y = x y(0) = 0.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "y = x y(0) = 0."

Transcript

1 A.A. 2006/2007 I Esercitazione 19 aprile 2007 Esercizio 1. Dato il problema di Cauch = x (0) = 0, dimostrare che: (a) ammette un unica soluzione massimale ; (b) tale soluzione è definita globalmente; (c) tale soluzione è dispari; (d) tale soluzione è crescente; (e) calcolare lim x (x); (f) tracciare un grafico approssimativo di. Esercizio 2. Dato il sistema Y = AY, dove A = si chiede di: (a) scrivere una matrice fondamentale del sistema; (b) calcolare det e A ; (c) trovare la matrice e Ax , Esercizio 3. Risolvere 3x = x (0) = 0. Esercizio 4. Risolvere = xe x (0) = 0, (0) = 0. Esercizio 5. Considerato il problema di Cauch u = u 7 + u (P ) 1 + u 2 u(0) = 1, u (0) = 3, si chiede di stabilire se le seguenti affermazioni sono vere o false: (a) (P ) ha un unica soluzione locale; (b) u è definita in tutto R; (c) u è di classe C su R; (d) è concava in un intorno di x = 0. 1

2 A.A. 2006/2007 II Esercitazione 8 giugno 2007 Esercizio 1. Data la successione di problemi di Cauch n = arctan(x 3 ) + 2n (P n ) (0) = 0, (a) dimostrare che ogni (P n ) ammette un unica soluzione massimale n definita globalmente; (b) dimostrare che n è crescente e dispari; (c) dimostrare che n è convessa in x R + e concava in R ; (d) calcolare lim x n (x) e lim x n (x); 0 (e) dimostrare che lim n (x) dx = 0; n 1 n (f) tracciare un grafico approssimativo di n. Esercizio 2. Risolvere x 2 + x = 1, (1) = 1, (1) = 0. Esercizio 3. Discutere la risolubilità del problema rot U = ( xe 3z, 2e 3z, e 3z ), ed eventualmente calcolare tutti i potenziali vettori U di classe C. Esercizio 4. Dire quali tra le seguenti serie trigonometriche è la serie di Fourier di una [ ( cos 1 ) 1/n cos n n! 1] cos nx; cos nx; sin nx. n n ln n Γ(n 3 / ln n) n=2 Esercizio 5. Siano n N, α (0, ) e sia f n (α) = α2 x 2 e R n x dx; si chiede di stabilire se le seguenti affermazioni sono vere o false: (a) f n è continua e convessa in (0, ); (b) f n è estendibile per continuità in modo pari in tutto R; (c) f n è di classe C nel suo dominio; f n (α) (d) lim = 0 per ogni α > 0. n nπ V n/2 F

3 A.A. 2006/ giugno 2007 Esercizio 1. Si consideri la successione di problemi di Cauch (P n ) n = x 2n+1 n, n n (0) = 0; a) dimostrare che esiste un unica soluzione locale n ; b) dimostrare che x = 0 è un punto di minimo assoluto per n e che n è crescente in R + e decrescente in R ; c) dimostrare che ogni n è definita in [0, ); d) dimostrare che 1 0 lim n(x) dx = lim n n 1 0 n (x) dx. Esercizio 2. Risolvere = 1 e x sin, (0) = 1, mostrando che se la soluzione è globale a destra non può essere lim x (x) =. Esercizio 3. Trovare una soluzione analitica in un intorno di x = 0 del problema x 3 + x + = 1 x, (0) = 1, (0) = 1 2, e calcolare (4) (0). Esercizio 4. Dire quali tra le seguenti serie trigonometriche è la serie di Fourier di una ( 1) n Γ(n+e) sin 1 n cos nx; n(e 3/n sin k 1) sin nx; nn k n5/4 sin 1 cos nx. n2 k=1 Esercizio 5. Posto B = x R 2 : x < 1}, u(x, ) = ln(x ) e v(x, ) = x , si chiede di stabilire se le seguenti affermazioni sono vere o false: (a) u L 1 (B); (b) u L 1 (B); (c) u v dxd = 0. V B F

4 A.A. 2006/ luglio 2007 Esercizio 1. Considerato il problema di Cauch = x + ln(1 + 2 ), (0) = 0, si dimostri che esiste un unica soluzione massimale globale ; si dimostri che (x) è crescente per x 0 e decrescente per x 0; si calcolino lim (x) e lim (x); x x si calcoli (0). Esercizio 2. Risolvere il problema 2 + = e x, (0) = 0, (0) = 0. Esercizio 3. Data la serie trigonometrica ( ) n α ln cos nx, 1 + n α se ne studi la convergenza al variare del parametro α R, determinando la regolarità della funzione somma quando questa è ben definita. Se α = 2 tale serie può essere la serie di Fourier della funzione 2π periodica data da 3 f(x) = ln(1 + x 4 ) se x [ π, π)? Esercizio 4. Determinare l unica funzione f : R R di classe C 1 tale che f(0) = 0 e per cui la f.d.l. ω(x, ) = x ln dx + f(x) d risulti localmente esatta. Dimostrare poi che, per tale f, ω è esatta nel suo dominio e si determini un potenziale F tale che F ( 2, 1) = 1. Dire infine se tale l equazione F (x, ) = 1 definisce una curva = (x) di classe C in un intorno del punto ( 2, 1). Esercizio 5. Sia f : R n R convessa. Si chiede di stabilire se le seguenti affermazioni sono vere o false: (a) f ha minimo; (b) f è illimitata; (c) esiste lim x f(x); (d) se f è differenziabile in B 1 = x R n : x 1}, x 0 B 1 e f(x 0 ) = min B1 f, allora f(x 0 ) = 0 R n.

5 A.A. 2006/ luglio 2007 Esercizio 1. Considerato il problema di Cauch = ( 2 x 2 ) ln( ), (0) = 0, si dimostri che esiste un unica soluzione locale ; si dimostri che (x) è decrescente; si dimostri che la soluzione è globale; si calcolino lim x (x) e lim (x). x Esercizio 2. Tra tutte le soluzioni di : u (x) + u(x) = 0 π 0 u2 (x)dx = π/2. si determini se ne esistono che minimizzano π 2 u(x)dx. 0 ( 1) n 1 + n! n + ( 1) n cos nx, n (n + 1)! sin nx, [Γ(n + sin n)] 2 sin nx. Γ(n 2 + sin n) Esercizio 4. Determinare l unica funzione f : R R di classe C 1 tale che f(0) = 0 e per cui la f.d.l. ω(x, ) = 2xe x2 f() dx + (e x2 + cos ) d risulti localmente esatta. Dimostrare poi che, per tale f, ω è esatta nel suo dominio e si calcoli ω, dove γ : [0, 1] R 2 è data da γ(t) = (ln(1 + t 4 ), cos(πt)). γ Esercizio 5. Sia f : B 1 = x R n : x 1} R data da f(x) = ln(1 + x ). Si chiede di stabilire se le seguenti affermazioni sono vere o false: (a) esiste x 0 B 1 tale che f(x 0 ) = min f; (b) f(x 0 ) = 0 R n; (c) f è convessa in B 1 ; (d) f L 1 (B 1 ).

6 A.A. 2006/ settembre 2007 Esercizio 1. Dato il problema di Cauch = e x2 2, (0) = 0, si chiede di dire se esiste una ed una sola soluzione locale; dimostrare che esiste x 0 < 0 tale che (x 0 ) = 0; dedurre dal punto precedente che la soluzione è definita per ogni x < 0; dimostrare che lim x (x) = ; verificato che z(x) = x2 + x, x 0, è una sottosoluzione, e detto β l estremo 2 destro dell intervallo massimale di definizione, si deduca che lim (x) =. x β Esercizio 2. Sia F : R n \ 0} R n definito da F (x) = F (x) ν(x) dσ B(x 0,1) a seconda del fatto che x 0 = 0 o x 0 = (1, 2,..., n). x x n. Calcolare n! sin sin n + 1 n n 1 sin nx, Γ(n π ) n 2/3 + sin cos nx, cos nx. n sin n 1/17 Esercizio 4. Dire se esistono soluzioni, e in tal caso calcolarle, del problema rot U = (x 2xz + z, 2 x 2, x 2 + z 2 3z). Esercizio 5. Data la forma differenziale 2x ω(x,, z) = x z dx x z d + 2z 2 x z dz, 2 si chiede di stabilire se le seguenti affermazioni sono vere o false: (a) ω è localmente esatta nel suo dominio; (b) ω è esatta nel suo dominio; (c) ω = πe, dove γ : [0, 1] γ R3 è definita da γ(t) = (t, t 2, t 3 + 1).

7 A.A. 2006/ settembre 2007 Esercizio 1. Dato il problema di Cauch = ln x (1) = 0, si chiede di dire se esiste una ed una sola soluzione locale ; dimostrare che esiste x 0 (0, 1) di minimo assoluto per e dedurre che è definita in (0, 1]; dimostrare che (x) è convessa se x > 1; dedurre dal punto precedente che non può essere definita in (0, ); detto β l estremo destro dell intervallo massimale di definizione, si calcoli lim (x); x β dimostrare che risulta lim (x) 0. x 0 + Esercizio 2. Trovare l unica funzione continua f con f( π ) = 1 tale che 4 x π 4 f(t) sin(x + t) dt = cos x. Γ( sin n + 1) n!(sin Γ( ln(n! ln n) sin nx, n) + 2) n! cos 2 n cos nx, ln(cos n 2/3 ) cos nx. sin n 2/3 Esercizio 4. Siano f, g : R R + funzioni convesse. Si chiede di stabilire se le seguenti affermazioni sono vere o false: (a) f + g è convessa; (b) f + g è convessa; (c) f + g 2 è convessa; (d) f g è convessa; (e) f 2 ha minimo in R.

8 A.A. 2006/ dicembre 2007 Esercizio 1. Data la successione di problemi di Cauch n = 1 + sin 2n (x n ) n (0) = 0, si chiede di dimostrare che esiste una ed una sola soluzione globale n ; studiare la monotonia di n ; studiare eventuali simmetrie di n ; calcolare, se esistono, lim n (x) e lim x n(x); x dimostrare che n (x) [ 1, 1] se x [ 1/2, 1/2]; calcolare lim n (x) per x [ 1/2, 1/2]. n Esercizio 2. Trovare le uniche funzioni f e g di classe C 1 (R) con f(0) = 0 e g(0) = 1 tali che la f.d.l. ω(x, ) = (2x + g(x))dx + f(x)d sia esatta in R 2 e γ s ω = s 2 + s sin s s > 0, dove γ s : [0, s] R 2 è la curva definita da γ(t) = (t, t). sin(2 n ) Γ(2 n ) sin nx, n ln n ln n cos nx, ln n n + sin nx. 2 n Esercizio 4. Sia f : R (0, ) una funzione tale che (x) := ln f(x) sia convessa. Si chiede di stabilire se le seguenti affermazioni sono vere o false: (a) f ha minimo in R; (b) f è illimitata; (c) f è convessa; (d) se f è limitata inferiormente, anche lo è.

9 A.A. 2006/ gennaio 2008 Esercizio 1. Dato il problema di Cauch = e 2 1 x 2 (0) = 0, si chiede di dimostrare che esiste una ed una sola soluzione globale ; studiare la monotonia di ; studiare eventuali simmetrie di ; calcolare, se esistono, lim (x) e lim (x); x x dimostrare che, posto z(x) = x 3 /3 x, la funzione w = z è crescente. Esercizio 2. Trovare le uniche funzioni f e g di classe C 1 (R) con f(0) = 1 e g(0) = 0 tali che la f.d.l. ω(x,, z) = (2x + zf(x))dx + 2d + g(x)dz sia esatta in R 3 e γ s ω = 2s 2 + s sin s s > 0, dove γ s : [0, s] R 3 è la curva definita da γ(t) = (t, t, t). n! Γ(2 n ) sin nx, Γ(2 n ) 3 2 cos n cos nx, sin nx. n n n 2 Esercizio 4. Sia f : B = x R n : x 1} R una funzione continua, dove B = x R n : x < 1} e sia u C 2 (B) C 1 ( B) soluzione di u = f(x) in B, u = 0 su B. Si chiede di stabilire se le seguenti affermazioni sono vere o false: (a) se f(x) = 0, allora u(x) = 0; (b) f(x)u(x) dx < 0; V B (c) se f(x) > 0, allora u(x)/ ν dσ < 0; V B (d) esiste x 0 B tale che u(x 0 ) = 0 R n. F F

10 A.A. 2006/ febbraio 2008 Esercizio 1. Dato il problema di Cauch = e x (0) = 0, si chiede di dimostrare che esiste una ed una sola soluzione globale ; studiare la monotonia di ; dedurre l esistenza di un unico estremante assoluto; calcolare, se esistono, lim (x) e lim (x); x x mostrare che z(x) = e x 1 è una soprasoluzione. Esercizio 2. Trovare l unica funzione f C 1 (R) con f(1) = 1 tale che la f.d.l. ( ) ω(x, ) = x dx + f(x) sin + d sia esatta e si calcoli dove γ : [0, π] R 2 è la curva definita da γ(t) = (1 + sin 4 t, 2 + ln(2 + cos 7 t)). γ Γ(sin e n ) n sin nx, n n 1 ω, k=1 cos k k cos nx n ln 2 n, ln n sin nx. nln n Esercizio 4. Sia f : B = x R n : x 1} R una funzione continua, dove B = x R n : x < 1} e sia u C 2 (B) C 1 ( B) soluzione di u = f(x) in B, u = 0 su B. Si chiede di stabilire se le seguenti affermazioni sono vere o false: (a) se f(x) > 0, allora B u u 2 dx > 0; (b) se f < 0 in B, allora u è concava; (c) se f(x) dx = 0, allora u(x)/ ν dσ < 0; V B B (d) esistono almeno 2 punti, x 1, x 2 B tali che u(x i ) = 0 R n, i = 1, 2. F

dove A = arctan ( y y(1) = 1.

dove A = arctan ( y y(1) = 1. A.A. 27/28 I Esercitazione 5 maggio 28 Esercizio. Data la successione di problemi di Cauchy y n = x 2n+ arctan y n (P n ) y n () =, (a) dimostrare che per ogni n N (P n ) ammette un unica soluzione massimale

Dettagli

Compiti d Esame A.A. 2005/2006

Compiti d Esame A.A. 2005/2006 Compiti d Esame A.A. 25/26 UNIVERSITÀ DEGLI STUDI DI PERUGIA A.A. 25/26 I Esercitazione 21 Aprile 26 { y = xy ln(xy) si chiede di dimostrare che: y(1) = 1, (a) ammette un unica soluzione massimale y =

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA II. Prova scritta del 20 gennaio 2014

COMPLEMENTI DI ANALISI MATEMATICA II. Prova scritta del 20 gennaio 2014 Prova scritta del 20 gennaio 2014 Studiare la convergenza puntuale e uniforme della serie di potenze n x 2n 2n + e n. Valutare poi la misurabilità e l integrabilità secondo Lebesgue della funzione somma

Dettagli

UNIVERSITÀ DEGLI STUDI DI PERUGIA Corso di Analisi Matematica III - 9 CFU C.d.S. Triennale in Matematica A.A. 2016/2017 I Esercitazione 12 Aprile 2017

UNIVERSITÀ DEGLI STUDI DI PERUGIA Corso di Analisi Matematica III - 9 CFU C.d.S. Triennale in Matematica A.A. 2016/2017 I Esercitazione 12 Aprile 2017 C.d.S. Triennale in Matematica A.A. 2016/2017 I Esercitazione 12 Aprile 2017 Esercizio 1. Data la successione di funzioni f n t = en1+t4 + e nt2 n 3 + e, t R, n1+t2 a determinare l insieme di convergenza

Dettagli

ANALISI MATEMATICA 3. esercizi assegnati per la prova scritta del 31 gennaio 2011

ANALISI MATEMATICA 3. esercizi assegnati per la prova scritta del 31 gennaio 2011 esercizi assegnati per la prova scritta del 31 gennaio 2011 Esercizio 1. Per x > 0 e n N si ponga f n (x) = ln ( n 5 x ) a) Provare l integrabilità delle funzioni f n in (0, + ). 3 + n 4 x 2. b) Studiare

Dettagli

sen n x( tan xn n n=1

sen n x( tan xn n n=1 8 Gennaio 2016 Nome (in stampatello): 1) (8 punti) Discutere la convergenza della serie di funzioni al variare di x in [ 1, 1]. n x( tan xn n ) xn sen n 2) (7 punti) Provare che la forma differenziale

Dettagli

ANALISI MATEMATICA II PROVA DI TEORIA (23/6/2009)

ANALISI MATEMATICA II PROVA DI TEORIA (23/6/2009) ANALISI MATEMATICA II PROVA DI TEORIA (23/6/2009) 1. Sia S = { } (x, y, z) : x 2 + y 2 = 4, 0 z 3 + x. Scrivere le equazioni parametriche di una superficie regolare che abbia S come sostegno. 2. Enunciare

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA II. Prova scritta del 20 gennaio 2014

COMPLEMENTI DI ANALISI MATEMATICA II. Prova scritta del 20 gennaio 2014 Prova scritta del 2 gennaio 214 Studiare la convergenza puntuale e uniforme della serie di potenze n=1 n x 2n 2n + e n. Valutare poi la misurabilità e l integrabilità secondo Lebesgue della funzione somma

Dettagli

Scritto Generale del Corso di Analisi Matematica Calcolare la soluzione generale dell equazione differenziale. y (7) + y (6) + y + y = 0.

Scritto Generale del Corso di Analisi Matematica Calcolare la soluzione generale dell equazione differenziale. y (7) + y (6) + y + y = 0. del Corso di Analisi Matematica 4 1 y (7) + y (6) + y + y = 0.. Discutere la convergenza puntuale e uniforme della serie di Fourier della funzione f(x) = x ( T < x T ) di periodo T. In particolare, calcolare

Dettagli

Scritto di Analisi Matematica I per STM Anno Accademico 2016/17 04/09/2017

Scritto di Analisi Matematica I per STM Anno Accademico 2016/17 04/09/2017 Anno Accademico 2016/17 04/09/2017 COG ) lnx) 1) Scrivere l espressione lnxx2 lnx x come polinomio, ossia nella forma ) lnx) a m x m + a m 1 x m 1 + + a 1 x + a 0. 2) a) Dire per quali x R la serie + a

Dettagli

Analisi Matematica 2 Ingegneria Gestionale Docenti: B. Rubino e R. Sampalmieri L Aquila, 21 marzo 2005

Analisi Matematica 2 Ingegneria Gestionale Docenti: B. Rubino e R. Sampalmieri L Aquila, 21 marzo 2005 Analisi Matematica 2 Ingegneria Gestionale Docenti: B. Rubino e R. Sampalmieri L Aquila, 21 marzo 2005 Prova orale il: Docente: Determinare, se esistono, il massimo ed il minimo assoluto della funzione

Dettagli

Prima prova di verifica in itinere di ANALISI MATEMATICA II. 12 Marzo 2008 Compito A. 1 (punti 3)

Prima prova di verifica in itinere di ANALISI MATEMATICA II. 12 Marzo 2008 Compito A. 1 (punti 3) anno accademico 007-008 Prima prova di verifica in itinere di ANALISI MATEMATICA II Marzo 008 Compito A (punti ) y = x + xy + y x. (punti 4) y + y x = ln x x y. (punti ) y = y + y ln y. 4 (punti 6) Determinare

Dettagli

Corso di Laurea in Ingegneria Edile Prova scritta dell esame di Analisi Matematica I (M-Z).C

Corso di Laurea in Ingegneria Edile Prova scritta dell esame di Analisi Matematica I (M-Z).C Analisi Matematica I (M-Z).C1 08-0-1997 1) Data la funzione h(x) = x log(x + 1 + x + x + ) + log(1 + ) determinarne il dominio D. Provare poi che h(x) > 0 x D ]0, + [, h(x) = 0 x = 0. ) Utilizzando i risultati

Dettagli

Tutorato di Complementi di Analisi Matematica e Statistica Parte di Analisi 6 e 10 aprile 2017

Tutorato di Complementi di Analisi Matematica e Statistica Parte di Analisi 6 e 10 aprile 2017 Tutorato di Complementi di Analisi Matematica e Statistica Parte di Analisi 6 e 10 aprile 2017 Esercizi: serie di potenze e serie di Taylor 1 Date le serie di potenze a.) n=2 ln(n) n 3 (x 5)n b.) n=2 ln(n)

Dettagli

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013 Prova scritta del 24 gennaio 2013 Esercizio 1. Sia Ω R 3 un insieme misurabile secondo Lebesgue e di misura finita. Sia {f n } n N una successione di funzioni f n : Ω R misurabili e tali che 1) f n (x)

Dettagli

Scritto d esame di Analisi Matematica I

Scritto d esame di Analisi Matematica I Capitolo 2: Scritti d esame 07 Pisa, 8 Gennaio 999. Studiare il comportamento della serie al variare del parametro α > /2. ( ) n n sin α n 2α 2. Sia ( ) f(x) = log + sin3 x. 2 (a) Determinare la derivata

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Michele Campiti Prove scritte di Analisi Matematica Ingegneria Industriale aa 28 29 y f g x La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica per Ingegneria Industriale,

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria Es. Es. Es. 3 Es. 4 Totale Teoria Analisi e Geometria Docente: Politecnico di Milano Ingegneria Industriale 5 Settembre Compito A Cognome: Nome: Matricola: Punteggi degli esercizi: Es.: 6 punti; Es.: punti;

Dettagli

Corso di Analisi Matematica 1

Corso di Analisi Matematica 1 Corso di Analisi Matematica 1 in Ingegneria Biomedica Prof. A. Iannizzotto Prove d esame 2016 Versione del 21 dicembre 2016 Appello del 14 gennaio 2016 Tempo: 150 minuti Compito A 1. Enunciare e dimostrare

Dettagli

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a Michele Campiti Prove scritte di Analisi Matematica 2 Ingegneria Industriale a.a. 20 202 Grafico della funzione f(x, y) := sin(2x 2 y) cos(x 2y 2 ) in [ π/2, π/2] 2 Raccolta delle tracce di Analisi Matematica

Dettagli

Informatica. Prova in itinere del giorno di. Formazione Analitica.C1. n + 1 4n + 3 = 1 2. lim. lim 3n n n (4n)! (2n)! [(n + 2)!

Informatica. Prova in itinere del giorno di. Formazione Analitica.C1. n + 1 4n + 3 = 1 2. lim. lim 3n n n (4n)! (2n)! [(n + 2)! Prova in itinere del giorno 28-11-2003 di Formazione Analitica.C1 1) Provare che n k=2 log (1 1k ) 2 = log n + 1 2n n N 2) Provare, utilizzando la definizione di ite, che n + 1 4n + 3 = 1 2 3) Calcolare

Dettagli

arctan y Stabilire se esistono (ed in caso affermativo calcolarle) f (0, 0) non esistono, mentre g(x, y) = (x y + 1) log(x y + 1)

arctan y Stabilire se esistono (ed in caso affermativo calcolarle) f (0, 0) non esistono, mentre g(x, y) = (x y + 1) log(x y + 1) Analisi Matematica II FACSIMILE 1 FOGLIO A Cognome e nome................................ Firma................ Matricola................ Corso di Laurea: MECLT MATLT AUTLT EDIQQ Istruzioni 1. COMPILARE

Dettagli

Università di Roma Tor Vergata Corso di Laurea in Ingegneria Edile-Architettura e dell Edilizia Analisi Matematica I Prova Scritta del 8.2.

Università di Roma Tor Vergata Corso di Laurea in Ingegneria Edile-Architettura e dell Edilizia Analisi Matematica I Prova Scritta del 8.2. Analisi Matematica I Prova Scritta del 822013 1 Data la funzione f(x) = x + 1 + x + ln ( ) 2x + 1 x 1 (a) Studiare il dominio di definizione e l esistenza di eventuali asintoti orizzontali/verticali/obliqui

Dettagli

1 Limiti e continuità

1 Limiti e continuità Calcolo infinitesimale e differenziale Gli esercizi indicati con l asterisco (*) sono più impegnativi. Limiti e continuità Si ricorda che per una funzione di più variabili, la definizione di continuità

Dettagli

2) Data la retta r : 3x 2y + 1 = 0 trovarne il punto P di intersezione con l asse y e determinare la retta che passa per P ortogonale a r.

2) Data la retta r : 3x 2y + 1 = 0 trovarne il punto P di intersezione con l asse y e determinare la retta che passa per P ortogonale a r. Testo 1 ESONERO I 1) Calcolare le seguenti espressioni log 3 135 log 3 5 = log 5 1 125 + log 4 256 = 2) Data la retta r : 3x 2y + 1 = 0 trovarne il punto P di intersezione con l asse y e determinare la

Dettagli

{ x + 2y = 3 αx + 2y = 1 αx + y = 0. f(x) = e x 2 +3x+4 x 5. f(x) = x 3 e 7x.

{ x + 2y = 3 αx + 2y = 1 αx + y = 0. f(x) = e x 2 +3x+4 x 5. f(x) = x 3 e 7x. 0 Gennaio 006 Teoria: Definizione di derivata puntuale e suo significato geometrico Esercizio Determinare l equazione del piano contenente i vettori u = (,, 3 e v = (,, e passante per P o = (,, Scrivere

Dettagli

Prova scritta di Analisi Matematica III

Prova scritta di Analisi Matematica III 18 luglio 2016 f n (x) = 1 n e (x n)2 (x R, n N ). 2. Si scriva la disuguaglianza di Bessel per la funzione f, periodica di periodo 2π, tale che 0 x [ π, 0) f (x) = 2 x x [0, π). 3. Si consideri l equazione

Dettagli

Analisi I Ingegneria Chimica e Aerospaziale 1 o compitino

Analisi I Ingegneria Chimica e Aerospaziale 1 o compitino 1 o compitino 1 febbraio 215 1 Si consideri la funzione f : R R definita da { f) = 2 log se se = a) Si dimostri che f è continua e derivabile su tutto R b) Si dica se f ammette derivata seconda in ogni

Dettagli

Università di Roma Tor Vergata Corso di Laurea in Ingegneria Canale SE-Z Prof.ssa Teresa D Aprile Analisi Matematica I Prova scritta del 19/07/2017

Università di Roma Tor Vergata Corso di Laurea in Ingegneria Canale SE-Z Prof.ssa Teresa D Aprile Analisi Matematica I Prova scritta del 19/07/2017 Università di Roma Tor Vergata Corso di Laurea in Ingegneria Canale SE-Z Profssa Teresa D Aprile Analisi Matematica I Prova scritta del 9/07/207 Cognome (in STAMPATELLO): Nome (in STAMPATELLO): Esercizio

Dettagli

Esercizi su Funzioni di più variabili. - Parte II. Derivate parziali, derivate direzionali, piano tangente

Esercizi su Funzioni di più variabili. - Parte II. Derivate parziali, derivate direzionali, piano tangente Esercizi su Funzioni di più variabili. - Parte II Derivate parziali, derivate direzionali, piano tangente 1. Data la funzione f(x, y, z) = e x2 y 3 sin(x + z) calcolarne il gradiente e la derivata direzionale

Dettagli

Analisi Matematica per Informatici Esercitazione 10 a.a

Analisi Matematica per Informatici Esercitazione 10 a.a Analisi Matematica per Informatici Esercitazione a.a. 6-7 Dott. Simone Zuccher 7 Febbraio 7 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore (zuccher@sci.univr.it).

Dettagli

1) D0MINIO. x x 4x + 3 Determinare il dominio della funzione f (x) = x Deve essere

1) D0MINIO. x x 4x + 3 Determinare il dominio della funzione f (x) = x Deve essere ) DMINIO + 3 Determinare il dominio della funzione f ) + 3 Deve essere Ovviamente, inoltre: se > + 3 ) 3) quindi < o 3 se < + 3, + 3 quindi 7 Determinare il dominio della funzione f ) + 5 Deve essere +

Dettagli

ANALISI C & Complementi di Analisi Matematica di Base. Prova scritta del 23 gennaio 2007

ANALISI C & Complementi di Analisi Matematica di Base. Prova scritta del 23 gennaio 2007 Prova scritta del 23 gennaio 2007 Esercizio 1. Sia f : R R una funzione misurabile e non negativa; si consideri la successione di funzioni f n (x) = max3f(x) 2n, 0}, x R, n N. Provare che se f è integrabile

Dettagli

(ln 5)i 1 i. (c) (d) Scriviamo il numero complesso assegnato in forma algebrica:

(ln 5)i 1 i. (c) (d) Scriviamo il numero complesso assegnato in forma algebrica: Primo parziale Test. L argomento principale del numero complesso (ln 5)i i è (a) 4 π (b) (c) (d) Scriviamo il numero complesso assegnato in forma algebrica: Risposta esatta a) ln 5 i i = ln 5 i( + i) i

Dettagli

ANALISI MATEMATICA 1 ESERCIZI ASSEGNATI IN AULA O A CASA: II parte Corso di Laurea in Matematica aa 2003/04

ANALISI MATEMATICA 1 ESERCIZI ASSEGNATI IN AULA O A CASA: II parte Corso di Laurea in Matematica aa 2003/04 ANALISI MATEMATICA 1 ESERCIZI ASSEGNATI IN AULA O A CASA: II parte Corso di Laurea in Matematica aa 003/04 Esercizio 1. (6/04/04) Determinare l insieme di definizione di ciascuna delle seguenti funzioni

Dettagli

Esame di Analisi Matematica 2 24/7/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013

Esame di Analisi Matematica 2 24/7/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013 Esame di Analisi Matematica 4/7/013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 01/013 A Cognome (in STAMPATELLO):... Nome (in STAMPATELLO):... CFU:... Esercizio 1. Sia f : R R una funzione

Dettagli

Corso di Laurea in Chimica e Tecnologia Farmaceutiche Matematica con Elementi di Informatica COMPITO 19 Febbraio 2016

Corso di Laurea in Chimica e Tecnologia Farmaceutiche Matematica con Elementi di Informatica COMPITO 19 Febbraio 2016 Corso di Laurea in Chimica e Tecnologia Farmaceutiche Matematica con Elementi di Informatica COMPITO 19 Febbraio 2016 Nome Cognome Matricola Punteggi 10 cfu Teoria Ex.1 Ex.2 Ex.3 Ex. 4 Ex.5 /6 /5 /5 /5

Dettagli

Lezione 1-03/10/2018, dalle alle in aula 3 - Esempi svolti: Svolgimento di alcuni esercizi della settimana del 28/09/2018.

Lezione 1-03/10/2018, dalle alle in aula 3 - Esempi svolti: Svolgimento di alcuni esercizi della settimana del 28/09/2018. DIARIO DELLE LEZIONI DI TUTORATO DI ANALISI MATEMATICA I Corsi di laurea in Ingegneria delle Comunicazioni e Ingegneria Elettronica Tutor: Dott. Salvatore Fragapane Lezione 1-0/10/018, dalle 1.00 alle

Dettagli

Scritto di Matematica per Biotecnologie Anno Accademico 2007/08 15/09/2008

Scritto di Matematica per Biotecnologie Anno Accademico 2007/08 15/09/2008 Anno Accademico 2007/08 5/09/2008 COG segnare preferenza per 6/09, 7/09 o inizio ottobre a Calcolare la derivata della funzione f definita da fx = x 7 arctanx2 sinπx b Sia g una funzione tale che g x =

Dettagli

Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema PIPPO COGNOME: NOME: MATR.: 1) 7; C: x sin(x) dx è A: π ; B:2 ; C: 0 ; D: π/2; E: N.A.

Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema PIPPO COGNOME: NOME: MATR.: 1) 7; C: x sin(x) dx è A: π ; B:2 ; C: 0 ; D: π/2; E: N.A. Prima prova in Itinere Ist. Mat., Prima parte, Tema PIPPO 4 aprile 7 COGNOME: NOME: MATR.: ) Una primitiva di x 5 e x3 è A: e x3 (x 3 ); B: e x3 (x 5 ) 7; C: ex3 (x 3 + ) D: ex3 (x 3 ) + 7; E: N.A. ) Il

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA DI BASE. Prova scritta del 26 gennaio 2005

COMPLEMENTI DI ANALISI MATEMATICA DI BASE. Prova scritta del 26 gennaio 2005 Prova scritta del 26 gennaio 2005 Esercizio 1. Posto B = x R 2 : x 2 2}, sia f n } una successione di funzioni (misurabili e) integrabili in B tali che f n f q.o. in B e, per ogni n N, f n (x) 2 x 3 per

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = sin( x 2 + 2y 2 )

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = sin( x 2 + 2y 2 ) Analisi Matematica II Corso di Ingegneria Gestionale Compito del 9--9 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo - Le risposte senza giustificazione sono considerate nulle Esercizio

Dettagli

Quesito 1. f(x, y) = xy log (x 2 + y 2 ) Quesito 2. Quesito 3. y = 2y3 +x 3. xy 2 y(1) = 1. Quesito 4

Quesito 1. f(x, y) = xy log (x 2 + y 2 ) Quesito 2. Quesito 3. y = 2y3 +x 3. xy 2 y(1) = 1. Quesito 4 Corso di laurea in Ing. Meccanica, a.a. 2002/2003 Prova scritta di Analisi Matematica 2 del 7 gennaio 2003 Determinare gli eventuali estremi relativi della funzione f(x, y) = xy log (x 2 + y 2 ) Calcolare

Dettagli

Recupero 1 compitino di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2017/2018. Prof. M. Bramanti.

Recupero 1 compitino di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2017/2018. Prof. M. Bramanti. Recupero compitino di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 7/8. Prof. M. Bramanti Tema n 3 4 5 6 Tot. Cognome e nome in stampatello codice persona o n di matricola

Dettagli

Primo compito parziale di MatematicaI cdl Chimica Prof. Elena Comparini, Prof. Fabio Vlacci a.a. 2010/ novembre 2010

Primo compito parziale di MatematicaI cdl Chimica Prof. Elena Comparini, Prof. Fabio Vlacci a.a. 2010/ novembre 2010 Primo compito parziale di MatematicaI cdl Chimica Prof. Elena Comparini, Prof. Fabio Vlacci a.a. 2010/2011-15 novembre 2010 Es 1 Si calcoli, se esiste, il seguente limite lim n n + Es 2 Data la seguente

Dettagli

Analisi Matematica 1+2

Analisi Matematica 1+2 Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-700 Savona Tel. +39 09 264555 - Fax +39 09 264558 Ingegneria Gestionale Analisi Matematica +2 A.A 998/99 - Prove parziali

Dettagli

Analisi Matematica II. Prove Parziali A.A. 1992/2017

Analisi Matematica II. Prove Parziali A.A. 1992/2017 Complementi di Analisi Polo di Savona Analisi Matematica II Complementi di Analisi Matematica Prove Parziali A.A. 1992/2017 1- PrPzCa.TEX [] Complementi di Analisi Polo di Savona Prima Prova Parziale 92/93

Dettagli

Foglio n. 19. Massimi e minimi vincolati

Foglio n. 19. Massimi e minimi vincolati Foglio n. 19 Massimi e minimi vincolati 1) Calcolare massimo e minimo della funzione x 2 +3y 2 xy y nel quadrato Q = {(x, y) R 2 : x 1, y 1}. 2) Calcolare massimo e minimo della funzione x+y 6z sulla superficie

Dettagli

Corso di laurea in ingegneria gestionale a.a. 2015/2016 Tutor: Andrea Bendinelli

Corso di laurea in ingegneria gestionale a.a. 2015/2016 Tutor: Andrea Bendinelli Corso di analisi matematica I 12 c.f.u. Facoltà di ingegneria dell'informazione, informatica e statistica Corso di laurea in ingegneria gestionale a.a. 2015/2016 Tutor: Andrea Bendinelli 1 Indice I Esercitazione

Dettagli

Analisi Matematica 2 Quaderno degli esercizi settimanali. Roberto Monti. Fisica e Astronomia Anno Accademico

Analisi Matematica 2 Quaderno degli esercizi settimanali. Roberto Monti. Fisica e Astronomia Anno Accademico Analisi Matematica 2 Quaderno degli esercizi settimanali Roberto Monti Fisica e Astronomia Anno Accademico 2018-19 Indice Introduzione 5 Settimana 1. Serie numeriche I 7 Settimana 2. Serie numeriche II

Dettagli

Sistemi Dinamici 2. Esercitazioni

Sistemi Dinamici 2. Esercitazioni Sistemi Dinamici Laurea Triennale in Matematica Applicata - II anno - II semestre Esercitazioni Es. 1 Stabilità Esercizio 1 Dimostrare che per un sistema autonomo ẋ = f(x) in R valgono le seguenti proprietà:

Dettagli

Esercizi di Complementi di Analisi Matematica II Pisa, 3 agosto 2012

Esercizi di Complementi di Analisi Matematica II Pisa, 3 agosto 2012 Scuola Superiore di Studi Universitari e di Perfezionamento S. Anna Esercizi di Complementi di Analisi Matematica II Pisa, 3 agosto 212 1. Dimostrare che esiste un unica funzione continua f : R R tale

Dettagli

Compitino di Analisi Matematica 1 Prima parte, Tema A Ingegneria Civile, Ambientale e Edile COGNOME: NOME: MATR.: RISPOSTE:

Compitino di Analisi Matematica 1 Prima parte, Tema A Ingegneria Civile, Ambientale e Edile COGNOME: NOME: MATR.: RISPOSTE: Compitino di Analisi Matematica 1 Prima parte, Tema A Ingegneria Civile, Ambientale e Edile 20 maggio 2014 COGNOME: NOME: MATR.: RISPOSTE: A B C D E 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 X 9 X 10 X 1 Prima parte,

Dettagli

Matematica per Scienze Biologiche e Biotecnologie. Docente Lucio Damascelli. Università di Tor Vergata. Alcuni recenti compiti di esame

Matematica per Scienze Biologiche e Biotecnologie. Docente Lucio Damascelli. Università di Tor Vergata. Alcuni recenti compiti di esame Matematica per Scienze Biologiche e Biotecnologie Docente Lucio Damascelli Università di Tor Vergata Alcuni recenti compiti di esame Nota Nei compiti di esame si chiedono 6 esercizi da svolgere in (al

Dettagli

Laurea triennale in Informatica Corso di Analisi matematica (A) a.a. 2007/08 9 giugno 2008

Laurea triennale in Informatica Corso di Analisi matematica (A) a.a. 2007/08 9 giugno 2008 9 giugno 2008 1. Data la funzione f(x) = x e 1/(x2 4), (c) stabilire se f ammette punti singolari e in caso affermativo classificarli; calcolare la derivata prima di f e utilizzarla per studiare la monotonia

Dettagli

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013 Prova scritta del 24 gennaio 2013 Esercizio 1. Sia Ω R 3 un insieme misurabile secondo Lebesgue e di misura finita. Sia {f n } n N una successione di funzioni f n : Ω R misurabili e tali che 1) f n (x)

Dettagli

Temi d esame di Analisi Matematica 1

Temi d esame di Analisi Matematica 1 Temi d esame di Analisi Matematica 1 Area di Ingegneria dell Informazione - a cura di M. Bardi 31.1.95 f(x) = xe arctan 1 x (insieme di definizione, segno, iti ed asintoti, continuità e derivabilità, crescenza

Dettagli

Analisi Matematica 2 5 febbraio Risposte. (Giusta = 3, non data = 0, sbagliata = 1) Versione Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 Es. 6 Es.

Analisi Matematica 2 5 febbraio Risposte. (Giusta = 3, non data = 0, sbagliata = 1) Versione Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 Es. 6 Es. Analisi Matematica 2 5 febbraio 2013 Nome, Cognome, Matricola: Cognome del Docente: Risposte. (Giusta = 3, non data = 0, sbagliata = 1) Versione Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 Es. 6 Es. 7 1 Esercizio 1.

Dettagli

1) D0MINIO FUNZIONE. Determinare il dominio della funzione f (x) = 4 x 2 4x + 3 x 2 6x + 8 Deve essere. x 2 6x + 5 (x 1) (x 5)

1) D0MINIO FUNZIONE. Determinare il dominio della funzione f (x) = 4 x 2 4x + 3 x 2 6x + 8 Deve essere. x 2 6x + 5 (x 1) (x 5) ) DMINIO FUNZIONE Determinare il dominio della funzione f (x) = x x + x x + 8 x x + (x ) (x ) Deve essere = quindi x (, ] (, ] (, + ). x x + 8 (x ) (x ) Determinare il dominio della funzione f (x) = x

Dettagli

Scritto d esame di Analisi Matematica II

Scritto d esame di Analisi Matematica II Capitolo 2: Scritti d esame 145 Pisa, 1 Gennaio 2005 e gli insiemi f(x, y) = x 2 x 2 y + y, A = {(x, y) R 2 : x 2 + y 2 6, x 0, y 0}, B = {(x, y) R 2 : x 0, y 0}. (a) massimo e minimo di f(x, y) in A,

Dettagli

Analisi Matematica II 20062/23033 Ing. Edile/Meccanica Prova scritta completa 27/01/2015

Analisi Matematica II 20062/23033 Ing. Edile/Meccanica Prova scritta completa 27/01/2015 Analisi Matematica II 20062/23033 Ing. Edile/Meccanica Prova scritta completa 27/0/205 (9 crediti) Esercizio. Si verifichi se nel punto (0, 0) la funzione 3 ye y 2 /x 4 se x 0 f (x, y) = 0 se x = 0, è

Dettagli

1. Riconoscere la natura delle coniche rappresentate dalle seguenti equazioni e disegnarle:

1. Riconoscere la natura delle coniche rappresentate dalle seguenti equazioni e disegnarle: Università degli Studi della Basilicata Corsi di Laurea in Chimica / Scienze Geologiche Matematica II A. A. 204-205 (dott.ssa Vita Leonessa) Esercizi proposti n. 3: Funzioni a due variabili. Riconoscere

Dettagli

Equazioni Differenziali

Equazioni Differenziali Università degli Studi di Udine Anno Accademico 2012/2013 Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Matematica Equazioni Differenziali Appello del 5 febbraio 2013 N.B.: scrivere

Dettagli

ESERCIZI INTRODUTTIVI

ESERCIZI INTRODUTTIVI ESERCIZI INTRODUTTIVI () Data la proposizione p: Tutti gli uomini hanno la coda, discutere la validità delle seguenti proposte di negazione di p: (i) non tutti gli uomini hanno la coda; (ii) nessun uomo

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Michele Campiti Prove scritte di Analisi Matematica 1 Ingegneria Industriale a.a. 2011 2012 y f 1 g 0 x La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica 1 per Ingegneria

Dettagli

1 Analisi mat. I - Esercizi del 13/10/99

1 Analisi mat. I - Esercizi del 13/10/99 Analisi mat. I - Esercizi del //99 ES. Delle seguenti funzioni determinare: il dominio l immagine gli eventuali asintoti l insieme dove sono continue e quali siano estendibili per continuita. Determinare

Dettagli

Esercizi di Analisi Matematica I

Esercizi di Analisi Matematica I Esercizi di Analisi Matematica I (corso tenuto dal Prof Alessandro Fonda) Università di Trieste, CdL Fisica e Matematica, aa 2012/2013 1 Principio di induzione 1 Dimostrare che per ogni numero naturale

Dettagli

Compito A. Prova intermedia di Analisi Matematica I

Compito A. Prova intermedia di Analisi Matematica I Compito A Prova intermedia di Analisi Matematica I L Aquila, 5 novembre 2005 Docente: B. Rubino Cognome e nome: Matricola: Esercizio 1 Applicando il principio di induzione, dimostrare la seguente proprietà:

Dettagli

Prova in itinere di Matematica Pisa, 26 novembre 2005

Prova in itinere di Matematica Pisa, 26 novembre 2005 Università di Pisa - Corso di Laurea in Ingegneria Informatica Prova in itinere di Matematica Pisa, 26 novembre 25 Numero compito: 256 Tempo ora. Non si possono usare calcolatrici. Segnare le risposte

Dettagli

ESERCIZI ASSEGNATI IN CLASSE

ESERCIZI ASSEGNATI IN CLASSE ESERCIZI ASSEGNATI IN CLASSE INGEGNERIA PER L AMBIENTE E IL TERRITORIO A. A. 2009/2010 LUCA ROSSI 1. Prima settimana Esercizio 1.1. Dimostrare che, dati due insiemi A, B, si ha: (leggi di De Morgan) A

Dettagli

Prova in itinere di Matematica Pisa, 26 novembre 2005

Prova in itinere di Matematica Pisa, 26 novembre 2005 Università di Pisa - Corso di Laurea in Ingegneria Informatica Prova in itinere di Matematica Pisa, 26 novembre 25 Numero compito: 256 Tempo ora. Non si possono usare calcolatrici. Segnare le risposte

Dettagli

Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica), a.a. 2007/08. Insiemi numerici: sup A, inf A

Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica), a.a. 2007/08. Insiemi numerici: sup A, inf A Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica, a.a. 2007/08 Esercizi: Parte 1 Insiemi numerici: sup A, inf A 1. Verificare se A, nel caso sia non vuoto, è limitato superiormente,

Dettagli

sin 3 x x x cos x lim Verificare se la funzione: (x 2)2 f(x) = ln (x 2) sia dotata di minimo assoluto nell intervallo aperto (3, + )

sin 3 x x x cos x lim Verificare se la funzione: (x 2)2 f(x) = ln (x 2) sia dotata di minimo assoluto nell intervallo aperto (3, + ) Esercizio 1 Verificare che il numero complesso z = ( 1 3 i)/2 algebrica: 2z 4 + 3z 3 2z 3 è radice dell equazione Esercizio 2 x 0 sin 3 x x x cos x Esercizio 3 Verificare se la funzione: (x 2)2 f(x) =

Dettagli

Compito di Istituzioni di Matematica 1 Prima parte, Tema ALFA COGNOME: NOME: MATR.:

Compito di Istituzioni di Matematica 1 Prima parte, Tema ALFA COGNOME: NOME: MATR.: Compito di Istituzioni di Matematica 1 Prima parte, Tema ALFA 6 settembre 2017 COGNOME: NOME: MATR.: 1) L applicazione lineare f : R 3 R 4 data da f(x, y, z) = (x kz, 3x + 2y + z, x + z, 2x + y + z) è

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 5 Giugno 2018 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

PER LA COMMISSIONE D ESAME 1E 2E 3E 4E 5E Totale

PER LA COMMISSIONE D ESAME 1E 2E 3E 4E 5E Totale Esame di Analisi Matematica Uno 31 Gennaio 2014 Fila: A 1 Università di Padova - Scuola di Ingegneria - Esame di Analisi Matematica Uno Lauree: Chimica e Materiali 31 Gennaio 2014 (Primo appello, a.a.

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

Scritto d esame di Analisi Matematica

Scritto d esame di Analisi Matematica 116 Prove d Esame di Analisi Matematica Versione 2006 Pisa, 15 Gennaio 2000 x 0 sin x 4 x 4 (arctan x x) 4. 2. eterminare, al variare del parametro λ R, il numero di soluzioni dell equazione 2x 2 = λe

Dettagli

Corso di Laurea in Chimica e Tecnologia Farmaceutiche Matematica con Elementi di Informatica COMPITO 29 Gennaio 2016

Corso di Laurea in Chimica e Tecnologia Farmaceutiche Matematica con Elementi di Informatica COMPITO 29 Gennaio 2016 Corso di Laurea in Chimica e Tecnologia Farmaceutiche Matematica con Elementi di Informatica COMPITO 29 Gennaio 2016 Nome Cognome Matricola Punteggi 10 cfu Teoria Ex.1 Ex.2 Ex.3 Ex. 4 Ex.5 /6 /5 /5 /5

Dettagli

15. Problemi di Cauchy

15. Problemi di Cauchy 15. Problemi di Cauchy Davide Catania davide.catania@unibs.it Esercitazioni di Analisi Matematica 2 A.A. 2016/17 Consideriamo il problema di Cauchy { y (t) = f ( t,y(t) ) t I, y(t 0 ) = y 0, con I R intervallo

Dettagli

Compito di Analisi Matematica 1 per Ingegneria Elettronica a delle Telecomunicazioni COGNOME: NOME: MATR.: 1. x n

Compito di Analisi Matematica 1 per Ingegneria Elettronica a delle Telecomunicazioni COGNOME: NOME: MATR.: 1. x n Compito di Analisi Matematica 1 per Ingegneria Elettronica a delle Telecomunicazioni 17 gennaio 2017 COGNOME: NOME: MATR.: Esercizio 1. Sia f : R R definita da f(x) = 1 4 x x + 1 2. a) Disegnare grafico

Dettagli

SOLUZIONI 3. f (x) = (x 2 1) 2/3 e x. (x 2 1) 2/3 e x 0 x R. x 4/3 e x = e 4/3 log x e x

SOLUZIONI 3. f (x) = (x 2 1) 2/3 e x. (x 2 1) 2/3 e x 0 x R. x 4/3 e x = e 4/3 log x e x Domanda Si consideri la funzione SOLUZIONI f x = x 2 2/ e x. Determinare il campo di esistenza, il segno, i iti alla frontiera e gli eventuali asintoti. Classificare gli eventuali punti di discontinuità

Dettagli

Corso di Laurea in Ingegneria Informatica Anno Accademico 2012/2013 Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Anno Accademico 2012/2013 Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Anno Accademico 2012/2013 Analisi Matematica 1 Nome... N. Matricola... Ancona, 12 gennaio 2013 1. Sono dati i numeri complessi z 1 = 1 + i; z 2 = 2 3 i; z 3 =

Dettagli

ANALISI MATEMATICA I, Compito scritto del 5/07/2016 Corso di Laurea in Matematica. COGNOME e NOME... MATR T

ANALISI MATEMATICA I, Compito scritto del 5/07/2016 Corso di Laurea in Matematica. COGNOME e NOME... MATR T ANALISI MATEMATICA I, Compito scritto del 5/7/6 Corso di Laurea in Matematica COGNOME e NOME... MATR... 3 4 T Nelle risposte devono essere riportati anche i conti principali e le motivazioni principali.

Dettagli

ESERCIZI DI ANALISI MATEMATICA Università di Firenze - Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica M Z Prof. M.

ESERCIZI DI ANALISI MATEMATICA Università di Firenze - Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica M Z Prof. M. ESERCIZI DI ANALISI MATEMATICA Università di Firenze - Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica M Z Prof. M.Patrizia Pera Insiemi e numeri reali Parte -a. Risolvere le seguenti disequazioni:

Dettagli

DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Clinica Canale PZ A.A. 2017/2018 Codocente: Dott. Salvatore Fragapane

DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Clinica Canale PZ A.A. 2017/2018 Codocente: Dott. Salvatore Fragapane DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Clinica Canale PZ A.A. 07/08 Codocente: Dott. Salvatore Fragapane Lezione - 09/03/08, dalle 6.00 alle 8.00 in aula 6 Es. Studiare

Dettagli

Esercizi relativi al capitolo 2

Esercizi relativi al capitolo 2 Esercizi relativi al capitolo. Funzioni pari e dispari Stabilire se le seguenti funzioni sono pari, dispari o né pari né dispari.. f (x) = x 4 x. f (x) = 3 x 3 + x 3. f (x) = x3 3 x+x 4. f (x) = x sin

Dettagli

Analisi e Geometria 1 - Seconda Prova - 2 Febbraio 2016 Terza parte (Compito A)

Analisi e Geometria 1 - Seconda Prova - 2 Febbraio 2016 Terza parte (Compito A) Politecnico di Milano, Scuola di Ingegneria Industriale e dell Informazione Analisi e Geometria 1 - Seconda Prova - 2 Febbraio 216 Terza parte (Compito A) Sia data, per ogni valore del parametro reale

Dettagli

Estremo Superiore, Estremo Inferiore, Induzione

Estremo Superiore, Estremo Inferiore, Induzione Estremo Superiore, Estremo Inferiore, Induzione Si consideri l insieme Dove a R e a > 0. A = x 2 + 3a x 2 + a } : x R Determinare tutti i maggioranti di A. Determinare tutti i minoranti di A. Determinare

Dettagli

Es. 1: 6 punti Es. 2: 12 punti Es. 3: 6 punti Es. 4: 6 punti Es. 5: 3 punti Totale. sin x arctan x lim. 4 x 2. f(x) = x 2

Es. 1: 6 punti Es. 2: 12 punti Es. 3: 6 punti Es. 4: 6 punti Es. 5: 3 punti Totale. sin x arctan x lim. 4 x 2. f(x) = x 2 Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Terzo appello, 1 Luglio 010 Cognome: Nome: Matricola: Compito A Es. 1: 6 punti Es. : 1 punti Es. 3: 6 punti Es. 4: 6 punti Es. 5: 3 punti

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

Analisi Matematica 3 (Fisica) Prova scritta del 27 gennaio 2012 Uno svolgimento

Analisi Matematica 3 (Fisica) Prova scritta del 27 gennaio 2012 Uno svolgimento Analisi Matematica 3 (Fisica) Prova scritta del 27 gennaio 22 Uno svolgimento Prima di tutto, eccovi alcuni commenti che potrebbero aiutarvi a svolgere meglio le prove scritte. Ad ogni domanda del testo

Dettagli

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a Michele Campiti Prove scritte di Analisi Matematica 2 Ingegneria Industriale a.a. 2014 2015 Grafico della funzione f(x, y) := sin(2x 2 y) cos(x 2y 2 ) in [ π/2, π/2] 2 Raccolta delle tracce di Analisi

Dettagli

ELIO CABIB. Esami di Analisi 2

ELIO CABIB. Esami di Analisi 2 ELIO CABIB Esami di Analisi ELIO CABIB cabib@uniud.it professore di Analisi Matematica Università di Udine Esami di Analisi Indice Appelli 997-98 3//998..................................... 6//998.....................................

Dettagli

8.1. Esercizio. Determinare massimo e minimo delle seguenti funzioni nei corrispondenti intervalli: 2 x 4 x in [0, 1]; e x2 in [ 2, 2]

8.1. Esercizio. Determinare massimo e minimo delle seguenti funzioni nei corrispondenti intervalli: 2 x 4 x in [0, 1]; e x2 in [ 2, 2] ANALISI Soluzione esercizi 25 novembre 2011 8.1. Esercizio. Determinare massimo e minimo delle seguenti funzioni nei corrispondenti intervalli: 2 x 4 x in [0, 1]; e x2 in [ 2, 2] cos x cos x in [ 2π, 2π];

Dettagli

Limiti e continuità Test di autovalutazione

Limiti e continuità Test di autovalutazione Test di autovalutazione 1. Sia A R tale che sup A = 2 e inf A = 0. Allora, necessariamente 2 A (b) esiste x A tale che 0 < x < 2 (c) esiste x A tale che x > 1 0 A 2. Il prodotto delle funzioni x e ln x

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 6 giugno 2017 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

Analisi Matematica I DISEQUAZIONI Risposte Pagina Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 1

Analisi Matematica I DISEQUAZIONI Risposte Pagina Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 1 Analisi Matematica I DISEQUAZIONI Risposte Pagina Es. Es. Es. 3 Es. 4 Es. 5 AVVERTENZA: Scrivere le risposte scelte nello spazio in alto a destra. In ogni esercizio una sola risposta è corretta. Esercizio.

Dettagli