1. Riconoscere la natura delle coniche rappresentate dalle seguenti equazioni e disegnarle:

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "1. Riconoscere la natura delle coniche rappresentate dalle seguenti equazioni e disegnarle:"

Transcript

1 Università degli Studi della Basilicata Corsi di Laurea in Chimica / Scienze Geologiche Matematica II A. A (dott.ssa Vita Leonessa) Esercizi proposti n. 3: Funzioni a due variabili. Riconoscere la natura delle coniche rappresentate dalle seguenti equazioni e disegnarle: (a) 2 xy = 0 (b) y = x 2 3x + 2 (c) x2 4 + y2 = 4 (d) x = y 2 + y (e) x 2 + y 2 5x + 2y = 9 4 (f) 24y 2 2x 2 = 8 2. Trovare la soluzione delle seguenti disequazioni e rappresentarla graficamente: (a) x 2 2y + y 2 0 (b) x y + { y x y x 0 (c) x 2 y 2 < 0 3. Determinare l insieme di definizione delle seguenti funzioni: (a) x 7 + x 2 y e y x3 (b) x cos y (c) (d) (x )y x + y (e) log(9 x 2 y 2 ) x + y + (f) arctan 2x y + x 4 y 2 (g) x 2 y 2 + y 2 (h) log(x + ) + y + 2 (i) arccos x (l) 4 x y y 2 (m) 2x x 2 (n) arcsin y 2 + xy (o) tan x 3 y (p) x2 4 + y Calcolare (se esistono) i limiti per (x, y) (0, 0) delle seguenti funzioni: (a) x y x 2 2xy + y 2 ; (b) x2 + 3xy + y 2 x 2 + 4xy + y 2 ; x 2 +y 2 (c) e x 4 + y 4 ; (d) x4 y 2 x 4 + y Verificare con la definizione di limite che: (a) lim (x,y) (0,0) x 5 x 2 = 0; (b) lim + y2 (x (x,y) (,0) )2 sin 6. Verificare che non esistono i seguenti limiti: (a) lim (x,y) (0,) (x )y = 0. (y ) 3 3x 2 y 2 + xy x 2 x 2 + y 2 ; (b) lim 2y + (x,y) (0,0) x 2 + y 2.

2 7. Calcolare, se esiste, il limite per (x, y) (0, 0) della funzione 2y + x 2 + y 2 8. Calcolare, se esiste, il limite per (x, y) (0, 0) della funzione sin(x2 + y 2 ) x 2 + y Dimostrare che il seguente limite non esiste lim (x,y) (0,0) xy 3 x 2 + y Studiare la continuità della seguente funzione arctan(cos(x 2 + y 2 )) x 2 + y 2 se (x, y) (0, 0),.. Studiare la continuità della seguente funzione { y x 3 + y 6 se (x, y) (0, 0), se (x, y) = (0, 0). 2. Calcolare f x e f y delle seguenti funzioni nel loro dominio di definizione: (a) x 4 2x 3 y 2 3x 2 y + 09 (b) x2 + 2y 2 2x (c) x 3 log(y + 2x) (d) e y(x2 +y 2 ) (e) sin(3x + y 4 ) (f) arctan(x 2 + xy) 3. Calcolare le derivate seconde f xx, f xy, f yx e f yy delle funzioni dell esercizio precedente. verificando l uguaglianza delle derivate parziali seconde miste. 4. Calcolare la derivata direzionale della funzione f nella direzione del versore v nel punto P nei seguenti casi : (a) e y2 e x2, v = (/ 2, / 2), P = (0, ); (b) log(4 x 2 3y 2 ), v = ( / 2, / 2), P = (, ); (c) y x (= e x log y ), v = (/2, 3/2), P = (0, ). 5. Data la funzione ( ) xy arctan x 2 + y 2 se (x, y) (0, 0), dire se nel punto (0, 0) tale funzione è continua, derivabile e differenziabile. Calcolare poi la derivata direzionale di f nella direzione del versore v = ( /2, 3/2) nel punto (, ). tenere conto dell espressione della derivata direzionale qualora f sia differenziabile 2

3 6. Data la funzione 2y x 2 + y 2 se (x, y) (0, 0), stabilire in quali punti è continua, derivabile lungo ogni direzione e differenziabile. Trovare inoltre, se esiste, l espressione della derivata direzionale di f nel punto (0, 0) lungo l arbitraria direzione (v, v 2 ) con v 2 + v2 2 =. 7. Calcolare l equazione del piano tangente alle seguenti funzioni nei punti indicati: (a) (x 2 + )(y + x), (, ); (b) sin(xy + 2x), (0, 0); (c) 9x y 2, (, ); (d) e /(x+y), (, ). 8. Dire se le seguenti affermazioni sono vere o false motivando le risposte: (a) Se f(x, y) è continua in (x 0, y 0 ), ammette derivate parziali prime in (x 0, y 0 ); (b) Se f(x, y) ammette derivate parziali prime nel suo insieme di definizione A, allora è continua in A; (c) Se f(x, y) è differenziabile in (x 0, y 0 ), ammette derivate parziali prime in (x 0, y 0 ); (d) Se f(x, y) ammette derivate parziali prime in (x 0, y 0 ), allora è differenziabile in (x 0, y 0 ). 9. Considerata f(x, y) allora dire se le due affermazioni seguenti sono vere o false: (a) Se f(x, y) è differenziabile in (, ), essa ammette derivata direzionale lungo la direzione v = (cos 2, sin 2) nel punto (, ) e f v (, ) = (f x (, ), f y (, )) v; (b) Se f(x, y) ammette derivata direzionale lungo la direzione v = (cos 2, sin 2) nel punto (, ), essa vale f v (, ) = (f x (, ), f y (, )) v anche se f non è differenziabile in (, ). 20. È noto che la funzione { x 2 y x 2 +y 2 se (x, y) (0, 0) non è differenziabile in (0, 0). È noto che essa ammette derivate direzionali lungo qualsiasi direzione v = (v, v 2 ) nel punto (0, 0) e che f v (0, 0) = v 2 v 2. Alla luce di queste considerazioni, è vero o no che f v (x, y) = (f x (x, y), f y (x, y)) v? 2. Considerata la funzione x 2 y 2 x 2 + y 2 se (x, y) (0, 0) 3

4 (a) Verificare che f(x, y) è continua in (0, 0); (c) Verificare se f(x, y) è differenziabile in (0, 0); lungo la direzione (/ 2, / 2) nel punto (, ). (b) Calcolare le derivate parziali prime; (d) Calcolare la derivata direzionale 22. Verificare con la definizione che le seguenti funzioni sono differenziabili in (0, 0): (a) (2x 2 8)(y 2); (b) cos(xy); (c) e x+y ; (d) log( + x 2 + y 2 ). 23. Considerate le funzioni dell esercizio precedente, calcolare le derivate direzionali lungo una qualsiasi direzione v = (v, v 2 ) nel punto (0, 0). 24. Sia f(x, y), definita in A = {(x, y) x 2, y 2}. Si scriva la definizione di continuità di f nel punto (2, 5). 25. Sia f : [, ] R una funzione continua in [, ] e tale che 0 f(x) 2 per ogni x [, ]. Dire se le seguenti affermazioni sono vere o false motivando la risposta: (a) L integrale f(x) dx potrebbe assumere un qualsiasi valore reale; (b) Se f(x) 0 per ogni x [0, ], allora (c) Esiste un punto x 0 [, ] tale che (d) f(x) dx 5. f(x) dx 0; f(x) dx = 2f(x 0 ); 26. Sia f : A R 2 R e supponiamo che (, 0) sia un punto di accumulazione per A. Rispondere ai sequenti quesiti motivando le risposte: (a) Cosa si intende con la scrittura lim 2? (x,y) (,0) (b) Se lim x f(x, λ(x )) = λ(λ ) per ogni λ R, cosa si può dire sul limite di f(x, y) per (x, y) (, 0)? 27. Scrivere l enunciato del teorema del differenziale totale. 28. Sia f : A R una funzione di due variabili definita sull aperto A del piano cartesiano e sia (x 0, y 0 ) un punto di A. Rispondere ai sequenti quesiti motivando le risposte: (a) Se f è differenziabile in (x 0, y 0 ), cosa si può dire sulla sua continuità in (x 0, y 0 )? (b) Se esistono le derivate parziali di f, si può dire che f v (x 0, y 0 ) = f x (x 0, y 0 )v + f y (x 0, y 0 )v 2 per ogni direzione v = (v, v 2 ) con v 2 + v2 2 =? 29. Sia f = f(x, y) una funzione definita in un aperto A del piano euclideo e derivabile in tale insieme e sia (x 0, y 0 ) A. Dire se le seguenti affermazioni sono vere o false e spiegare il motivo della risposta: 4

5 (a) Se esistono f xy (x 0, y 0 ) e f yx (x 0, y 0 ) allora esse sono uguali. (b) Se le funzioni f(x, y), f x (x, y) e f y (x, y) sono continue in (x 0, y 0 ) allora f è differenziabile. (c) Se f x (x 0, y 0 ) = 0 e f y (x 0, y 0 ) = 0 allora (x 0, y 0 ) è un punto di massimo o di minimo relativo per f. (d) Se le funzioni f(x, y), f x (x, y) e f y (x, y) sono continue in (x 0, y 0 ) allora f ammette derivata direzionale in (x 0, y 0 ) lungo una qualsiasi direzione. 30. Sia f : A R con A R 2 insieme aperto e si supponga che f sia differenziabile nel punto (x 0, y 0 ) A. Dire se le seguenti affermazioni sono vere o false e spiegare il motivo della risposta: (a) lim f(x 0, y 0 ); (x,y) (x 0,y 0 ) (b) f ammette derivata direzionale lungo una qualsiasi direzione v; (c) f v (x 0, y 0 ) = f x (x 0, y 0 )v 2 + f y(x 0, y 0 )v 2 dove v = (v, v 2 ) R 2 ; (d) esiste il piano tangente alla superficie di equazione z = f(x, y) nel punto (x 0, y 0 ). 3. Sia f(x, y) una funzione di 2 variabili definita in un aperto A del piano euclideo e sia (0, ) un punto di accumulazione per A. Scrivere cosa si intende per 2. lim (x,y) (0,) 32. Determinare gli eventuali punti di massimo e di minimo relativo della funzione 2y 3 + 3y 2 x 3y 2 x 3 + 8x. 33. Calcolare gli eventuali estremi relativi per x > 0 della funzione: 8 x y y 2 2xy y Considerata la funzione log x + y x 2 y (a) determinare gli eventuali estremi relativi; (b) determinare i punti di massimo e minimo assoluto nel quadrato individuato dalle rette di equazione y = 2, y = 0, x = e, x = e. 35. Si supponga che nel punto (, 0) la funzione f(x, y), definita in R 2, abbia un punto di minimo relativo, allora: (a) per ogni (x, y) R 2, risulta f(x, y) f(, 0), (b) esiste un δ > 0 tale che, per ogni (x, y) R 2, con (x ) 2 + y 2 < δ 2, risulta f(x, y) f(, 0), (c) f(, 0) 0, (d) f ammette derivate parziali prime in (, 0) e sono nulle. 36. Sia f(x, y), definita in A = {(x, y) x 2, y 2}. 5

6 a) Si scriva la definizione di continuità di f nel punto (2, 5), b) Se f è continua in A, ammette punti di massimo e minimo assoluto? 37. Calcolare gli eventuali punti di minimo e massimo relativo delle funzioni: (a) (y 2 + xy + 2x 2 ) e y ; (c) (x + y) cos x, per x, y [0, 2π]. (b) x 3 y 3 xy; 38. Determinare i punti di massimo e di minimo assoluto della funzione sul vincolo di equazione x 2 + y 2 =. x 3 y e 2x2, 39. Determinare gli eventuali punti di massimo e di minimo della funzione 3x 2y al variare di (x, y) sulla circonferenza di equazione x 2 + y 2 =. 40. Calcolare gli estremi assoluti della funzione: x 3 y 3, sotto il vincolo di equazione g(x, y) = x 2 + y 2 9 = Calcolare gli eventuali punti di massimo e di minimo della funzione ( + xy) 2 nell insieme D = {(x, y) x 2 + y 2 }. 42. Calcolare gli eventuali punti di massimo e di minimo della funzione y 2 x 3 nell insieme D = {(x, y) x 2 + y 2, (x 2 )2 + y 2 }. 43. Calcolare gli eventuali punti di massimo e di minimo della funzione x 4 y 2 3x nell insieme D = {(x, y) x 0, y, xy }. 44. Sia f : A R 2 R una funzione definita in un aperto A del piano tale che (2, ) A. Rispondere ai sequenti quesiti motivando le risposte: (a) Se fosse possibile trovare un intorno circolare I di (2, ) tale che f(x, y) f(2, ) per ogni (x, y) I A, cosa si può dire sul punto (2, )? (b) Se f fosse in aggiunta differenziabile in (2, ) con f x (2, ) = 0 e f y (2, ) = 0, si potrebbe concludere qualcosa sulla natura del punto (2, )? 45. Enunciare la condizione necessaria per la ricerca di estremi liberi per funzioni a due variabili. 46. Enunciare il teorema di Weierstrass per funzioni a due variabili. 6

Gruppo esercizi 1: Dominio [E.1] Disegnare nel piano cartesiano il dominio della funzione

Gruppo esercizi 1: Dominio [E.1] Disegnare nel piano cartesiano il dominio della funzione Gruppo esercizi 1: Dominio [E.1] Disegnare nel piano cartesiano il dominio della funzione [E.2] Disegnare nel piano cartesiano il dominio della funzione ( 4 x 2 y 2) ) (1 x 2 y2 y + x 2. 4 1 y ex y y x

Dettagli

Appello di Matematica II Corso di Laurea in Chimica / Scienze Geologiche 19 Giugno ( 1) n sin 1. n 3

Appello di Matematica II Corso di Laurea in Chimica / Scienze Geologiche 19 Giugno ( 1) n sin 1. n 3 Appello di Matematica II Corso di Laurea in Chimica / Scienze Geologiche 9 Giugno 203 TRACCIA A. Studiare il carattere della seguente serie numerica + n= ( ) n sin. Si tratta di una serie a termini di

Dettagli

Corso di Laurea in Ingegneria Informatica Anno Accademico 2012/2013 Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Anno Accademico 2012/2013 Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Anno Accademico 2012/2013 Analisi Matematica 1 Nome... N. Matricola... Ancona, 12 gennaio 2013 1. Sono dati i numeri complessi z 1 = 1 + i; z 2 = 2 3 i; z 3 =

Dettagli

Analisi Matematica 2 Ingegneria Gestionale Docenti: B. Rubino e R. Sampalmieri L Aquila, 21 marzo 2005

Analisi Matematica 2 Ingegneria Gestionale Docenti: B. Rubino e R. Sampalmieri L Aquila, 21 marzo 2005 Analisi Matematica 2 Ingegneria Gestionale Docenti: B. Rubino e R. Sampalmieri L Aquila, 21 marzo 2005 Prova orale il: Docente: Determinare, se esistono, il massimo ed il minimo assoluto della funzione

Dettagli

Politecnico di Bari - A.A. 2012/2013 Corso di Laurea in Ingegneria Elettrica Esame di ANALISI MATEMATICA - 3 Luglio 2013.

Politecnico di Bari - A.A. 2012/2013 Corso di Laurea in Ingegneria Elettrica Esame di ANALISI MATEMATICA - 3 Luglio 2013. Esame di ANALISI MATEMATICA - 3 Luglio 2013 (1) Studiare il carattere della serie numerica n 1( 1) n F 0 (n), dove F (x) = Z x 0 log(1 + e t2 ) dt (x 1). (6 punti) log(1 + e t2 ) (2) ata la funzione f(x,

Dettagli

ESERCIZI MATEMATICA GENERALE - Canale III Prof. A. Fabretti 1 A.A. 2009/2010

ESERCIZI MATEMATICA GENERALE - Canale III Prof. A. Fabretti 1 A.A. 2009/2010 ESERCIZI MATEMATICA GENERALE - Canale III Prof. A. Fabretti 1 A.A. 2009/2010 Individuare il dominio e i punti stazionari delle seguenti funzioni a due variabili 1) f(x, y) = x 3 + 8y 3 3xy 2) f(x, y) =

Dettagli

b) Dimostrare che se f(x) è differenziabile in x 0, allora è continua in x 0.

b) Dimostrare che se f(x) è differenziabile in x 0, allora è continua in x 0. Analisi Matematica II - Calcolo in più variabili Nome, Cognome, Matricola: Corso di Laurea: Versione A Avvertenza: La prova d esame si compone di due esercizi e di due quesiti. La risposta ai quesiti va

Dettagli

ESERCIZI DI ANALISI MATEMATICA Università di Firenze - Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica M Z Prof. M.

ESERCIZI DI ANALISI MATEMATICA Università di Firenze - Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica M Z Prof. M. ESERCIZI DI ANALISI MATEMATICA Università di Firenze - Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica M Z Prof. M.Patrizia Pera Insiemi e numeri reali Parte -a. Risolvere le seguenti disequazioni:

Dettagli

Corsi di Laurea in Matematica e in Fisica. Prova scritta di Analisi Matematica I. Lecce, 12.IX.2016

Corsi di Laurea in Matematica e in Fisica. Prova scritta di Analisi Matematica I. Lecce, 12.IX.2016 Lecce, 12IX2016 1 Tracciare il grafico della funzione definita dalla seguente e- { 1 + x } f(x) = x exp 1 x sin(1/x)[e x + 2x 2 log cos x] x z 2 i z = z 2 e rappresentare le soluzioni sul piano complesso

Dettagli

Esercizi di Analisi Matematica I

Esercizi di Analisi Matematica I Esercizi di Analisi Matematica I (corso tenuto dal Prof Alessandro Fonda) Università di Trieste, CdL Fisica e Matematica, aa 2012/2013 1 Principio di induzione 1 Dimostrare che per ogni numero naturale

Dettagli

Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Bacchelli - a.a. 2010/2011.

Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Bacchelli - a.a. 2010/2011. Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Baccelli - a.a. 2010/2011. 06 - Derivate, differenziabilità, piano tangente, derivate di ordine superiore. Riferimenti: R.Adams, Calcolo

Dettagli

Svolgimento. f y (x, y) = 8 y 2 x. 1 x 2 y = 0. y 2 x = 0. (si poteva anche ricavare la x dalla seconda equazione e sostituire nella prima)

Svolgimento. f y (x, y) = 8 y 2 x. 1 x 2 y = 0. y 2 x = 0. (si poteva anche ricavare la x dalla seconda equazione e sostituire nella prima) Università degli Studi della Basilicata Corsi di Laurea in Chimica / Scienze Geologiche Matematica II A. A. 2013-2014 (dott.ssa Vita Leonessa) Esercizi svolti: Ricerca di massimi e minimi di funzioni a

Dettagli

Estremi. 5. Determinare le dimensioni di una scatola rettangolare di volume v assegnato, che abbia la superficie minima.

Estremi. 5. Determinare le dimensioni di una scatola rettangolare di volume v assegnato, che abbia la superficie minima. Estremi 1. Determinare gli estremi relativi di f(x, y) = e x (x 1)(y 1) + (y 1).. Determinare gli estremi relativi di f(x, y) = y (y + 1) cos x. 3. Determinare gli estremi relativi di f(x, y) = xye x +y..

Dettagli

Gruppo esercizi 1: Vettori e matrici [E.1] Date le due matrici e il vettore

Gruppo esercizi 1: Vettori e matrici [E.1] Date le due matrici e il vettore Gruppo esercizi 1: Vettori e matrici [E.1] Date le due matrici e il vettore A = 1 2 0 0 2 1 B = 2 1 0 1 0 2 u = (1, 2, 1), 3 2 1 1 1 1 [E.2] Date le due matrici e il vettore A = 1 2 0 0 1 0 0 1 3 B = 1

Dettagli

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2017/2018. Prof. M. Bramanti.

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2017/2018. Prof. M. Bramanti. Prima prova in itinere di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 07/08. Prof. M. Bramanti Tema n 4 5 6 Tot. Cognome e nome (in stampatello) codice persona (o n

Dettagli

Estremi vincolati, Teorema del Dini.

Estremi vincolati, Teorema del Dini. Estremi vincolati, Teorema del Dini. 1. Da un cartone di 1m si deve ricavare una scatola rettangolare senza coperchio. Trovare il massimo volume possibile della scatola.. Trovare gli estremi assoluti di

Dettagli

ANALISI MATEMATICA II PROVA DI TEORIA (23/6/2009)

ANALISI MATEMATICA II PROVA DI TEORIA (23/6/2009) ANALISI MATEMATICA II PROVA DI TEORIA (23/6/2009) 1. Sia S = { } (x, y, z) : x 2 + y 2 = 4, 0 z 3 + x. Scrivere le equazioni parametriche di una superficie regolare che abbia S come sostegno. 2. Enunciare

Dettagli

Politecnico di Torino II Facoltà di Architettura - 5 Luglio 2011 Esercizio 1. Sono date le matrici 2 1, B = 1 4

Politecnico di Torino II Facoltà di Architettura - 5 Luglio 2011 Esercizio 1. Sono date le matrici 2 1, B = 1 4 A Politecnico di Torino II Facoltà di Architettura - 5 Luglio 20 Esercizio. Sono date le matrici A = ( ) 2, B = 4 ( ). 2 a) Calcolare la matrice A. b) Enunciare ed applicare la regola di Cramer per determinare

Dettagli

Matematica con esercitazioni, Modulo 2. Analisi matematica. Diario delle lezioni.

Matematica con esercitazioni, Modulo 2. Analisi matematica. Diario delle lezioni. Matematica con esercitazioni, Modulo 2. Analisi matematica. Diario delle lezioni. Laurea triennale Chimica e tecnologie per l ambiente e per i materiali. Rimini Avvertenza per gli studenti: il libro di

Dettagli

ESERCIZI INTRODUTTIVI

ESERCIZI INTRODUTTIVI ESERCIZI INTRODUTTIVI () Data la proposizione p: Tutti gli uomini hanno la coda, discutere la validità delle seguenti proposte di negazione di p: (i) non tutti gli uomini hanno la coda; (ii) nessun uomo

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

y (b) f(x, y) = y log x sin x (c) f(x, y) = tan y (d) f(x, y) = e x y (f) f(x, y) = cos(x 2 + y 2 )

y (b) f(x, y) = y log x sin x (c) f(x, y) = tan y (d) f(x, y) = e x y (f) f(x, y) = cos(x 2 + y 2 ) FUNZIONI DI PIÙ VARIABILI. Siano date le seguenti funzioni: (a) f(x, y) = 3x + y (c) h(x, y) = x y (b) g(x, y) = xy (d) k(x, y) = x + y Determinare e disegnare nel piano cartesiano il dominio delle funzioni

Dettagli

Alcuni esercizi risolti da esami di anni passati

Alcuni esercizi risolti da esami di anni passati Alcuni esercizi risolti da esami di anni passati Andrea Braides ( x. Calcolare, se esiste, il limite lim (x,y (, x + y log + y + x 3 y. x + y Dato che log( + s = s + o(s per s, abbiamo lim (x,y (, ( x

Dettagli

Compiti d Esame A.A. 2005/2006

Compiti d Esame A.A. 2005/2006 Compiti d Esame A.A. 25/26 UNIVERSITÀ DEGLI STUDI DI PERUGIA A.A. 25/26 I Esercitazione 21 Aprile 26 { y = xy ln(xy) si chiede di dimostrare che: y(1) = 1, (a) ammette un unica soluzione massimale y =

Dettagli

Estremi vincolati, Teorema del Dini.

Estremi vincolati, Teorema del Dini. Estremi vincolati, Teorema del Dini. 1. Da un cartone di 1m si deve ricavare una scatola rettangolare senza coperchio. Trovare il massimo volume possibile della scatola.. Trovare gli estremi assoluti di

Dettagli

Statistica Matematica e Trattamento Informatico dei Dati. Analisi Matematica 3. Esercizi svolti nelle lezioni. V. Del Prete

Statistica Matematica e Trattamento Informatico dei Dati. Analisi Matematica 3. Esercizi svolti nelle lezioni. V. Del Prete Statistica Matematica e Trattamento Informatico dei Dati A.A.00-0 Analisi Matematica 3 Esercizi svolti nelle lezioni V. Del Prete Numeri complessi Argomenti ed esercizi svolti nelle lezioni 30.09.00 e

Dettagli

1 Note ed esercizi risolti a ricevimento

1 Note ed esercizi risolti a ricevimento 1 Note ed esercizi risolti a ricevimento Nota 1. Il polinomio di Taylor della funzione f x, y) due variabili), del secondo ordine, nel punto x 0, y 0 ), è P 2 x, y) = f x 0, y 0 ) + f x x 0, y 0 ) x x

Dettagli

ARGOMENTI MATEMATICA PER L INGEGNERIA

ARGOMENTI MATEMATICA PER L INGEGNERIA ARGOMENTI DI MATEMATICA PER L INGEGNERIA VOLUME 2 Esercizi proposti Quando non diversamente precisato, nel seguito si intenderà( sempre che nel piano sia stato introdotto un sistema cartesiano ortogonale

Dettagli

Scritto d esame di Analisi Matematica I

Scritto d esame di Analisi Matematica I Capitolo 2: Scritti d esame 07 Pisa, 8 Gennaio 999. Studiare il comportamento della serie al variare del parametro α > /2. ( ) n n sin α n 2α 2. Sia ( ) f(x) = log + sin3 x. 2 (a) Determinare la derivata

Dettagli

; c) log 3 5 (x 2 1) log 5 (x + 1). 1 log(x + 4) ; c) f(x) =

; c) log 3 5 (x 2 1) log 5 (x + 1). 1 log(x + 4) ; c) f(x) = Corso di Analisi Matematica I per Ingegneria Gestionale, a.a. 25-6 Esercizi per il ricevimento del 3 ottobre 25. Semplificare il più possibile le seguenti espressioni: a) 32x+4 9 ; b) x3 x 2 x+ ( x) 4

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Analisi Matematica 2

Analisi Matematica 2 Analisi Matematica 2 Differenziabilità per funzioni di due variabili Differenziabilità per funzioni di due variabili CCS Ingegneria Meccanica e Ingegneria Chimica 1 / 26 Differenziabilitá Data la funzione

Dettagli

ANALISI B alcuni esercizi proposti

ANALISI B alcuni esercizi proposti ANALISI B alcuni esercizi proposti G.P. Leonardi Parte II 1 Limiti e continuità per funzioni di 2 variabili Esercizio 1.1 Calcolare xy log(1 + x ) lim (x,y) (0,0) 2x 2 + 5y 2 Esercizio 1.2 Studiare la

Dettagli

Esonero di Analisi Matematica II (A)

Esonero di Analisi Matematica II (A) Esonero di Analisi Matematica II (A) Ingegneria Edile, 8 aprile 3. Studiare la convergenza del seguente integrale improprio: + x log 3 x (x ) 3 dx.. Studiare la convergenza puntuale ed uniforme della seguente

Dettagli

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a Michele Campiti Prove scritte di Analisi Matematica 2 Ingegneria Industriale a.a. 20 202 Grafico della funzione f(x, y) := sin(2x 2 y) cos(x 2y 2 ) in [ π/2, π/2] 2 Raccolta delle tracce di Analisi Matematica

Dettagli

Corso di Analisi Matematica 1

Corso di Analisi Matematica 1 Corso di Analisi Matematica 1 in Ingegneria Biomedica Prof. A. Iannizzotto Prove d esame 2016 Versione del 21 dicembre 2016 Appello del 14 gennaio 2016 Tempo: 150 minuti Compito A 1. Enunciare e dimostrare

Dettagli

Derivate parziali, derivate direzionali, differenziabilità. a) Calcolare le derivate direzionali e le derivate parziali in (0, 1) di f(x, y) =

Derivate parziali, derivate direzionali, differenziabilità. a) Calcolare le derivate direzionali e le derivate parziali in (0, 1) di f(x, y) = Derivate parziali, derivate direzionali, differenziabilità 1. a) Calcolare le derivate direzionali e le derivate parziali in (0, 1) di f(x, y) = 3 x (y 1) + 1. b) Calcolare D v f(0, 1), dove v è il versore

Dettagli

Temi d esame di Analisi Matematica 1

Temi d esame di Analisi Matematica 1 Temi d esame di Analisi Matematica 1 Area di Ingegneria dell Informazione - a cura di M. Bardi 31.1.95 f(x) = xe arctan 1 x (insieme di definizione, segno, iti ed asintoti, continuità e derivabilità, crescenza

Dettagli

Scritto d esame di Analisi Matematica

Scritto d esame di Analisi Matematica 116 Prove d Esame di Analisi Matematica Versione 2006 Pisa, 15 Gennaio 2000 x 0 sin x 4 x 4 (arctan x x) 4. 2. eterminare, al variare del parametro λ R, il numero di soluzioni dell equazione 2x 2 = λe

Dettagli

Matematica e Statistica (A-E, F-O, P-Z)

Matematica e Statistica (A-E, F-O, P-Z) Matematica e Statistica (A-E, F-O, P-Z) Prova d esame (3/09/011) Università di Verona - Laurea in Biotecnologie - A.A. 010/11 1 Matematica e Statistica (A-E, F-O, P-Z) Prova di MATEMATICA (A-E, F-O, P-Z)

Dettagli

Esercizi su Funzioni di più variabili. - Parte II. Derivate parziali, derivate direzionali, piano tangente

Esercizi su Funzioni di più variabili. - Parte II. Derivate parziali, derivate direzionali, piano tangente Esercizi su Funzioni di più variabili. - Parte II Derivate parziali, derivate direzionali, piano tangente 1. Data la funzione f(x, y, z) = e x2 y 3 sin(x + z) calcolarne il gradiente e la derivata direzionale

Dettagli

Ingegneria Elettronica Prova scritta di Analisi Matematica II del giorno ( 3) n x n n + 1

Ingegneria Elettronica Prova scritta di Analisi Matematica II del giorno ( 3) n x n n + 1 Prova scritta di Analisi Matematica II del giorno 31-01-2007 1) Studiare la serie di potenze ( 3) n x n n + 1 2) Determinare i punti di estremo relativo ed assoluto della funzione seguente f(x, y) = x

Dettagli

ESERCIZI DI ANALISI MATEMATICA Università di Firenze - Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica M Z Prof. M.

ESERCIZI DI ANALISI MATEMATICA Università di Firenze - Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica M Z Prof. M. ESERCIZI DI ANALISI MATEMATICA Università di Firenze - Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica M Z Prof. M.Patrizia Pera Parte 2 Funzioni reali di più variabili 1. Stabilire se i

Dettagli

Politecnico di Bari Dicatech A.A. 2015/2016 Analisi Matematica I Prova scritta 05 febbraio 2016 Traccia A

Politecnico di Bari Dicatech A.A. 2015/2016 Analisi Matematica I Prova scritta 05 febbraio 2016 Traccia A Politecnico di Bari Dicatech A.A. 2015/2016 Analisi Matematica I Prova scritta 05 febbraio 2016 Traccia A Cognome Nome N o Matricola Nello svolgimento di tutti gli esercizi richiesti, i passaggi ed i risultati

Dettagli

Prova Finale di Tipo B e Prova di Accesso alla Laurea Magistrale 1 Febbraio 2007

Prova Finale di Tipo B e Prova di Accesso alla Laurea Magistrale 1 Febbraio 2007 Prova Finale di Tipo B e Prova di Accesso alla Laurea Magistrale 1 Febbraio 27 Dipartimento di Matematica Università di Roma Tre U. Bessi, A. Bruno, S. Gabelli, G. Gentile Istruzioni (a) La sufficienza

Dettagli

CORSI DI LAUREA IN MATEMATICA E FISICA UNIVERSITÀ DEL SALENTO Prova parziale di ANALISI MATEMATICA I - 15/11/2017 Prova A

CORSI DI LAUREA IN MATEMATICA E FISICA UNIVERSITÀ DEL SALENTO Prova parziale di ANALISI MATEMATICA I - 15/11/2017 Prova A Prova parziale di ANALISI MATEMATICA I - 5//207 Prova A da Si studino l insieme di definizione ed il segno della funzione definita fx) = log 2 ) 2 sinx3 cos x+5) + arctan 3 x 3 x + π 4 ) 2 Si risolva la

Dettagli

Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni

Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni Esercizi proposti 1. Calcolare la derivata prima f () per le seguenti funzioni: a) f() = c) f() = ( 1 + 1 b) f() = 1 arctan ) d) f() = cos ( ( + ) 5) e) f() = 1 + sin 1 f) f() = arcsin 1. Determinare i

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA Area dell Ingegneria dell Informazione Appello del 3..7 TEMA Esercizio Calcolare l integrale log(3) 4 dx Svolgimento. Si ha log(3) 4 dx = (ponendo ex = t, per cui dx = dt/t) e = 4 3

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 22 luglio 2016 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

Corso di Laurea in Chimica e Tecnologia Farmaceutiche Matematica con Elementi di Informatica COMPITO 29 Gennaio 2016

Corso di Laurea in Chimica e Tecnologia Farmaceutiche Matematica con Elementi di Informatica COMPITO 29 Gennaio 2016 Corso di Laurea in Chimica e Tecnologia Farmaceutiche Matematica con Elementi di Informatica COMPITO 29 Gennaio 2016 Nome Cognome Matricola Punteggi 10 cfu Teoria Ex.1 Ex.2 Ex.3 Ex. 4 Ex.5 /6 /5 /5 /5

Dettagli

Alcuni esercizi: funzioni di due variabili e superfici

Alcuni esercizi: funzioni di due variabili e superfici ANALISI MATEMATICA T- (C.d.L. Ing. per l ambiente e il territorio) - COMPL. DI ANALISI MATEMATICA (A-K) (C.d.L. Ing. Civile) A.A.008-009 - Prof. G.Cupini Alcuni esercizi: funzioni di due variabili e superfici

Dettagli

Esonero di Analisi Matematica (A)

Esonero di Analisi Matematica (A) Esonero di Analisi Matematica (A) Ingegneria Civile, 26 novembre 2001 () 1. Studiare il seguente limite: lim x x + ( e 1/x cos 1 ). x 2. Studiare gli eventuali massimi e minimi relativi ed assoluti della

Dettagli

Esame di MATEMATICA CORSO BASE del

Esame di MATEMATICA CORSO BASE del Esame di MATEMATICA CORSO BASE del Cognome Matricola Nome Esercizio. Si consideri il seguente sistema x 3y + z =5 x ky +z = k kx y z = Si trovino il numero delle soluzioni al variare del parametro k e

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Michele Campiti Prove scritte di Analisi Matematica Ingegneria Industriale aa 28 29 y f g x La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica per Ingegneria Industriale,

Dettagli

Lezione 1-03/10/2018, dalle alle in aula 3 - Esempi svolti: Svolgimento di alcuni esercizi della settimana del 28/09/2018.

Lezione 1-03/10/2018, dalle alle in aula 3 - Esempi svolti: Svolgimento di alcuni esercizi della settimana del 28/09/2018. DIARIO DELLE LEZIONI DI TUTORATO DI ANALISI MATEMATICA I Corsi di laurea in Ingegneria delle Comunicazioni e Ingegneria Elettronica Tutor: Dott. Salvatore Fragapane Lezione 1-0/10/018, dalle 1.00 alle

Dettagli

Corso di laurea in Chimica Matematica

Corso di laurea in Chimica Matematica Corso di laurea in Chimica Matematica. Quali sono i valori x R, con 0 x < 2π, che risolvono le seguenti disequazioni? a) sinx > 2 ; b) 0 < cosx < ; c) sin x < /2. 2 2. Calcolare: a) log 2 4; b) log 4 2;

Dettagli

Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola:

Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola: Analisi Matematica II - INGEGNERIA Gestionale - B luglio 7 Cognome: Nome: Matricola: IMPORTANTE: Giustificare tutte le affermazioni e riportare i calcoli essenziali Esercizio [8 punti] Data la matrice

Dettagli

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [;

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [; ESERCIZIO - Data la funzione f (x) + x2 2x x 2 5x + 6, si chiede di: a) calcolare il dominio di f ; (2 punti) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire se f ha asintoti

Dettagli

CORSI DI LAUREA IN MATEMATICA E FISICA UNIVERSITÀ DEL SALENTO Prova scritta di ANALISI MATEMATICA I - 22/01/2018

CORSI DI LAUREA IN MATEMATICA E FISICA UNIVERSITÀ DEL SALENTO Prova scritta di ANALISI MATEMATICA I - 22/01/2018 Prova scritta di ANALISI MATEMATICA I - 22/0/208 Studiare la funzione definita da fx) = x + x 2 2 Calcolare, se esiste, il ite sin3x) x cos3x) 2x x 0 log 4 + sin cos x) x ) 3 Calcolare log 2 xdx 4 Si risolva

Dettagli

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a Michele Campiti Prove scritte di Analisi Matematica 2 Ingegneria Industriale a.a. 2014 2015 Grafico della funzione f(x, y) := sin(2x 2 y) cos(x 2y 2 ) in [ π/2, π/2] 2 Raccolta delle tracce di Analisi

Dettagli

Tutorato di Complementi di Analisi Matematica e Statistica Parte di Analisi 6 e 10 aprile 2017

Tutorato di Complementi di Analisi Matematica e Statistica Parte di Analisi 6 e 10 aprile 2017 Tutorato di Complementi di Analisi Matematica e Statistica Parte di Analisi 6 e 10 aprile 2017 Esercizi: serie di potenze e serie di Taylor 1 Date le serie di potenze a.) n=2 ln(n) n 3 (x 5)n b.) n=2 ln(n)

Dettagli

Argomento 6: Derivate Esercizi. I Parte - Derivate

Argomento 6: Derivate Esercizi. I Parte - Derivate 6: Derivate Esercizi I Parte - Derivate E. 6.1 Calcolare le derivate delle seguenti funzioni: 1) log 5 3 + cos ) + 3 + 4 + 3 3) 5 tan 4) ( + 3e ) sin 5) arctan( + 1) 6) log 7) 10) + + 3 8) 3 3 1 + 16 11)

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del

Analisi Matematica II Corso di Ingegneria Gestionale Compito del Analisi Matematica II Corso di Ingegneria Gestionale Compito del 30-0-08 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Matematica con esercitazioni, Modulo 2. Analisi matematica. Diario delle lezioni.

Matematica con esercitazioni, Modulo 2. Analisi matematica. Diario delle lezioni. Matematica con esercitazioni, Modulo. Analisi matematica. Diario delle lezioni. Laurea triennale Chimica e tecnologie per l ambiente e per i materiali. Rimini Avvertenza per gli studenti: il libro di testo

Dettagli

A Analisi Matematica 2 (Corso di Laurea in Informatica) Simulazione compito d esame

A Analisi Matematica 2 (Corso di Laurea in Informatica) Simulazione compito d esame COGNOME NOME Matr. Firma dello studente A Analisi Matematica (Corso di Laurea in Informatica) Simulazione compito Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni

Dettagli

COGNOME... NOME... Matricola... Corso Prof... Esame di ANALISI MATEMATICA II - 25 Giugno 2007

COGNOME... NOME... Matricola... Corso Prof... Esame di ANALISI MATEMATICA II - 25 Giugno 2007 COGNOME... NOME... Matricola... Corso Prof.... Esame di ANALISI MATEMATICA II - 25 Giugno 2007 A ESERCIZIO 1. (6 punti) Data la funzione reale di due variabili reali f(x, y) = ln x 3y + 3y x 1 (a) determinare

Dettagli

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2

Dettagli

Funzioni di più variabli: dominio, limiti, continuità

Funzioni di più variabli: dominio, limiti, continuità Funzioni di più variabli: dominio, limiti, continuità Riccarda Rossi Università di Brescia Analisi Matematica B Riccarda Rossi (Università di Brescia) Funzioni di più variabli Analisi Matematica B 1 /

Dettagli

Corso di laurea in ingegneria gestionale a.a. 2015/2016 Tutor: Andrea Bendinelli

Corso di laurea in ingegneria gestionale a.a. 2015/2016 Tutor: Andrea Bendinelli Corso di analisi matematica I 12 c.f.u. Facoltà di ingegneria dell'informazione, informatica e statistica Corso di laurea in ingegneria gestionale a.a. 2015/2016 Tutor: Andrea Bendinelli 1 Indice I Esercitazione

Dettagli

Funzioni di più variabli: dominio, limiti, continuità

Funzioni di più variabli: dominio, limiti, continuità Funzioni di più variabli: dominio, limiti, continuità Riccarda Rossi Università di Brescia Analisi Matematica B Riccarda Rossi (Università di Brescia) Funzioni di più variabli Analisi Matematica B 1 /

Dettagli

Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x

Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x Esercitazione n 6 1 Massimi e minimi di funzioni di più variabili Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (a)f(x, y) = x 3 + y 3 + xy (b)f(x, y) = 4y 4 16x

Dettagli

MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A

MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A Nome e cognome Matricola I Parte OBBLIGATORIA (quesiti preliminari: 1 punto ciascuno). Riportare le soluzioni su questo foglio, mostrando i

Dettagli

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni Soluzioni dello scritto di Analisi Matematica II - /7/9 C.L. in Matematica e Matematica per le Applicazioni Proff. K. Payne, C. Tarsi, M. Calanchi Esercizio. a La funzione f è limitata e essendo lim fx

Dettagli

Matematica per Scienze Biologiche e Biotecnologie. Docente Lucio Damascelli. Università di Tor Vergata. Alcuni recenti compiti di esame

Matematica per Scienze Biologiche e Biotecnologie. Docente Lucio Damascelli. Università di Tor Vergata. Alcuni recenti compiti di esame Matematica per Scienze Biologiche e Biotecnologie Docente Lucio Damascelli Università di Tor Vergata Alcuni recenti compiti di esame Nota Nei compiti di esame si chiedono 6 esercizi da svolgere in (al

Dettagli

Compitino di Analisi Matematica 1 Prima parte, Tema A Ingegneria Civile, Ambientale e Edile COGNOME: NOME: MATR.: RISPOSTE:

Compitino di Analisi Matematica 1 Prima parte, Tema A Ingegneria Civile, Ambientale e Edile COGNOME: NOME: MATR.: RISPOSTE: Compitino di Analisi Matematica 1 Prima parte, Tema A Ingegneria Civile, Ambientale e Edile 20 maggio 2014 COGNOME: NOME: MATR.: RISPOSTE: A B C D E 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 X 9 X 10 X 1 Prima parte,

Dettagli

Corso di Laurea in Chimica e Tecnologia Farmaceutiche Matematica con Elementi di Informatica COMPITO 19 Febbraio 2016

Corso di Laurea in Chimica e Tecnologia Farmaceutiche Matematica con Elementi di Informatica COMPITO 19 Febbraio 2016 Corso di Laurea in Chimica e Tecnologia Farmaceutiche Matematica con Elementi di Informatica COMPITO 19 Febbraio 2016 Nome Cognome Matricola Punteggi 10 cfu Teoria Ex.1 Ex.2 Ex.3 Ex. 4 Ex.5 /6 /5 /5 /5

Dettagli

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi)

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi) Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006 Matematica 2 (Analisi) Nome:................................. N. matr.:.................................

Dettagli

CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI

CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI Notiamo che lo studio delle funzioni assegnate f,..., f 4 si riduce a considerare

Dettagli

Esame di Analisi Matematica Prova scritta del 9 giugno 2009

Esame di Analisi Matematica Prova scritta del 9 giugno 2009 Prova scritta del 9 giugno 2009 A1 Data la funzione f(x) = x2 3 e x, (f) determinare in base al grafico di f il numero delle soluzioni dell equazione f(x) = λ al variare di Calcolare un valore approssimato

Dettagli

Esercizi di Analisi Matematica 1, utili per la preparazione all esame scritto - Seconda parte SOLUZIONI

Esercizi di Analisi Matematica 1, utili per la preparazione all esame scritto - Seconda parte SOLUZIONI Esercizi di Analisi Matematica Esercizi di Analisi Matematica, utili per la preparazione all esame scritto - Seconda parte SOLUZIONI Es. Per ognuna delle seguenti figure, dire se la curva nel piano cartesiano

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 6 giugno 2017 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

Numeri DISPARI Prova scritta di Matematica per l Economia e Matematica Generale - 11 aprile 2007 Corsi A-D, E-N, O-Z. 1 x 3 sen

Numeri DISPARI Prova scritta di Matematica per l Economia e Matematica Generale - 11 aprile 2007 Corsi A-D, E-N, O-Z. 1 x 3 sen Prova scritta di Matematica per l Economia e Matematica Generale - 11 aprile 2007 Corsi A-D, E-N, O-Z (1) Calcolare il seguente integrale definito 3/π 1/π 1 3 sen ( 1 ) d integrando dapprima per sostituzione

Dettagli

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,

Dettagli

PER LA COMMISSIONE D ESAME 1E 2E 3E 4E 5E Totale

PER LA COMMISSIONE D ESAME 1E 2E 3E 4E 5E Totale Esame di Analisi Matematica Uno 31 Gennaio 2014 Fila: A 1 Università di Padova - Scuola di Ingegneria - Esame di Analisi Matematica Uno Lauree: Chimica e Materiali 31 Gennaio 2014 (Primo appello, a.a.

Dettagli

Compito A. Prova intermedia di Analisi Matematica I

Compito A. Prova intermedia di Analisi Matematica I Compito A Prova intermedia di Analisi Matematica I L Aquila, 5 novembre 2005 Docente: B. Rubino Cognome e nome: Matricola: Esercizio 1 Applicando il principio di induzione, dimostrare la seguente proprietà:

Dettagli

DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Gestionale Canale PZ Secondo codocente: Dott. Salvatore Fragapane

DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Gestionale Canale PZ Secondo codocente: Dott. Salvatore Fragapane DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Gestionale Canale PZ Secondo codocente: Dott. Salvatore Fragapane Lezione 1-04/10/2016 - Serie Numeriche (1): definizione e successione

Dettagli

ANALISI MATEMATICA 1. (Ingegneria Industriale, corsi A e B) Esempi di prove scritte

ANALISI MATEMATICA 1. (Ingegneria Industriale, corsi A e B) Esempi di prove scritte ANALISI MATEMATICA 1 (Ingegneria Industriale, corsi A e B) Esempi di prove scritte Rispondere ai quesiti a risposta multipla Qi, risolvere gli esercizi Ei, enunciare le definizioni Di e svolgere le dimostrazioni

Dettagli

DERIVATE. Rispondere ai seguenti quesiti. Una sola risposta è corretta. 1. Data la funzione f(x) =2+ x 7, quale delle seguente affermazioni èvera?

DERIVATE. Rispondere ai seguenti quesiti. Una sola risposta è corretta. 1. Data la funzione f(x) =2+ x 7, quale delle seguente affermazioni èvera? DERIVATE Rispondere ai seguenti quesiti. Una sola risposta è corretta.. Data la funzione f(x) =+ x 7, quale delle seguente affermazioni èvera? (a) f(x) nonè derivabile in x =0 (b) f (0) = (c) f (0) = (d)

Dettagli

sin 3 x x x cos x lim Verificare se la funzione: (x 2)2 f(x) = ln (x 2) sia dotata di minimo assoluto nell intervallo aperto (3, + )

sin 3 x x x cos x lim Verificare se la funzione: (x 2)2 f(x) = ln (x 2) sia dotata di minimo assoluto nell intervallo aperto (3, + ) Esercizio 1 Verificare che il numero complesso z = ( 1 3 i)/2 algebrica: 2z 4 + 3z 3 2z 3 è radice dell equazione Esercizio 2 x 0 sin 3 x x x cos x Esercizio 3 Verificare se la funzione: (x 2)2 f(x) =

Dettagli

Scritto d esame di Matematica I

Scritto d esame di Matematica I Capitolo 2: Scritti d esame 139 Pisa, 19 Gennaio 2005 x 1 + (x + 1) log x (x 1)(2x 2). 2. Studiare la convergenza dei seguenti integrali impropri 1 dx e 2x 1, 0 dx e 2x 1, e, nel caso in cui convergano,

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Michele Campiti Prove scritte di Analisi Matematica 1 Ingegneria Industriale aa 2012 2013 y f 1 g 0 x La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica 1 per Ingegneria

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica I

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica I Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica I 30 giugno 2014 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi Matematica 1 e Geometria

Politecnico di Milano Ingegneria Industriale Analisi Matematica 1 e Geometria Politecnico di Milano Ingegneria Industriale Analisi Matematica e Geometria Preparazione al primo compito in itinere Cognome: Nome: Matricola: Prima Parte. Determinare, se esistono, il minimo, il massimo,

Dettagli

ESERCIZI ASSEGNATI IN CLASSE

ESERCIZI ASSEGNATI IN CLASSE ESERCIZI ASSEGNATI IN CLASSE INGEGNERIA PER L AMBIENTE E IL TERRITORIO A. A. 2009/2010 LUCA ROSSI 1. Prima settimana Esercizio 1.1. Dimostrare che, dati due insiemi A, B, si ha: (leggi di De Morgan) A

Dettagli

Analisi 4 - SOLUZIONI (compito del 29/09/2011)

Analisi 4 - SOLUZIONI (compito del 29/09/2011) Corso di laurea in Matematica Analisi 4 - SOLUZIONI compito del 9/09/0 Docente: Claudia Anedda Calcolare, tramite uno sviluppo in serie noto, la radice quinta di e la radice cubica di 9 Utilizzando la

Dettagli

Analisi Matematica I DISEQUAZIONI Risposte Pagina Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 1

Analisi Matematica I DISEQUAZIONI Risposte Pagina Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 1 Analisi Matematica I DISEQUAZIONI Risposte Pagina Es. Es. Es. 3 Es. 4 Es. 5 AVVERTENZA: Scrivere le risposte scelte nello spazio in alto a destra. In ogni esercizio una sola risposta è corretta. Esercizio.

Dettagli

Esame di MATEMATICA CORSO BASE del

Esame di MATEMATICA CORSO BASE del Esame di MATEMATICA CORSO BASE del Cognome Matricola Nome Esercizio 1. Si consideri il seguente sistema 2x 3y + z =5 x ky +2z = k kx y z = 1 Si trovino il numero delle soluzioni al variare del parametro

Dettagli

Modulo 5 Funzioni di piú variabili. A. Scanu

Modulo 5 Funzioni di piú variabili. A. Scanu Modulo 5 Funzioni di piú variabili A. Scanu 1 1 Generalitá In questo modulo studieremo funzioni di piú di una variabile cioé del tipo f : R n R m con n, m 1. In particolare prenderemo in considerazione

Dettagli