +, la funzione ln x è un infinito di ordine inferiore alla funzione 1/x a, qualunque sia a > 0.

6 3. Sono date le funzioni f(x) = sin x 2 e g(x) = x. Allora: domf g = R (b) dom g f = R (c) im f g = [0, 1] im g f = RISPOSTA ESATTA:. Si ha mentre (f g)(x) = f( x) = sin x 2 (g f)(x) = g(sin x 2) = sin x 2. Di conseguenza dom f g = [0, + ) e im f g = [ 3, 1]; dom g f = (in quanto sin x 1), e dunque anche im g f =. Pertanto la risposta è esatta e tutte le altre sono errate.

7 4. È data la funzione f(x) = ln(x 2 x 2 + 1). Allora: domf = R + (b) dom f = (2, + ) (c) f non è mai definita im f = R RISPOSTA ESATTA: (c). Si può facilmente verificare (risolvendo la disequazione irrazionale algebricamente oppure graficamente) che, qualunque sia x R, è sempre x 2 < x2 + 1; dunque domf =. Pertanto (c) è vera e le altre sono false.

8 5. Sia f : R R una funzione continua tale che f(7) = 3. Allora, necessariamente f(x) 0 per ogni x R (b) esiste x > 7 tale che f(x) < 0 (c) non esiste x < 7 tale che f(x) < 0 f(x) = 3 per ogni x R RISPOSTA ESATTA: (b). Poiché f è continua e f(7) < 0, per il Teorema di permanenza del segno esiste un intorno del punto x = 7 in cui f(x) < 0; pertanto si avrà f(x) < 0 sia in un intorno destro sia in un intorno sinistro di x = 7. Quindi (b) è vera e (c) è falsa. La funzione f(x) = x 10 costituisce un controesempio che dimostra la falsità delle risposte e.

9 6. La funzione x x + 1 per x + tende a 1 (b) tende a 0 (c) non ammette limite tende a + RISPOSTA ESATTA: (b). Infatti, calcoliamo il limite moltiplicando e dividendo per x + x + 1: lim ( x x + 1) = lim x + x + x (x + 1) x + x + 1 = lim x + 1 x + x + 1 = 0.

10 7. La successione a n = 1 + ( 1)n n : (b) (c) non ammette limite ha lo stesso limite della successione b n = 1 + ( 1)n n è convergente è limitata tra 0 e 1 RISPOSTA ESATTA: (c). ) ( 1) n Poiché lim = 0, si ha lim (1 + ( 1)n = 1, e dunque la risposta (c) n n n n è vera, mentre la è falsa. La (b) è falsa: infatti b n = 1 + ( 1)n n Pertanto lim n b n = 0. La è falsa, perché, se n è pari, a n > 1. 2 se n è pari, = n 0 se n è dispari.

11 8. La funzione e 1/x3 per x 0 tende a (b) tende a + (c) ha lo stesso comportamento anche per x 0 + tende a 1 RISPOSTA ESATTA: (b). Poiché lim x 0 1 =, si ha lim = e + = +. Dunque (b) è vera x3 x 0 e 1/x3 mentre e sono false. Anche (c) è falsa, perché lim lim = e = 0. x 0 + e 1/x3 x = +, e dunque x3

12 9. Si supponga che la funzione f(x) sia continua su R e soddisfi le condizioni f(x) = 176 e f(0) = 5. Allora: lim x f è monotona crescente in (, 0] (b) (c) k [ 36, 23], a R : f = k ǫ > 0, B > 0 : x < B = 176 < f(x) < ǫ f è limitata inferiormente RISPOSTA ESATTA: (b) Poiché f è continua, dai dati del quesito si deduce che f assume tutti i valori compresi tra -176 (escluso) e 5, in particolare quelli compresi tra 36 e 23. Dunque k [ 36, 23], a R : f = k, e (b) è esatta. La funzione f(x) = (181 x 2 )e x 176 fornisce un controesempio che mostra la falsità delle altre risposte. Infatti: - f è continua su R, lim f(x) = 176 e f(0) = 5. x Inoltre: - f non è limitata inferiormente, in quanto lim f(x) =, e dunque è x + falsa - f non è monotona crescente in (, 0], in quanto, se x (, 1 182), si ha f (x) = (181 2x x 2 ) e x < 0, e dunque è falsa - se x (, 181), si ha f(x) < 176, e dunque (c) è falsa.

13 10. Sia f : R R tale che lim f(x) = 8. Allora necessariamente: x 3 δ > 0, ǫ > 0 : (b) ǫ > 0, δ > 0 : (c) se x + 3 < δ f(x) > 0, x > 3 x + 3 < δ = f(x) 8 < ǫ 0 < x + 3 < δ = f(x) 8 < ǫ allora f(x) 8 < ǫ RISPOSTA ESATTA: (b) Le risposte e (c) sono false: non è affatto detto che f(x) sia limitata in un qualunque intorno di x = 3. La risposta (b) è vera: è la definizione del limite lim f(x) = 8. x 3 La risposta è falsa: si pensi come controesempio alla funzione y = 8x 16.

14 11. Sia A = {x R : x = π + 1, k Z \ {0}}. Allora, necessariamente k sup A = π (b) A non ammette massimo (c) min A = π 1 A è illimitato RISPOSTA ESATTA: (c) Per k = ±1, si ha π ± 1 A. Inoltre, si osservi che π 1 a π + 1, a A. Dunque min A = π 1, e maxa = sup A = π + 1. Pertanto le risposte e (b) e sono false, mentre la risposta (c) è vera.

15 12. L immagine della funzione f(x) = x3 + x 1 x (0, + ) (b) R (c) (, 0) ( 1, 1) è: RISPOSTA ESATTA: (b) Si osservi che f(x) è definita e continua su R e che lim f(x) =, lim x f(x) = +. x + Dunque qualunque sia k R, esiste x R tale che f(x) = k, e quindi im f = R.

Limiti e continuità Test di autovalutazione

Limiti e continuità Test di autovalutazione Test di autovalutazione 1. Si indichi con M(t) la mantissa di t. Il limite lim x 0 M(1 x ) non esiste (b) vale 1 (c) vale 0 è uguale a M(lim x 0 (1 x )). Sia a n una successione infinitesima e consideriamo

Dettagli

Calcolo differenziale Test di autovalutazione

Calcolo differenziale Test di autovalutazione Test di autovalutazione 1. Sia f : R R una funzione derivabile in 0 tale che f(0) = f (0) = 0. Si consideri la funzione g(x) = f(x). Allora, necessariamente sin x (a) lim g(x) = 0 (b) lim g(x) = 1 (c)

Dettagli

Nozioni di base - Quiz - 2

Nozioni di base - Quiz - 2 Nozioni di base - Quiz - Rispondere ai seguenti quesiti (una sola risposta è corretta).. L insieme delle soluzioni della disequazione (a) (0, ) (, + ) (x ) log(x) x + 0 è: (b) [, ] (c) (d) (e) (, + ) (0,

Dettagli

FUNZIONI ELEMENTARI Test di autovalutazione

FUNZIONI ELEMENTARI Test di autovalutazione FUNZIONI ELEMENTARI Test di autovalutazione 1 E data la funzione f(x) = sin(2x 5) Allora: (a) dom (f) = {x IR : 1 2x 5 1} (b) im (f) = [ 1, 1] (c) f ha periodo T= π 5 (d) f ha periodo T= 2π 5 2 La funzione

Dettagli

Funzioni e loro proprietà. Immagini e controimmagini. Funzioni composte e inverse. Funzioni elementari Quiz

Funzioni e loro proprietà. Immagini e controimmagini. Funzioni composte e inverse. Funzioni elementari Quiz Funzioni e loro proprietà. Immagini e controimmagini. Funzioni composte e inverse. Funzioni elementari Quiz Rispondere ai seguenti quesiti. Una sola risposta e corretta. 1. Le due funzioni f(x) = ln(x

Dettagli

Confronto locale di funzioni Test di autovalutazione

Confronto locale di funzioni Test di autovalutazione Test di autovalutazione 1. Per x 0: (a) x 3 = o(x 4 ) (b) x 4 = o(sin x 2 ) (c) x 3 x 3 + 1 (d) x 7 + x x 2 x 2. Il limite lim x 0 + (a) vale 0 (b) non esiste (c) vale 2 (d) è infinito 4x 3 x ln x tan

Dettagli

DERIVATE. Rispondere ai seguenti quesiti. Una sola risposta è corretta. 1. Data la funzione f(x) =2+ x 7, quale delle seguente affermazioni èvera?

DERIVATE. Rispondere ai seguenti quesiti. Una sola risposta è corretta. 1. Data la funzione f(x) =2+ x 7, quale delle seguente affermazioni èvera? DERIVATE Rispondere ai seguenti quesiti. Una sola risposta è corretta.. Data la funzione f(x) =+ x 7, quale delle seguente affermazioni èvera? (a) f(x) nonè derivabile in x =0 (b) f (0) = (c) f (0) = (d)

Dettagli

Matematica 1 mod. A per Matematica Esempi di quiz

Matematica 1 mod. A per Matematica Esempi di quiz Matematica 1 mod. A per Matematica Esempi di quiz 1. Sia x un numero reale. Allora x 3: è uguale a 3x 2. può essere diverso da 3x 2. è sempre un numero irrazionale. 2. Sia S l insieme delle soluzioni della

Dettagli

INTEGRALI Test di autovalutazione

INTEGRALI Test di autovalutazione INTEGRALI Test di autovalutazione. L integrale ln 6 è uguale a (a) vale 5 2 (b) (c) (d) 4 5 vale ln 256 2 è negativo 2 5 + 4 5 2 5 + 4 5 d d 2. È data la funzione = e 2. Allora: (a) se F() è una primitiva

Dettagli

Limiti di funzioni reali e Funzioni continue. x b di ciascuna delle seguenti affermazioni se è vera o falsa.

Limiti di funzioni reali e Funzioni continue. x b di ciascuna delle seguenti affermazioni se è vera o falsa. Limiti di funzioni reali e Funzioni continue 1. Sia f(x) definita in un intervallo I tale che f(x) + per x x 0 I. A. [f(x)] + per x x 0, dove [f(x)] è la parte intera di f(x). B. f(x) > 0 per ogni 0

Dettagli

Limiti e continuità. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Limiti e continuità Analisi A 1 / 68

Limiti e continuità. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Limiti e continuità Analisi A 1 / 68 Limiti e continuità Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) Limiti e continuità Analisi A 1 / 68 Cenni di topologia La nozione di intorno Sia x 0 R e r > 0.

Dettagli

INTEGRALI Test di autovalutazione

INTEGRALI Test di autovalutazione INTEGRALI Test di autovalutazione. Sia f una funzione continua su IR, e F una primitiva di f tale che F () = 5. Allora: (a) esiste k IR tale che F (x) f(x) =k, x IR (b) F (x) = x f(t) dt (c) F non è derivabile

Dettagli

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x Studi di funzione 1) Studiare la funzione definita da f(x) = x + 2 e (x+2). Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione g(x) = x e x cioè

Dettagli

FUNZIONI - CONTINUITA - DERIVABILITA Test di autovalutazione

FUNZIONI - CONTINUITA - DERIVABILITA Test di autovalutazione FUNZIONI - CONTINUITA - DERIVABILITA Test di autovalutazione 1. Sia f una funzione derivabile e con derivata prima strettamente positiva in tutti i punti interni al suo dominio. Allora: (a) f non ha punti

Dettagli

Soluzioni degli esercizi di Analisi Matematica I

Soluzioni degli esercizi di Analisi Matematica I Soluzioni degli esercizi di Analisi Matematica I (Prof. Pierpaolo Natalini) Roberta Bianchini 30 ottobre 07 FOGLIO. Determinare il dominio e il segno della funzione ( ) f(x) = arccos x x + π/3.. Verificare

Dettagli

Corso di Laurea in Informatica e Comunicazione digitale Esame di Analisi Matematica

Corso di Laurea in Informatica e Comunicazione digitale Esame di Analisi Matematica Corso di Laurea in Informatica e Comunicazione digitale Esame di Analisi Matematica 7 giugno 2017 1. Determinare (a) a quale proprietà si riferisce la seguente scrittura inerente ad una successione {a

Dettagli

Matematica per le Applicazioni Economiche I A.A. 2017/2018 Esercizi con soluzioni Numeri reali, topologia e funzioni

Matematica per le Applicazioni Economiche I A.A. 2017/2018 Esercizi con soluzioni Numeri reali, topologia e funzioni Matematica per le Applicazioni Economiche I A.A. 017/018 Esercizi con soluzioni Numeri reali, topologia e funzioni 1 Numeri reali Esercizio 1. Risolvere la disequazione x 6 4x 3 + 3 0. Soluzione. Poniamo

Dettagli

Limiti di funzioni all infinito (1) lim f(x) = λ R x K>0 : x > K f(x) λ < ε (2) lim f(x) = x M>0 >0 K>0 : x > K f(x) > M (3) lim f(x) = x M>0 >0 K>0 : x > K f(x) < < M Se f(x) è definita in un intorno

Dettagli

Universitá di Roma Tor Vergata

Universitá di Roma Tor Vergata Universitá di Roma Tor Vergata Prof. A. Porretta 1) Determinare l estremo superiore e l estremo inferiore dei seguenti insiemi, e dire se si tratta di massimi o minimi. A = { } x [ π, π] : sin x 1 ; A

Dettagli

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x Studi di funzione 1) Studiare la funzione definita da f(x) = x + e (x+). Per cominciare, osserviamo che f si ottiene traslando di, nella direzione negativa dell asse x, la funzione g(x) = x e x cioè abbiamo

Dettagli

Lezione 11 (30 novembre)

Lezione 11 (30 novembre) Lezione 11 (30 novembre) Teorema di De l Hopital Massimi e minimi assoluti e relativi Funzioni limitate superiormente e inferiormente Legame tra derivata prima e crescita e decrescita della funzione Derivata

Dettagli

Principali insiemi di numeri

Principali insiemi di numeri Principali insiemi di numeri N = {0,1,2,...} insieme dei numeri naturali o anche interi non negativi Z = N { 1, 2, 3,...} insieme dei numeri interi Q = { n m } : n,m Z, m 0 insieme dei numeri razionali

Dettagli

Corsi di laurea in Fisica, Fisica ed Astrofisica Analisi A.A Foglio 4 1. Data la funzione

Corsi di laurea in Fisica, Fisica ed Astrofisica Analisi A.A Foglio 4 1. Data la funzione Corsi di laurea in Fisica, Fisica ed Astrofisica Analisi A.A. 007-008 Foglio 4 1. Data la funzione x 6x + 8 x 0, 8 cos(x) x < 0, dire se è continua in 0. Affinché la funzione sia continua in zero, deve

Dettagli

UNIVERSITA DEL SALENTO CORSO DI LAUREA IN MATEMATICA Prova scritta di ANALISI MATEMATICA I 19/01/09

UNIVERSITA DEL SALENTO CORSO DI LAUREA IN MATEMATICA Prova scritta di ANALISI MATEMATICA I 19/01/09 UNIVERSITA DEL SALENTO Prova scritta di ANALISI MATEMATICA I 19/01/09 1 Determinare sup/inf max/min) e insieme dei punti di accumulazione del seguente insieme: E = {x R e x 5e x + 6) arctan x 1 x) < 1}

Dettagli

Limiti di funzioni e continuità

Limiti di funzioni e continuità Limiti di funzioni e continuità Paolo Montanari Appunti di Matematica Limiti di funzioni e continuità 1 Funzioni limitate La funzione f(x) è limitata superiormente se esiste un numero reale M tale che

Dettagli

7. Studio elementare di funzioni

7. Studio elementare di funzioni 7. Studio elementare di funzioni Davide Catania davide.catania@unibs.it Esercitazioni di Analisi Matematica 1 Studio elementare di funzioni (1) Trova il dominio. data f (x) (2) Studia la simmetria e la

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Domande Vero/Falso (prima parte) 1. (a) Un numero complesso diverso da zero è invertibile. (b) Una successione illimitata superiormente

Dettagli

ESERCITAZIONE: ESPONENZIALI E LOGARITMI

ESERCITAZIONE: ESPONENZIALI E LOGARITMI ESERCITAZIONE: ESPONENZIALI E LOGARITMI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Esercizio 1 In una coltura batterica, il numero di batteri triplica ogni ora. Se all inizio dell osservazione

Dettagli

ANALISI MATEMATICA 1-23/01/2019 Corso di Laurea in Ingegneria Meccanica. Primo Appello - Test 1

ANALISI MATEMATICA 1-23/01/2019 Corso di Laurea in Ingegneria Meccanica. Primo Appello - Test 1 ANALISI MATEMATICA 1-23/1/219 Corso di Laurea in Ingegneria Meccanica Il candidato deve riportare nella griglia le risposte che ritiene corrette. Al termine della prova il candidato deve riconsegnare questo

Dettagli

Analisi (L. Fanelli - M. Marchi - P. Vernole - A. Pisante)

Analisi (L. Fanelli - M. Marchi - P. Vernole - A. Pisante) Corso di laurea in Fisica, a.a. 2015/16 Analisi (L. Fanelli - M. Marchi - P. Vernole - A. Pisante) Prima prova in itinere 13 novembre 2015 I Regolamento. Annerire in modo evidente un opzione a scelta fra

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo C.6 Funzioni continue Pag. 114 Dimostrazione del Corollario 4.25 Corollario 4.25 Sia f continua in un intervallo I. Supponiamo che f ammetta, per x tendente a ciascuno degli estremi dell intervallo, iti

Dettagli

Calcolo differenziale Test di autovalutazione

Calcolo differenziale Test di autovalutazione Test di autovalutazione 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = 1 3 2. Sia

Dettagli

Funzioni continue. Hynek Kovarik. Università di Brescia. Analisi Matematica 1

Funzioni continue. Hynek Kovarik. Università di Brescia. Analisi Matematica 1 Funzioni continue Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Funzioni continue Analisi Matematica 1 1 / 44 Funzioni continue Definizione Siano f : A

Dettagli

Analisi Matematica 1 - Ingegneria Aerospaziale Compitino del 22 febbraio Soluzioni

Analisi Matematica 1 - Ingegneria Aerospaziale Compitino del 22 febbraio Soluzioni PRIMA PARTE Analisi Matematica 1 - Ingegneria Aerospaziale Compitino del febbraio 008 - Soluzioni 1. Si consideri la successione a n ) n definita da a n := 3)n + 1 3 n n Allora p. 1/ 1 per domanda) a)

Dettagli

Algebra dei limiti. quando l espressione a secondo membro è definita (non si hanno forme indeterminate), si ha. lim. f (x)

Algebra dei limiti. quando l espressione a secondo membro è definita (non si hanno forme indeterminate), si ha. lim. f (x) Algebra dei limiti Teorema. Se lim f () = l R e lim g() = m R, allora, 0 0 quando l espressione a secondo membro è definita (non si hanno forme indeterminate), si ha lim (f () + g()) = lim f () + lim g()

Dettagli

14. Studio grafico completo di funzioni

14. Studio grafico completo di funzioni 14. Studio grafico completo di funzioni Davide Catania davide.catania@unibs.it Esercitazioni di Analisi Matematica 1 Studio elementare di funzioni (1) Trova il dominio. data f (x) (2) Studia la simmetria

Dettagli

Esercizi di Matematica per le Scienze Studio di funzione

Esercizi di Matematica per le Scienze Studio di funzione Esercizi di Matematica per le Scienze Studio di funzione A.M. Bigatti e G. Tamone Esercizi Studio di funzione Esercizio 1. Disegnare il grafico di una funzione continua f che soddisfi tutte le seguenti

Dettagli

del punto c (dove c può essere un numero reale oppure + ), escluso al più il punto

del punto c (dove c può essere un numero reale oppure + ), escluso al più il punto C.4 Limiti Pag. 87 Dimostrazione del Teorema 3.27 Teorema 3.27 Sia f una funzione definita e monotona in un intorno destro I + (c) del punto c (dove c può essere un numero reale oppure ), escluso al più

Dettagli

Laurea triennale in Informatica - Corso B (M-Z) Prova scritta di Analisi Matematica Teoria

Laurea triennale in Informatica - Corso B (M-Z) Prova scritta di Analisi Matematica Teoria 13 giugno 2016 1. In base alla teoria studiata e giustificando la risposta, determinare (a) se la funzione f(x) = cos x è pari, dispari o nessuna delle due cose; x 5 (b) se la funzione g(x) = 2 x + x 3

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Tempo a disposizione: 120 minuti. Svolgere tre dei quattro esercizi proposti. 1 Studiare, al variare del parametro reale k 0, l insieme numerico

Tempo a disposizione: 120 minuti. Svolgere tre dei quattro esercizi proposti. 1 Studiare, al variare del parametro reale k 0, l insieme numerico Università degli Studi di Catania Anno Accademico 213-214 Corso di Laurea in Fisica Prova scritta di Analisi Matematica 1[A-L](12 CFU) 8 Settembre 214 Tempo a disposizione: 12 minuti. Svolgere tre dei

Dettagli

Calcolo differenziale II

Calcolo differenziale II Calcolo differenziale II Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Derivate (II) Analisi Matematica 1 1 / 36 Massimi e minimi Definizione Sia A R, f

Dettagli

Analisi Matematica 1+2

Analisi Matematica 1+2 Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-700 Savona Tel. +39 09 264555 - Fax +39 09 264558 Ingegneria Gestionale Analisi Matematica +2 A.A 998/99 - Prove parziali

Dettagli

Studio Qualitativo di Funzione

Studio Qualitativo di Funzione Studio Qualitativo di Funzione Reperire un certo numero di informazioni per descrivere a livello qualitativo l andamento del grafico di una funzione f 1. campo di esistenza (cioè, l insieme di definizione)

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-700 Savona Tel. +39 09 64555 - Fax +39 09 64558 Analisi Matematica Testi d esame e Prove parziali a prova - Ottobre

Dettagli

Scritto di Analisi Matematica I per STM Anno Accademico 2016/17 04/09/2017

Scritto di Analisi Matematica I per STM Anno Accademico 2016/17 04/09/2017 Anno Accademico 2016/17 04/09/2017 COG ) lnx) 1) Scrivere l espressione lnxx2 lnx x come polinomio, ossia nella forma ) lnx) a m x m + a m 1 x m 1 + + a 1 x + a 0. 2) a) Dire per quali x R la serie + a

Dettagli

ESAME DI MATEMATICA PER LE APPLICAZIONI ECONOMICHE 14 GIUGNO 2016 FILA A

ESAME DI MATEMATICA PER LE APPLICAZIONI ECONOMICHE 14 GIUGNO 2016 FILA A ESAME DI MATEMATICA PER LE APPLICAZIONI ECONOMICHE 4 GIUGNO 206 FILA A Durata della prova: 2 ore e mezza. NOTA: Spiegare con molta cura le risposte. NOTAZIONE: log = ln = log e. Esercizio 5 punti) Sia

Dettagli

Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli x R che verificano le condizioni:

Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli x R che verificano le condizioni: Studi di funzione 5) Studiare la funzione definita da f() = arcsin ( ) + 3 2 +. Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli R che verificano le condizioni: () : +,

Dettagli

Esercizi relativi al capitolo 2

Esercizi relativi al capitolo 2 Esercizi relativi al capitolo. Funzioni pari e dispari Stabilire se le seguenti funzioni sono pari, dispari o né pari né dispari.. f (x) = x 4 x. f (x) = 3 x 3 + x 3. f (x) = x3 3 x+x 4. f (x) = x sin

Dettagli

Successioni numeriche

Successioni numeriche Successioni numeriche Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Successioni Analisi Matematica 1 1 / 48 Definizione Una successione a valori reali è

Dettagli

Analisi Matematica 1 Appello straordinario

Analisi Matematica 1 Appello straordinario marzo 09 Testo A. Sia ν : N N una funzione strettamente crescente. Allora sicuramente a n N, νn) n b n N: νn) > n. Sia a n ) n N successione tale che n N: ε > 0 n > n, a n a < ε. Allora sicuramente a a

Dettagli

Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni

Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni Esercizi proposti 1. Calcolare la derivata prima f () per le seguenti funzioni: a) f() = c) f() = ( 1 + 1 b) f() = 1 arctan ) d) f() = cos ( ( + ) 5) e) f() = 1 + sin 1 f) f() = arcsin 1. Determinare i

Dettagli

APPUNTI SU FUNZIONI REALI DI VARIABILE REALE E LORO LIMITI

APPUNTI SU FUNZIONI REALI DI VARIABILE REALE E LORO LIMITI APPUNTI SU FUNZIONI REALI DI VARIABILE REALE E LORO LIMITI 1. preliminari sulle funzioni Definizione 1. Una funzione è una legge che ad ogni elemento di un insieme D (detto dominio) associa un unico elemento

Dettagli

Alcuni Teoremi sulle funzioni continue e uniforme continuità

Alcuni Teoremi sulle funzioni continue e uniforme continuità Alcuni Teoremi sulle funzioni continue e uniforme continuità Teorema 0. Una funzione f(x) è continua in x 0 se e solo se per ogni sucessione {x n } dom(f) con x n x 0 dom(f), risulta f(x n ) f(x 0 ). (Non

Dettagli

Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica), a.a. 2007/08. Insiemi numerici: sup A, inf A

Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica), a.a. 2007/08. Insiemi numerici: sup A, inf A Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica, a.a. 2007/08 Esercizi: Parte 1 Insiemi numerici: sup A, inf A 1. Verificare se A, nel caso sia non vuoto, è limitato superiormente,

Dettagli

Studio qualitativo. Emanuele Paolini 2 luglio 2002

Studio qualitativo. Emanuele Paolini 2 luglio 2002 Studio qualitativo Emanuele Paolini 2 luglio 2002 Non sempre è possibile determinare esplicitamente le soluzione di una equazione differenziale. Ci proponiamo quindi di trovare dei metodi per determinare

Dettagli

Analisi Matematica I, 2006/2007, L. Vesely Primo compitino del 17 novembre 2006 TEMA I COGNOME:... NOME:...

Analisi Matematica I, 2006/2007, L. Vesely Primo compitino del 17 novembre 2006 TEMA I COGNOME:... NOME:... Analisi Matematica I, 2006/2007, L. Vesely Primo compitino del 17 novembre 2006 TEMA I COGNOME:... NOME:... N. MATR.:... IMMATRICOLAZIONE: [2006] [2005] [altro] [Ricordate che log significa log e. Siete

Dettagli

ESERCIZI E COMPLEMENTI DI ANALISI MATEMATICA: quinto foglio. A. Figà Talamanca

ESERCIZI E COMPLEMENTI DI ANALISI MATEMATICA: quinto foglio. A. Figà Talamanca ESERCIZI E COMPLEMENTI DI ANALISI MATEMATICA: quinto foglio A. Figà Talamanca 14 ottobre 2010 2 0.1 Ancora limiti di funzioni di variabile reale Esercizio 1 Sia f(x) = [sin x] definita nell insieme [0,

Dettagli

Proprietà globali delle funzioni continue

Proprietà globali delle funzioni continue Limiti e continuità Teorema di esistenza degli zeri Teorema dei valori intermedi Teorema di Weierstrass Teoremi sulla continuità della funzione inversa 2 2006 Politecnico di Torino 1 Data una funzione

Dettagli

ANALISI MATEMATICA 1. (Ingegneria Industriale, corsi A e B) Esempi di prove scritte

ANALISI MATEMATICA 1. (Ingegneria Industriale, corsi A e B) Esempi di prove scritte ANALISI MATEMATICA 1 (Ingegneria Industriale, corsi A e B) Esempi di prove scritte Rispondere ai quesiti a risposta multipla Qi, risolvere gli esercizi Ei, enunciare le definizioni Di e svolgere le dimostrazioni

Dettagli

Limiti di funzioni. Hynek Kovarik. Università di Brescia. Analisi Matematica 1

Limiti di funzioni. Hynek Kovarik. Università di Brescia. Analisi Matematica 1 Limiti di funzioni Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Limiti e continuità Analisi Matematica 1 1 / 38 Cenni di topologia La nozione di intorno

Dettagli

y = x y(0) = 0.

y = x y(0) = 0. A.A. 2006/2007 I Esercitazione 19 aprile 2007 Esercizio 1. Dato il problema di Cauch = x 2 2 2 + 1 (0) = 0, dimostrare che: (a) ammette un unica soluzione massimale ; (b) tale soluzione è definita globalmente;

Dettagli

Esercizi. Soluzione: 1. Indicando con P il peso iniziale del materiale, si deve avere. . Il tempo richiesto è 800 log

Esercizi. Soluzione: 1. Indicando con P il peso iniziale del materiale, si deve avere. . Il tempo richiesto è 800 log Esercizi Esercizio 4. Un materiale radioattivo è caratterizzato da un tempo di dimezzamento pari a 800 anni. Dopo quanto tempo un campione di tale materiale si sarà ridotto del 15%? Qual è il tempo di

Dettagli

APPELLO C AM1C 19 Gennaio f(x) = log( x + 2) x

APPELLO C AM1C 19 Gennaio f(x) = log( x + 2) x Esercizio 1. Sia data la funzione f(x) = log( x + 2) x (a )Determinarne: insieme di esistenza e di derivabilità, limiti ed eventuali asintoti, eventuali punti angolosi o di cuspide, eventuali massimi e

Dettagli

La topologia della retta (esercizi svolti)

La topologia della retta (esercizi svolti) La topologia della retta (esercizi svolti) Massimo Pasquetto ITS Cangrande della Scala Verona 6 novembre 2017 Esercizi tratti dal capitolo 12 del libro di testo [1] e svolti nelle classi 4A e 4C dell ITS

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

Successioni Numeriche

Successioni Numeriche Successioni Numeriche 1. Siano ( ) e (b n ) due successioni positive tali che lim = lim b n = l IR. A. log log b n per n +. B. e an e bn per n +. 2. Sia ( ) una successione convergente e (b n ) una successione

Dettagli

Corso di Laurea in Ingegneria Biomedica ed Elettronica Prima prova scritta di Analisi Matematica 1 del 18/12/2006

Corso di Laurea in Ingegneria Biomedica ed Elettronica Prima prova scritta di Analisi Matematica 1 del 18/12/2006 Corso di Laurea in Ingegneria Biomedica ed Elettronica Prima prova scritta di Analisi Matematica del 8/2/26 () Fornire la definizione di derivata ed il suo significato geometrico. (2) Enunciare e dimostrare

Dettagli

Integrali (M.S. Bernabei & H. Thaler)

Integrali (M.S. Bernabei & H. Thaler) Integrali (M.S. Bernabei & H. Thaler) Integrali. Motivazione Che cos é un integrale? Sia f 0 e limitata b a f ( x) dx area f ( x, y) dxdy volume Definizione di integrale: b a dove f ( x) dx lim n n k b

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

Argomento 1 Soluzioni degli esercizi

Argomento 1 Soluzioni degli esercizi Argomento Soluzioni degli esercizi SUGGERIMENTI ESERCIZIO.8 L esercizio si risolve più facilmente tracciando il grafico della funzione, che coincide nell intervallo (, ] con un arco di parabola, nell intervallo

Dettagli

Esercizi riassuntivi per la prima prova di verifica di Analisi Matematica. n, n IN.

Esercizi riassuntivi per la prima prova di verifica di Analisi Matematica. n, n IN. Esercizi riassuntivi - B. Di Bella 1 Esercizi riassuntivi per la prima prova di verifica di Analisi Matematica 1. Sia A = n IN ] 1 n + 1, 1 [. n a) Determinare il derivato e l interno di A; b) stabilire

Dettagli

7 Il Teorema di Bolzano - Weierstrass

7 Il Teorema di Bolzano - Weierstrass dimostrazione di (3.6). Supponiamo per esempio che f sia crescente e che x 0 < b Poniamo l + := inf f(x) x I,x 0

Dettagli

Integrali doppi impropri per funzioni positive

Integrali doppi impropri per funzioni positive Integrali doppi impropri per funzioni positive Integrali doppi impropri su domini limitati Siano R 2 un insieme quadrabile (o misurabile) secondo Jordan e f(x, y) una funzione positiva a valori reali definita

Dettagli

13 LIMITI DI FUNZIONI

13 LIMITI DI FUNZIONI 3 LIMITI DI FUNZIONI Estendiamo la nozione di ite a funzioni reali di variabile reale. Definizione caratterizzazione per successioni) Si ha fx) = L x 0, L R) se e solo se per ogni successione a n x 0 con

Dettagli

LIMITI. 1. Definizione di limite.

LIMITI. 1. Definizione di limite. LIMITI 1. Definizione di limite. Sia A un sottoinsieme di IR; se il numero reale x 0 è di accumulazione per A in ogni intorno di x 0 si trovano elementi di A distinti da x 0. Allora ha senso chiedersi

Dettagli

Università degli Studi di Palermo Facoltà di Economia. CdS Sviluppo Economico e Cooperazione Internazionale. Appunti del corso di Matematica

Università degli Studi di Palermo Facoltà di Economia. CdS Sviluppo Economico e Cooperazione Internazionale. Appunti del corso di Matematica Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 02 - I Numeri Reali Anno Accademico 2013/2014 D. Provenzano, M.

Dettagli

Analisi Matematica B Soluzioni prova scritta parziale n. 2

Analisi Matematica B Soluzioni prova scritta parziale n. 2 Analisi Matematica B Soluzioni prova scritta parziale n. Corso di laurea in Fisica, 017-018 9 febbraio 018 1. Determinare il numero di soluzioni reali dell equazione x 4 = ln(1 + x ). Svolgimento. Posto

Dettagli

Corso di Laurea in Informatica e Comunicazione digitale Esame di Analisi Matematica

Corso di Laurea in Informatica e Comunicazione digitale Esame di Analisi Matematica Corso di Laurea in Informatica e Comunicazione digitale Esame di Analisi Matematica 8 giugno 2016 1. Determinare (a) a quale proprietà si riferisce la seguente scrittura inerente ad una successione {a

Dettagli

LIMITI DI FUNZIONI / ESERCIZI PROPOSTI

LIMITI DI FUNZIONI / ESERCIZI PROPOSTI ANALISI MATEMATICA I LIMITI DI FUNZIONI / ESERCIZI PROPOSTI L asterisco contrassegna gli esercizi più difficili. Definizioni di ite e di continuità. Verificare i seguenti iti usando la definizione: a)

Dettagli

x x x f(x) 5-f(x) Approccio Intuitivo Man mano il valore di x si avvicina a x 0 il valore di f(x) si avvicina a L

x x x f(x) 5-f(x) Approccio Intuitivo Man mano il valore di x si avvicina a x 0 il valore di f(x) si avvicina a L Deinizione imite Approccio Intuitivo ( ) Man mano il valore di si avvicina a il valore di () si avvicina a ( 2 22 2 ) Possiamo precisare meglio: 5 ( 2 ) 5 () 5-(),968377 4,87459,2549,99 4,96,399,996838

Dettagli

1 Numeri reali. Esercizi.

1 Numeri reali. Esercizi. Politecnico di Milano. Scuola di Ingegneria Industriale. Corso di Analisi e Geometria 1 (Docente: Federico Lastaria) Settembre 2012 1 Numeri reali. Esercizi. Esercizio 1.1 (Un numero moltiplicato per zero

Dettagli

Analisi Matematica. Limiti di successioni numeriche e di funzioni

Analisi Matematica. Limiti di successioni numeriche e di funzioni a.a. 2014/2015 Laurea triennale in Informatica Analisi Matematica Limiti di successioni numeriche e di funzioni Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per

Dettagli

SECONDO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 2017/18 20 FEBBRAIO 2018 CORREZIONE

SECONDO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 2017/18 20 FEBBRAIO 2018 CORREZIONE SECONDO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 207/8 20 FEBBRAIO 208 CORREZIONE Esercizio Considerate la funzione f(x = log + x. Tracciate un grafico approssimativo

Dettagli

Topologia della retta reale. Concetto intuitivo di limite. Definizioni di limite. Teoremi sui limiti. Applicazioni. Angela Donatiello 1

Topologia della retta reale. Concetto intuitivo di limite. Definizioni di limite. Teoremi sui limiti. Applicazioni. Angela Donatiello 1 Topologia della retta reale. Concetto intuitivo di ite. Definizioni di ite. Teoremi sui iti. Applicazioni. Angela Donatiello TOPOLOGIA DELLA RETTA REALE Esiste una corrispondenza biunivoca tra l insieme

Dettagli

Alcuni complementi di teoria dell integrazione.

Alcuni complementi di teoria dell integrazione. Alcuni complementi di teoria dell integrazione. In ciò che segue si suppone di avere uno spazio di misura (,, µ) 1 Sia f una funzione misurabile su un insieme di misura positiva tale che f 0. Se fdµ =

Dettagli

Universita degli Studi di Ancona Ingegneria delle Costruzioni edili e del Recupero Prova scritta di Analisi Matematica (teoria) del 18 marzo 2008

Universita degli Studi di Ancona Ingegneria delle Costruzioni edili e del Recupero Prova scritta di Analisi Matematica (teoria) del 18 marzo 2008 Prova scritta di Analisi Matematica (teoria) del 18 marzo 2008 1. Fornire la definizione di funzione continua e dare un esempio delle tre diverse speci di discontinuità. Scrivere per esteso con ɛ e δ cosa

Dettagli

1 è l estremo inferiore della funzione (inf f = 1 R) e quindi la funzione è limitata inferiormente

1 è l estremo inferiore della funzione (inf f = 1 R) e quindi la funzione è limitata inferiormente f x = x 2 1 allora Im f = [ 1, + ) 1 è l estremo inferiore della funzione (inf f = 1 R) e quindi la funzione è limitata inferiormente + è l estremo superiore della funzione (sup f = + R) e quindi la funzione

Dettagli

Matematica per le Applicazioni Economiche I, 14 Luglio 2016 Testo d esame A

Matematica per le Applicazioni Economiche I, 14 Luglio 2016 Testo d esame A Matematica per le Applicazioni Economiche I, Luglio 206 Testo d esame A Laprovahaladuratadidueoreemezzo.Spiegateconmoltacuralevostrerisposte. Spuntate gli esercizi che avete svolto (verranno corretti solo

Dettagli

Ricorrendo alle definizioni di limite, si dimostrano importanti risultati. Vedremo: che, se esiste, il limite lim

Ricorrendo alle definizioni di limite, si dimostrano importanti risultati. Vedremo: che, se esiste, il limite lim Teoremi sui limiti Ricorrendo alle definizioni di limite, si dimostrano importanti risultati. Vedremo: che, se esiste, il limite lim f () può dare informazioni locali (= che valgono nell intorno di c)

Dettagli

1 Successioni di funzioni

1 Successioni di funzioni Successioni di Esercizio.. Studiare la convergenza puntuale ed uniforme della seguente successione di (.) f n (x) = n x Osserviamo che fissato x R f n(x) = + n x x R. x ( n + x ) = pertanto la successione

Dettagli

Limiti di funzioni. Mauro Saita Versione provvisoria. Ottobre 2015

Limiti di funzioni. Mauro Saita  Versione provvisoria. Ottobre 2015 Limiti di funzioni Mauro Saita e-mail maurosaita@tiscalinet.it Versione provvisoria. Ottobre 2015 Indice 1 Limiti 2 1.1 Definizione di ite................................ 2 1.2 Alcuni teoremi sui iti..............................

Dettagli

Corso di Laurea in Chimica e Tecnologia Farmaceutiche Matematica con Elementi di Informatica COMPITO 29 Gennaio 2016

Corso di Laurea in Chimica e Tecnologia Farmaceutiche Matematica con Elementi di Informatica COMPITO 29 Gennaio 2016 Corso di Laurea in Chimica e Tecnologia Farmaceutiche Matematica con Elementi di Informatica COMPITO 29 Gennaio 2016 Nome Cognome Matricola Punteggi 10 cfu Teoria Ex.1 Ex.2 Ex.3 Ex. 4 Ex.5 /6 /5 /5 /5

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 14 novembre 2008 L. Battaia - http://www.batmath.it Matematica 1 - I mod. Lezione del 14/11/2008 1 / 22 Cr-decr-max-min Esempio 1 Esempio 2 Esempio 3

Dettagli

LIMITI - CONFRONTO LOCALE Test di autovalutazione

LIMITI - CONFRONTO LOCALE Test di autovalutazione LIMITI - CONFRONTO LOCALE Test di autovalutazione 1. Per 0 le funzioni 1 cos e sin (a) sono infinitesime dello stesso ordine (b) 1 cos è infinitesima di ordine inferiore (c) 1 cos è infinitesima di ordine

Dettagli

x + 1 x = x2 1 x 2 = 1 1 x 2., l equazione equivale a ln(1 + 3x) < 1 ; 1 + 3x < e ; x < e 1 3

x + 1 x = x2 1 x 2 = 1 1 x 2., l equazione equivale a ln(1 + 3x) < 1 ; 1 + 3x < e ; x < e 1 3 A. Peretti Svolgimento dei temi d esame di Matematica A.A. 08/9 PROVA INTERMEDIA DI MATEMATICA I parte Vicenza, 05//08 Domanda. Trovare quoziente e resto della divisione di 3 + per + Possiamo usare la

Dettagli

Limiti e continuità (II)

Limiti e continuità (II) Limiti e continuità (II) Riccarda Rossi Università di Brescia Analisi I Verso un unica definizione di limite Usando la retta reale estesa R, TUTTE le definizioni di limite viste possono essere unificate

Dettagli