Gruppo esercizi 1: Vettori e matrici [E.1] Date le due matrici e il vettore

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Gruppo esercizi 1: Vettori e matrici [E.1] Date le due matrici e il vettore"

Transcript

1 Gruppo esercizi 1: Vettori e matrici [E.1] Date le due matrici e il vettore A = B = u = (1, 2, 1), [E.2] Date le due matrici e il vettore A = B = u = ( 1, 2, 2), [E.3] Date le due matrici e il vettore A = B = u = (2, 1, 1), [E.4] Date le due matrici e il vettore A = B = u = (2, 1, 1), [E.5] Date le due matrici e il vettore A = B = u = (2, 1, 3), [E.6] Date le due matrici e il vettore A = B = u = (0, 1, 2),

2 Gruppo esercizi 2: Sistemi [E.7] Discutere, al variare del parametro λ R, l insieme delle soluzioni del sistema x + (2 + 2λ) y (2 + 2λ) z = 6, (2 λ) y z = 2, 2 y (1 + λ) z = 2. [E.8] Discutere, al variare del parametro λ R, l insieme delle soluzioni del sistema x + (2 + 2λ) y + (2 + 2λ) z = 3, (3 λ) y + 2 z = 2, 3 y (2 + λ) z = 3. [E.9] Discutere, al variare del parametro λ R, l insieme delle soluzioni del sistema 2 x (4 + λ) y (3 + λ) z = 8, (4 λ) y + 2 z = 8, 6 y (3 + λ) z = 12. [E.10] Discutere, al variare del parametro λ R, l insieme delle soluzioni del sistema x (1 λ) y (1 3λ) z = 6, (1 + λ) y 2 z = 8, y + (2 λ) z = 4. [E.11] Discutere, al variare del parametro λ R, l insieme delle soluzioni del sistema x + 6λ y + (2 + 4λ) z = 19, (5 λ) y + 3 z = 6, 6 y (4 + λ) z = 12. [E.12] Discutere, al variare del parametro λ R, l insieme delle soluzioni del sistema x (3 + 3λ) y + (1 + λ) z = 0, (2 + λ) y + z = 1, 6 y + (3 λ) z = 3. [E.13] Discutere, al variare del parametro λ R, l insieme delle soluzioni del sistema x + (5 + λ) y 2 z = 4, (4 + λ) y + 2 z = 4, 4 y + (2 λ) z = 8. [E.14] Discutere, al variare del parametro λ R, l insieme delle soluzioni del sistema x (4 + 4λ) y (2 + 3λ) z = 8, (3 + λ) y 2 z = 4, 4 y + (3 λ) z = 4. [E.15] Discutere, al variare del parametro λ R, l insieme delle soluzioni del sistema x (2 + 5λ) y (2 + 3λ) z = 9, (3 λ) y + 2 z = 12, 4 y (3 + λ) z = 12. Gruppo esercizi 3: Rette del piano [E.16] Dati il vettore v = (1, 2) e i punti Q = (3, 1) e R = (0, 2), 2

3 a) scrivere le equazioni parametriche e l equazione cartesiana della retta r passante per Q con la direzione di v; [E.17] Dati il vettore v = ( 1, 2) e i punti Q = ( 3, 1) e R = (1, 2), [E.18] Dati i punti v = ( 1, 2), Q = ( 3, 0) e R = (1, 2), [E.19] Dati il vettore v = (1, 0) e i punti Q = ( 3, 1) e R = (1, 2), [E.20] Dati il vettore v = (2, 2) e i punti Q = (3, 1) e R = (1, 2), [E.21] Dati il vettore v = ( 1, 2) e i punti Q = (3, 0) e R = (0, 2), [E.22] Dati il vettore v = (2, 1) e i punti Q = (1, 1) e R = (1, 2), Gruppo esercizi 4: Teoria [E.23] (Teoria) Prodotto scalare: definizione e proprietà. [E.24] (Teoria) Prodotto vettoriale: definizione e proprietà. [E.25] (Teoria) Spazi e sottospazi vettoriali. [E.26] (Teoria) Vettori linearmente dipendenti e linearmente indipendenti. [E.27] (Teoria) Operazioni tra matrici [E.28] (Teoria) Determinante: definizione e proprietà. [E.29] (Teoria) Rango: definizione e proprietà. [E.30] (Teoria) Sistemi lineari omogenei. [E.31] (Teoria) Teorema di Rouché Capelli e teorema di Cramer. [E.32] (Teoria) Rette del piano. [E.33] (Teoria) Piani dello spazio. 3

4 Gruppo esercizi 1: Retta tangente [E.1] Scrivere l equazione cartesiana della retta tangente al grafico della funzione f(x) = punto x 0 = 0. [E.2] Scrivere l equazione cartesiana della retta tangente al grafico della funzione f(x) = punto x 0 = 0. [E.3] Scrivere l equazione cartesiana della retta tangente al grafico della funzione f(x) = punto x 0 = 0. [E.4] Scrivere l equazione cartesiana della retta tangente al grafico della funzione f(x) = punto x 0 = 0. x x + 1 ex in corrispondenza del 2x x + 2 e x in corrispondenza del x 2x 1 ex in corrispondenza del 2x x 3 ex+1 in corrispondenza del Gruppo esercizi 2: Studio di funzione (x 2)(x + 1) [E.5] Studiare la funzione f(x) = e x 1 (dominio, segno, limiti, asintoti, crescenza e decrescenza, concavità e convessità). (x + 2)x [E.6] Studiare la funzione f(x) = (dominio, segno, limiti, asintoti, crescenza e decrescenza, concavità e convessità). e 2x+1 (x + 1)x [E.7] Studiare la funzione f(x) = (dominio, segno, limiti, asintoti, crescenza e decrescenza, concavità e convessità). e x+2 (x 1)x [E.8] Studiare la funzione f(x) = (dominio, segno, limiti, asintoti, crescenza e decrescenza, concavità e convessità). [E.9] Studiare la funzione f(x) = convessità). e 2x+2 (x + 2)(x 1) e x+1 Gruppo esercizi 3: Integrali log x [E.10] Calcolare l insieme di tutte le primitive della funzione x(log x + 2). sin x cos x [E.11] Calcolare l insieme di tutte le primitive della funzione cos x + 2. sin x cos x [E.12] Calcolare l insieme di tutte le primitive della funzione sin x + 3. log(2x) [E.13] Calcolare l insieme di tutte le primitive della funzione x(log(2x) + 1). sin(2x) cos(2x) [E.14] Calcolare l insieme di tutte le primitive della funzione cos(2x) + 2. [E.15] Calcolare l insieme di tutte le primitive della funzione (dominio, segno, limiti, asintoti, crescenza e decrescenza, concavità e sin(2x) cos(2x) sin(2x) + 1. Gruppo esercizi 4: Teoria [E.16] (Teoria) Definizione di limite ed interpretazione grafica; esempi. [E.17] (Teoria) Definizione di primitiva e di integrale indefinito; esempi e proprietà. [E.18] (Teoria) Funzioni continue; classificazione dei punti di discontinuità; esempi. [E.19] (Teoria) Definizione di derivata e sua interpretazione geometrica. [E.20] (Teoria) Teorema di Rolle e Teorema di Lagrange. [E.21] (Teoria) Teorema di Torricelli e teorema fondamentale del calcolo integrale. [E.22] (Teoria) Definizione di integrale definito; interpretazione geometrica. [E.23] (Teoria) Funzioni derivabili e funzioni continue. [E.24] (Teoria) Punti di massimo o minimo assoluto e relativo. Teorema di Weierstrass e Teorema di Fermat. [E.25] (Teoria) Teorema di Lagrange e sue conseguenze. 1

5 Matematica 1 Prova scritta del 01/02/10 1 COGNOME: NOME: ESERCIZI Scrivere in modo sintetico lo svolgimento dei seguenti esercizi. Esercizio n. 1 Discutere, al variare del parametro λ R, l insieme delle soluzioni del sistema x (6 5λ) y + (4 3λ) z = 9, (4 λ) y 2 z = 4, 3 y (1 + λ) z = 6. Esercizio n. 2 Dati i vettori u = (1, 2, 1) e v = (3, 1, 1) ed il punto P = (1, 1, 1) a) determinare un vettore w ortogonale sia ad u che a v; b) scrivere l equazione cartesiana del piano π ortogonale a w e passante per P ; c) scrivere le equazioni parametriche della retta r passante per P e con direzione data da u; d) verificare che r è contenuta nel piano π. Esercizio n. 3 Studiare la funzione f(x) = 3 xe x (dominio, segno, limiti, crescenza e decrescenza, concavità e convessità, grafico). Esercizio n. 4 Calcolare l integrale definito 1 0 x 7 e x4 dx 1.1

6 Matematica 1 Prova scritta del 24/02/10 1 COGNOME: NOME: ESERCIZI Scrivere in modo sintetico lo svolgimento dei seguenti esercizi. Esercizio n. 1 Discutere, al variare del parametro λ R, l insieme delle soluzioni del sistema x + (5 + λ) y + 2 z = 9, (4 + λ) y 2 z = 6, 4 y + (2 λ) z = 12. Esercizio n. 2 Studiare la funzione f(x) = log(x 2 + 4) (dominio, segno, limiti, crescenza e decrescenza, concavità e convessità, grafico). Esercizio n. 3 Data la funzione f(x) = sin(2x2 + 4x) x a) calcolarne il limite in x 0 = 0; b) calcolarne la derivata prima. Esercizio n. 4 Calcolare tutte le primitive della funzione f(x) = e x e 2x + 2e x

7 Matematica 1 Prova scritta del 16/06/10 1 COGNOME: NOME: ESERCIZI Scrivere in modo sintetico lo svolgimento dei seguenti esercizi. Esercizio n. 1 Discutere, al variare del parametro λ R, l insieme delle soluzioni del sistema 2 x + λ y z = 4, (2 λ) y + z = 2, 6 y (3 + λ) z = 6. Esercizio n. 2 Dati la matrice e i vettori A = u = (1, 2, 1), v = ( 1, 1, 0) calcolare u, v A( u v). Esercizio n. 3 Calcolare tutte le primitive della funzione f(x) = x( 4 + x 2 + e 4x ). Esercizio n. 4 Studiare la funzione f(x) = ex (dominio, segno, limiti, crescenza e decrescenza, concavità e convessità, 1 + e2x grafico). 1.1

8 Matematica 1 Prova scritta del 28/06/10 1 COGNOME: NOME: ESERCIZI Scrivere in modo sintetico lo svolgimento dei seguenti esercizi. Esercizio n. 1 Discutere, al variare del parametro λ R, l insieme delle soluzioni del sistema 2 x (4 + 3λ) y + λ z = 8, (2 λ) y 2 z = 2, 4 y (4 + λ) z = 4. Esercizio n. 2 Dati il piano dello spazio π di equazione cartesiana 2x + 7y + 3z 2 = 0 ed il punto P = ( 1, 1, 3), a) scrivere le equazioni parametriche della retta r ortogonale a π e passante per P ; b) scrivere l equazione del piano parallelo a π e passante per il punto di intersezione tra la retta r ed il piano xy. Esercizio n. 3 Calcolare l integrale definito 1 0 e x log(1 + e x ) dx. Esercizio n. 4 Studiare la funzione f(x) = log(x 2 + 1) log x (dominio, segno, limiti, crescenza e decrescenza, concavità e convessità, grafico). 1.1

{ x + 2y = 3 αx + 2y = 1 αx + y = 0. f(x) = e x 2 +3x+4 x 5. f(x) = x 3 e 7x.

{ x + 2y = 3 αx + 2y = 1 αx + y = 0. f(x) = e x 2 +3x+4 x 5. f(x) = x 3 e 7x. 0 Gennaio 006 Teoria: Definizione di derivata puntuale e suo significato geometrico Esercizio Determinare l equazione del piano contenente i vettori u = (,, 3 e v = (,, e passante per P o = (,, Scrivere

Dettagli

Programma delle lezioni svolte nel corso CLEM di Matematica Generale, Lettere M-Z, Prof. F. Manzini.

Programma delle lezioni svolte nel corso CLEM di Matematica Generale, Lettere M-Z, Prof. F. Manzini. Programma delle lezioni svolte nel corso CLEM di Matematica Generale, Lettere M-Z, Prof. F. Manzini. 1. Generalità sul corso e sulle modalità di esame. Insiemi ed operazioni sugli insiemi. Applicazioni

Dettagli

Compito del 27 Gennaio Esercizio 1 Sono dati i vettori u = (2, 1, 3) e v = ( 1, 4, 2), nonché le matrici

Compito del 27 Gennaio Esercizio 1 Sono dati i vettori u = (2, 1, 3) e v = ( 1, 4, 2), nonché le matrici Compito del 27 Gennaio 2015 Sono dati i vettori u = (2, 1, 3) e v = ( 1, 4, 2), nonché le matrici 0 1 2 0 1 1, B = 1 0 1 2 0 2. 1 2 0 0 3 1 a) Calcolare det(a B T ) b) Calcolare un vettore perpendicolare

Dettagli

ESERCIZI INTRODUTTIVI

ESERCIZI INTRODUTTIVI ESERCIZI INTRODUTTIVI () Data la proposizione p: Tutti gli uomini hanno la coda, discutere la validità delle seguenti proposte di negazione di p: (i) non tutti gli uomini hanno la coda; (ii) nessun uomo

Dettagli

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2

Dettagli

Laurea triennale in Informatica Corso di Analisi matematica (A) a.a. 2007/08 9 giugno 2008

Laurea triennale in Informatica Corso di Analisi matematica (A) a.a. 2007/08 9 giugno 2008 9 giugno 2008 1. Data la funzione f(x) = x e 1/(x2 4), (c) stabilire se f ammette punti singolari e in caso affermativo classificarli; calcolare la derivata prima di f e utilizzarla per studiare la monotonia

Dettagli

1 a Prova parziale di Analisi Matematica I (A) 16/11/2007

1 a Prova parziale di Analisi Matematica I (A) 16/11/2007 Nome a Prova parziale di Analisi Matematica I (A) 6//7 ) Data la funzione ( ) = f e Calcolare il campo di esistenza e il suo comportamento agli estremi ) Definizione di derivata prima di una funzione f()

Dettagli

Registro di Meccanica /13 - F. Demontis 2

Registro di Meccanica /13 - F. Demontis 2 Registro delle lezioni di ISTITUZIONI ED ESERCITAZIONI DI MATEMATICA 1 Corso di Laurea in Chimica 8 CFU - A.A. 2015/2016 docente: Francesco Demontis ultimo aggiornamento: 17 dicembre 2015 1. Lunedì 05/10/2015,

Dettagli

Esame di Geometria - 9 CFU (Appello del 20 Giugno A)

Esame di Geometria - 9 CFU (Appello del 20 Giugno A) Esame di Geometria - 9 CFU (Appello del 20 Giugno 2012 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio 1. Siano dati, al variare del parametro k R, i piani: π 1 : x 2y + 2z = 2, π 2 : z =

Dettagli

MATEMATICA GENERALE CLAMM AA 15-16

MATEMATICA GENERALE CLAMM AA 15-16 MATEMATICA GENERALE CLAMM AA 5-6 PROGRAMMA PARTE ALGEBRA LINEARE () Sistemi lineari e matrici: sistemi triangolari; a scala e loro risolubilità; matrice dei coefficienti e vettore dei termini noti; vettore

Dettagli

ESERCIZI DA SVOLGERE PER MAGGIO (la parte in verde, il resto lo dovreste avere già svolto).

ESERCIZI DA SVOLGERE PER MAGGIO (la parte in verde, il resto lo dovreste avere già svolto). ESERCIZI DA SVOLGERE PER MAGGIO (la parte in verde, il resto lo dovreste avere già svolto). 1. Data la funzione : x 2 e x minimo e di massimo. Determinare inoltre gli eventuali flessi e gli intervalli

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (0/0/03) Università di Verona - Laurea in Biotecnologie - A.A. 0/3 Matematica e Statistica Prova di MATEMATICA (0/0/03) Università di Verona - Laurea in Biotecnologie

Dettagli

Temi d esame di Analisi Matematica 1

Temi d esame di Analisi Matematica 1 Temi d esame di Analisi Matematica 1 Area di Ingegneria dell Informazione - a cura di M. Bardi 31.1.95 f(x) = xe arctan 1 x (insieme di definizione, segno, iti ed asintoti, continuità e derivabilità, crescenza

Dettagli

Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A

Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A.2012-2013 (Grazie agli studenti del corso che comunicheranno eventuali omissioni o errori) 25 SETTEMBRE

Dettagli

(2) Dato il vettore w = (1, 1, 1), calcolare T (w). (3) Determinare la matrice A associata a T rispetto alla base canonica.

(2) Dato il vettore w = (1, 1, 1), calcolare T (w). (3) Determinare la matrice A associata a T rispetto alla base canonica. 1. Applicazioni lineari Esercizio 1.1. Sia T : R 2 R 3 l applicazione lineare definita sulla base canonica di R 2 nel seguente modo: T (e 1 ) = (1, 2, 1), T (e 2 ) = (1, 0, 1). a) Esplicitare T (x, y).

Dettagli

Matematica e Statistica (A-E, F-O, P-Z)

Matematica e Statistica (A-E, F-O, P-Z) Matematica e Statistica (A-E, F-O, P-Z) Prova d esame (24/06/20) Università di Verona - Laurea in Biotecnologie - A.A. 200/ Tema A Matematica e Statistica (A-E, F-O, P-Z) Prova di MATEMATICA (A-E, F-O,

Dettagli

Corso di Laurea in Chimica e Tecnologia Farmaceutiche Matematica con Elementi di Informatica COMPITO 19 Febbraio 2016

Corso di Laurea in Chimica e Tecnologia Farmaceutiche Matematica con Elementi di Informatica COMPITO 19 Febbraio 2016 Corso di Laurea in Chimica e Tecnologia Farmaceutiche Matematica con Elementi di Informatica COMPITO 19 Febbraio 2016 Nome Cognome Matricola Punteggi 10 cfu Teoria Ex.1 Ex.2 Ex.3 Ex. 4 Ex.5 /6 /5 /5 /5

Dettagli

Esame di Geometria - 9 CFU (Appello del 14 gennaio A)

Esame di Geometria - 9 CFU (Appello del 14 gennaio A) Esame di Geometria - 9 CFU (Appello del 4 gennaio 24 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Si considerino le rette s : { x x 2 2x 3 = 2 3x x 2 =, { x + x s 2 : 2 x 3 = x 2 =.. Stabilire

Dettagli

Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica

Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica 1) Dati i vettori a = (2, 4), b = (1, 2), c = ( 1, 1), d = (3, 6), stabilire se c e d appartengono a Span(a, b}). 2) Nello spazio vettoriale

Dettagli

Esercizi di GEOMETRIA e ALGEBRA LINEARE (Ingegneria Ambientale e Civile - Curriculum Ambientale)

Esercizi di GEOMETRIA e ALGEBRA LINEARE (Ingegneria Ambientale e Civile - Curriculum Ambientale) Esercizi di GEOMETRIA e ALGEBRA LINEARE (Ingegneria Ambientale e Civile - Curriculum Ambientale). Tra le seguenti matrici, eseguire tutti i prodotti possibili: 2 ( ) A = 0 3 4 B = C = 2 2 0 0 2 D = ( 0

Dettagli

Università degli studi di Udine - Sede di Pordenone

Università degli studi di Udine - Sede di Pordenone Università degli studi di Udine - Sede di Pordenone Facoltà di Scienze della Formazione - Corso di Corso di Matematica e Statistica Tema d esame AA2009/2010-27 gennaio 2010 Esercizio 1a Esplicitare la

Dettagli

Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente

Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente Dati i vettori di R (i) Calcolare il prodotto scalare v w, (ii) Stabilire se v e w sono ortogonali, (ii) Stabilire

Dettagli

MATRICI E SISTEMI LINEARI

MATRICI E SISTEMI LINEARI - - MATRICI E SISTEMI LINEARI ) Calcolare i seguenti determinanti: a - c - d - e - f - g - 8 7 8 h - ) Calcolare per quali valori di si annullano i seguenti determinanti: a - c - ) Calcolare il rango delle

Dettagli

Esercizi per il corso di Algebra e Geometria L.

Esercizi per il corso di Algebra e Geometria L. Esercizi per il corso di Algebra e Geometria L AA 2006/2007 1 Foglio 1 In tutti gli esercizi che seguiranno lo spazio ambiente sarà il piano cartesiano a valori nel campo dei numeri reali, dove supporremo

Dettagli

UNIVERSITA DEGLI STUDI DI SALERNO. Dipartimento di Ingegneria Industriale - Corso di studi in Ingegneria Chimica

UNIVERSITA DEGLI STUDI DI SALERNO. Dipartimento di Ingegneria Industriale - Corso di studi in Ingegneria Chimica UNIVERSITA DEGLI STUDI DI SALERNO Dipartimento di Ingegneria Industriale - Corso di studi in Ingegneria Chimica Anno Accademico 2016/17 Disciplina: Matematica I Docente: Roberto Capone Modulo di Analisi

Dettagli

Università degli Studi di Salerno - Facoltà di Ingegneria Matematica II - Prova Scritta - 09/06/2006

Università degli Studi di Salerno - Facoltà di Ingegneria Matematica II - Prova Scritta - 09/06/2006 Matematica II - Prova Scritta - 09/06/2006 f(x, y) = (y x)e x2 y 2, 2. Risolvere le seguenti equazioni differenziali: y 2 = 1 1 (2x y) 2, y 2y + y 2y = e x (x 1). 3. Calcolare il seguente integrale curvilineo

Dettagli

Politecnico di Torino Facoltà di Architettura. Raccolta di esercizi proposti nelle prove scritte

Politecnico di Torino Facoltà di Architettura. Raccolta di esercizi proposti nelle prove scritte Politecnico di Torino Facoltà di Architettura Raccolta di esercizi proposti nelle prove scritte relativi a: algebra lineare, vettori e geometria analitica Esercizio. Determinare, al variare del parametro

Dettagli

1 a Prova parziale di Analisi Matematica I (1) 22/11/2006 (civili + ambientali)

1 a Prova parziale di Analisi Matematica I (1) 22/11/2006 (civili + ambientali) a Prova parziale di Analisi Matematica I () ) Data la funzione f ( ) = tg + ln( cos ) a) determinare il campo di esistenza, b) calcolare il limite lim f ( ) π ) Definizione di limite finito: lim f ( )

Dettagli

DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Gestionale Canale PZ Secondo codocente: Dott. Salvatore Fragapane

DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Gestionale Canale PZ Secondo codocente: Dott. Salvatore Fragapane DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Gestionale Canale PZ Secondo codocente: Dott. Salvatore Fragapane Lezione 1-04/10/2016 - Serie Numeriche (1): definizione e successione

Dettagli

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI MATEMATICA Classe VB Anno Scolastico 014-015 Insegnante: Prof.ssa La Salandra Incoronata 1 Nozioni di topologia su Intervalli; Estremo superiore

Dettagli

Analisi Matematica e Geometria 1

Analisi Matematica e Geometria 1 Michele Campiti Prove scritte di Analisi Matematica e Geometria 1 Ingegneria Industriale aa 2015 2016 y f 1 g 0 La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica e

Dettagli

Estremi. 5. Determinare le dimensioni di una scatola rettangolare di volume v assegnato, che abbia la superficie minima.

Estremi. 5. Determinare le dimensioni di una scatola rettangolare di volume v assegnato, che abbia la superficie minima. Estremi 1. Determinare gli estremi relativi di f(x, y) = e x (x 1)(y 1) + (y 1).. Determinare gli estremi relativi di f(x, y) = y (y + 1) cos x. 3. Determinare gli estremi relativi di f(x, y) = xye x +y..

Dettagli

Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003

Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003 Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria assegnati da dicembre 2000 a dicembre 2003 11/12/2000 n R 4 sono assegnati i punti A(3, 0, 1, 0), B(0, 0, 1, 0), C(2, 1, 0,

Dettagli

y (b) f(x, y) = y log x sin x (c) f(x, y) = tan y (d) f(x, y) = e x y (f) f(x, y) = cos(x 2 + y 2 )

y (b) f(x, y) = y log x sin x (c) f(x, y) = tan y (d) f(x, y) = e x y (f) f(x, y) = cos(x 2 + y 2 ) FUNZIONI DI PIÙ VARIABILI. Siano date le seguenti funzioni: (a) f(x, y) = 3x + y (c) h(x, y) = x y (b) g(x, y) = xy (d) k(x, y) = x + y Determinare e disegnare nel piano cartesiano il dominio delle funzioni

Dettagli

Compito Parziale di Algebra lineare e Geometria analitica. 2x + 3y + 2z = 0 x y z = 0

Compito Parziale di Algebra lineare e Geometria analitica. 2x + 3y + 2z = 0 x y z = 0 Compito Parziale di Algebra lineare e Geometria analitica ) Dire se il seguente sottoinsieme di R 3 H = (x; y; z) R 3 : x + 3y + z = x y z = è o non un sottospazio vettoriale di R 3 e eventualmente calcolarne

Dettagli

1 Esercitazioni di Matematica

1 Esercitazioni di Matematica CORSO DI LAUREA IN SPTUPA Corso di Matematica e Statistica applicata anno accademico 2013/2014 Secondo l Eneide, all origine della fondazione di Cartagine sta la soluzione di un problema di natura matematica.

Dettagli

Esercizi. f(x, y, z) = exp(xz) + zy sin(xyz) + cos(xy 3 )

Esercizi. f(x, y, z) = exp(xz) + zy sin(xyz) + cos(xy 3 ) Esercizi 1. Determinare le derivate parziali di f(x, y, z) = exp(xz) + zy sin(xyz) + cos(xy 3 ) 2. Scrivere l equazione del piano tangente e della retta normale al grafico ln(xy) + cos(x + y) nel punto

Dettagli

iv Indice c

iv Indice c Indice Prefazione ix 1 Numeri 1 1 Insiemi e logica 1 1.1 Concetti di base sugli insiemi 1 1.2 Un po di logica elementare 9 2 Sommatorie e coefficienti binomiali 13 2.1 Il simbolo di sommatoria 13 2.2 Fattoriale

Dettagli

PROGRAMMA DI MATEMATICA APPLICATA

PROGRAMMA DI MATEMATICA APPLICATA PROGRAMMA DI MATEMATICA APPLICATA Classe II A Turismo A.S. 2014/2015 Prof.ssa RUGGIERO ANGELA ISABELLA I NUMERI REALI Radicali: - Riduzione allo stesso indice e semplificazione - Alcune operazioni fra

Dettagli

Esercitazione di Analisi Matematica II

Esercitazione di Analisi Matematica II Esercitazione di Analisi Matematica II Barbara Balossi 06/04/2017 Esercizi di ripasso Esercizio 1 Sia data l applicazione lineare f : R 3 R 3 definita come f(x, y, z) = ( 2x + y z, x 2y + z, x y). a) Calcolare

Dettagli

APPUNTI ED ESERCIZI DI MATEMATICA

APPUNTI ED ESERCIZI DI MATEMATICA APPUNTI ED ESERCIZI DI MATEMATICA Per Scienze Naturali e Biologiche S.Console - M.Roggero - D.Romagnoli A.A. 2005/2006 Indice Capitolo 1 - Nozioni introduttive e notazioni 6 Gli insiemi...................................

Dettagli

A.A. 2014/2015 Corso di Algebra Lineare

A.A. 2014/2015 Corso di Algebra Lineare A.A. 2014/2015 Corso di Algebra Lineare Stampato integrale delle lezioni Massimo Gobbino Indice Lezione 01: Vettori geometrici nel piano cartesiano. Operazioni tra vettori: somma, prodotto per un numero,

Dettagli

PER LA COMMISSIONE D ESAME 1E 2E 3E 4E 5E Totale

PER LA COMMISSIONE D ESAME 1E 2E 3E 4E 5E Totale Esame di Analisi Matematica Uno 31 Gennaio 2014 Fila: A 1 Università di Padova - Scuola di Ingegneria - Esame di Analisi Matematica Uno Lauree: Chimica e Materiali 31 Gennaio 2014 (Primo appello, a.a.

Dettagli

PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016

PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016 PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016 LE DISEQUAZIONI 1. Le disequazioni di primo e secondo grado 2. Le disequazioni di grado superiore al secondo e le disequazioni fratte

Dettagli

A.A. 2016/17 - Analisi Matematica 1

A.A. 2016/17 - Analisi Matematica 1 A.A. 2016/17 - Analisi Matematica 1 Argomenti svolti, libro di testo di riferimento: P. Marcellini, C. Sbordone: Elementi Calcolo. Liguori Editore. O. Bernardi: Temi d esame senza tema. Ed. Libreria Progetto.

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

1 Rette e piani nello spazio

1 Rette e piani nello spazio 1 Rette e piani nello spazio Esercizio 1.1 È assegnato un riferimento cartesiano 0xyz. Sono assegnati la retta x = t, r : y = t, z = t, il piano π : x + y + z = 0 ed il punto P = (1, 1, 1). Scrivere le

Dettagli

ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE

ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE 1 Scrivi l equazione della retta tangente al grafico di f(x) = (1 + 2x) 4 nel suo punto di intersezione con l asse y 2 Scrivi l equazione della retta tangente

Dettagli

Matematica. dott. francesco giannino. a. a chiusura del corso. 1

Matematica. dott. francesco giannino. a. a chiusura del corso. 1 Matematica a. a. 2014-2015 dott. francesco giannino 99. chiusura del corso. 1 99. chiusura del corso 99. chiusura del corso. 2 Obiettivo del corso fornire strumenti matematici di base necessari nel prosieguo

Dettagli

Università degli Studi della Calabria Facoltà di Ingegneria. 17 luglio 2012

Università degli Studi della Calabria Facoltà di Ingegneria. 17 luglio 2012 Università degli Studi della Calabria Facoltà di Ingegneria Correzione della Seconda Prova Scritta di nalisi Matematica 7 luglio cura dei Prof. B. Sciunzi e L. Montoro. Seconda Prova Scritta di nalisi

Dettagli

ANALISI B alcuni esercizi proposti

ANALISI B alcuni esercizi proposti ANALISI B alcuni esercizi proposti G.P. Leonardi Parte II 1 Limiti e continuità per funzioni di 2 variabili Esercizio 1.1 Calcolare xy log(1 + x ) lim (x,y) (0,0) 2x 2 + 5y 2 Esercizio 1.2 Studiare la

Dettagli

(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica.

(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica. 5 luglio 010 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

Argomento 6: Derivate Esercizi. I Parte - Derivate

Argomento 6: Derivate Esercizi. I Parte - Derivate 6: Derivate Esercizi I Parte - Derivate E. 6.1 Calcolare le derivate delle seguenti funzioni: 1) log 5 3 + cos ) + 3 + 4 + 3 3) 5 tan 4) ( + 3e ) sin 5) arctan( + 1) 6) log 7) 10) + + 3 8) 3 3 1 + 16 11)

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013 Soluzioni dei problemi della maturità scientifica A.S. / Nicola Gigli Sun-Ra Mosconi June, Problema. Il teorema fondamentale del calcolo integrale garantisce che Quindi f (x) = cos x +. f (π) = cos π +

Dettagli

Trapani. Dispensa di Geometria, x 1 x 2.x n. (x 1 y 1 ) (x n y n ) 2.

Trapani. Dispensa di Geometria, x 1 x 2.x n. (x 1 y 1 ) (x n y n ) 2. 2006 Trapani Dispensa di Geometria, 1 Distanze Siano P e Q punti di R n con P di coordinate allora la distanza tra P e Q e P Q = x 1 x 2 x n (x 1 y 1 ) 2 + (x n y n ) 2 e Q di coordinate Siano Σ 1 e Σ

Dettagli

ESERCIZI - VER 29 MAGGIO Esercizi per le prove scritte di Analisi Matematica - ITPS corso B

ESERCIZI - VER 29 MAGGIO Esercizi per le prove scritte di Analisi Matematica - ITPS corso B ESERCIZI - VER 29 MAGGIO 2017 Esercizi per le prove scritte di Analisi Matematica - ITPS corso B Nome e cognome (leggibili): Firma: Matricola Si ricorda che non è consentito l uso di macchine calcolatrici

Dettagli

Diario delle lezioni di Calcolo e Biostatistica (O-Z) - a.a. 2013/14 A. Teta

Diario delle lezioni di Calcolo e Biostatistica (O-Z) - a.a. 2013/14 A. Teta Diario delle lezioni di Calcolo e Biostatistica (O-Z) - a.a. 2013/14 A. Teta 1. (1/10 Lu.) Generalità sugli insiemi, operazioni di unione, intersezione e prodotto cartesiano. Insiemi numerici: naturali,

Dettagli

Contenuti del programma di Matematica. Classe Terza

Contenuti del programma di Matematica. Classe Terza Contenuti del programma di Matematica Classe Terza A.S. 2014/2015 Tema Contenuti GEOMETRIA Misura della lunghezza della circonferenza e NEL PIANO area del cerchio. COMLEMENT Equazioni e disequazioni con

Dettagli

PROGRAMMAZIONE PREVENTIVA a.s

PROGRAMMAZIONE PREVENTIVA a.s PROGRAMMAZIONE PREVENTIVA a.s. 2009-2010 Insegnante Classe Materia preventivo Battistella Fulvia 5ST matematica 132 titolo set ott nov dic gen feb mar apr mag giu prev 5.1 TRIGONOMETRIA x x x 20 5.2 CALCOLO

Dettagli

Programmazione per Obiettivi Minimi. Matematica Primo anno

Programmazione per Obiettivi Minimi. Matematica Primo anno Programmazione per Obiettivi Minimi Matematica Primo anno Saper operare in N, Z e Q. Conoscere e saper applicare le proprietà delle potenze con esponente intero e relativo. Saper operare con i monomi.

Dettagli

LICEO SCIENTIFICO STATALE GOBETTI-SEGRE. Anno scolastico DOCENTE CASALEGNO Cristina Materia d insegnamento : MATEMATICA.

LICEO SCIENTIFICO STATALE GOBETTI-SEGRE. Anno scolastico DOCENTE CASALEGNO Cristina Materia d insegnamento : MATEMATICA. Torino, 17/11/2015 LICEO SCIENTIFICO STATALE GOBETTI-SEGRE Anno scolastico 2015-2016 DOCENTE CASALEGNO Cristina Materia d insegnamento : MATEMATICA Classe: 5 SA PROGRAMMA PREVISTO La programmazione fa

Dettagli

ISTITUTO LICEALE S. PIZZI PROGRAMMAZIONE DI MATEMATICA LICEO SCIENTIFICO

ISTITUTO LICEALE S. PIZZI PROGRAMMAZIONE DI MATEMATICA LICEO SCIENTIFICO ISTITUTO LICEALE S. PIZZI PROGRAMMAZIONE DI MATEMATICA V LICEO SCIENTIFICO LINEE GENERALI E COMPETENZE Al termine del percorso del liceo scientifico lo studente conoscerà i concetti e i metodi elementari

Dettagli

STUDIO di FUNZIONE. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 1

STUDIO di FUNZIONE. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 1 STUDIO di FUNZIONE c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 1 Punti di estremo: punto di massimo assoluto Def. Sia 0 dom(f) = D. Si dice che 0 è un punto di massimo

Dettagli

Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A ESERCIZI DA CONSEGNARE prof.

Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A ESERCIZI DA CONSEGNARE prof. Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A. 2015-2016 ESERCIZI DA CONSEGNARE prof. Cigliola Consegna per Martedì 6 Ottobre Esercizio 1. Una matrice quadrata A si

Dettagli

SYLLABUS DI MATEMATICA Liceo Linguistico Classe III

SYLLABUS DI MATEMATICA Liceo Linguistico Classe III SYLLABUS DI MATEMATICA Liceo Linguistico Classe III LE EQUAZIONI DI SECONDO GRADO Le equazioni di secondo grado e la loro risoluzione. La formula ridotta. Equazioni pure, spurie e monomie. Le relazioni

Dettagli

Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13

Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13 Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04// 3 Esercizio. Si consideri la funzione ) se 0 f) e se 0. e si verifichi che non è continua in 0. Che tipo di discontinuità presenta in

Dettagli

Diario del Corso di Analisi Matematica - a.a. 2014/15

Diario del Corso di Analisi Matematica - a.a. 2014/15 Diario del Corso di Analisi Matematica - a.a. 2014/15 1a SETTIMANA 23/09/14 (2 ore): Introduzione al corso: orario, esercitazioni, ricevimento studenti, sito web, tempi e modalità delle prove di valutazione

Dettagli

Corso Online MATEMATICA PER LE SUPERIORI. Corso Matematica per le Superiori

Corso Online MATEMATICA PER LE SUPERIORI. Corso Matematica per le Superiori Corso Matematica per le Superiori Corso Online MATEMATICA PER LE SUPERIORI Accademia Domani Via Pietro Blaserna, 101-00146 ROMA (RM) info@accademiadomani.it Programma Generale del Corso Matematica per

Dettagli

Algebra lineare Geometria 1 11 luglio 2008

Algebra lineare Geometria 1 11 luglio 2008 Algebra lineare Geometria 1 11 luglio 2008 Esercizio 1. Si considerino la funzione: { R f : 3 R 3 (α, β, γ) ( 2β α γ, (k 1)β + (1 k)γ α, 3β + (k 2)γ ) dove k è un parametro reale, e il sottospazio U =

Dettagli

Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria

Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria Avvertenze In quanto segue tutti i vettori hanno il medesimo punto d origine O l origine dello spazio cartesiano. Possiamo

Dettagli

appuntiofficinastudenti.com 1. Strutture algebriche e polinomi

appuntiofficinastudenti.com 1. Strutture algebriche e polinomi 1. Strutture algebriche e polinomi Cenni su linguaggio di Teoria degli Insiemi: appartenenza, variabili, quantificatori, negazione, implicazione, equivalenza, unione, intersezione, prodotto cartesiano,

Dettagli

Tipologia delle funzioni studiate: 1. y= ax n + bx n y= e x 3. y= (ax + b)/ (cx + d) 4. y= (ax 2 + b) (cx + d)

Tipologia delle funzioni studiate: 1. y= ax n + bx n y= e x 3. y= (ax + b)/ (cx + d) 4. y= (ax 2 + b) (cx + d) - ricerca dei punti di flesso - ricerca dell asintoto orizzontale - ricerca dell asintoto verticale - ricerca dell asintoto obliquo - ricerca dei punti di intersezione con gli assi Tipologia delle funzioni

Dettagli

Metodi Matematici per l Economia Prof. Giovanni Mastroleo

Metodi Matematici per l Economia Prof. Giovanni Mastroleo Programma dell insegnamento di Metodi Matematici per l Economia Prof. Giovanni Mastroleo Corso di Laurea in Economia A.A. 2007-08 Disciplina Settore Scientifico- Disciplinare METODI MATEMATICI PER L ECONOMIA

Dettagli

Protocollo dei saperi imprescindibili ORDINE DI SCUOLA: LICEO

Protocollo dei saperi imprescindibili ORDINE DI SCUOLA: LICEO Protocollo dei saperi imprescindibili ORDINE DI SCUOLA: LICEO DISCIPLINA: MATEMATICA RESPONSABILE: CAGNESCHI F. IMPERATORE D. CLASSE: prima Liceo Artistico e Musicale - Numeri naturali, interi, razionali

Dettagli

ESERCIZI MATEMATICA GENERALE - Canale III

ESERCIZI MATEMATICA GENERALE - Canale III ESERCIZI MATEMATICA GENERALE - Canale III Vettori Prof. A. Fabretti 1 A.A. 009/010 1 Dati in R i vettori v = (1,,, u = (,, 1 e w = (,, calcolare: a la combinazione lineare u + v + 4 w b il prodotto scalare

Dettagli

(x B x A, y B y A ) = (4, 2) ha modulo

(x B x A, y B y A ) = (4, 2) ha modulo GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()

Dettagli

Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste

Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste CONCAVITA E CONVESSITA DI UNA FUNZIONE. FLESSI. SCHEMA GENERALE PER LO STUDIO DI FUNZIONE. FUNZIONI RAZIONALI E IRRAZIONALI INTERE E FRATTE. TEOREMA DI DE L HOSPITAL CON APPLICAZIONI AI LIMITI. 1 Concavit{

Dettagli

Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno

Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno Programma del Corso di Matematica A Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno Premessa (D) dopo un teorema o una proposizione citati sta ad

Dettagli

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni Corso di Geometria Ing. Informatica e Automatica Test : soluzioni k Esercizio Data la matrice A = k dipendente dal parametro k, si consideri il k sistema lineare omogeneo AX =, con X = x x. Determinare

Dettagli

Derivate parziali, derivate direzionali, differenziabilità. a) Calcolare le derivate direzionali e le derivate parziali in (0, 1) di f(x, y) =

Derivate parziali, derivate direzionali, differenziabilità. a) Calcolare le derivate direzionali e le derivate parziali in (0, 1) di f(x, y) = Derivate parziali, derivate direzionali, differenziabilità 1. a) Calcolare le derivate direzionali e le derivate parziali in (0, 1) di f(x, y) = 3 x (y 1) + 1. b) Calcolare D v f(0, 1), dove v è il versore

Dettagli

ANALISI MATEMATICA 1. (Ingegneria Industriale, corsi A e B) Esempi di prove scritte

ANALISI MATEMATICA 1. (Ingegneria Industriale, corsi A e B) Esempi di prove scritte ANALISI MATEMATICA 1 (Ingegneria Industriale, corsi A e B) Esempi di prove scritte Rispondere ai quesiti a risposta multipla Qi, risolvere gli esercizi Ei, enunciare le definizioni Di e svolgere le dimostrazioni

Dettagli

Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile

Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 41 1 Derivata

Dettagli

Protocollo dei saperi imprescindibili Ordine di scuola: professionale

Protocollo dei saperi imprescindibili Ordine di scuola: professionale Protocollo dei saperi imprescindibili Ordine di scuola: professionale DISCIPLINA: MATEMATICA RESPONSABILE: CAGNESCHI F. IMPERATORE D. CLASSE: prima servizi commerciali Utilizzare le tecniche e le procedure

Dettagli

ESERCIZI SVOLTI SU: GEOMETRIA TRIDIMENSIONALE. 2. Fissato un sistema di riferimento cartesiano dello spazio euclideo O, i, j, k,

ESERCIZI SVOLTI SU: GEOMETRIA TRIDIMENSIONALE. 2. Fissato un sistema di riferimento cartesiano dello spazio euclideo O, i, j, k, ESERCIZI SVOLTI SU: GEOMETRIA TRIDIMENSIONALE 1. Fissato un sistema di riferimento cartesiano dello spazio euclideo O, i, j, k, determinare un equazione omogenea del piano parallelo al vettore v = i+j,

Dettagli

Diario del Corso Analisi Matematica I

Diario del Corso Analisi Matematica I Diario del Corso Analisi Matematica I 1. Martedì 1 ottobre 2013 Presentazione del corso. Nozioni di Teoria degli Insiemi. Numeri Naturali, loro proprietà, rappresentazione geometrica, sommatoria, principio

Dettagli

CLASSE terza SEZIONE E A.S PROGRAMMA SVOLTO

CLASSE terza SEZIONE E A.S PROGRAMMA SVOLTO CLASSE terza SEZIONE E A.S. 2015-16 PROGRAMMA SVOLTO RIPASSO ARGOMENTI PROPEDEUTICI L insieme dei numeri razionali. Equazioni e disequazioni di primo grado Sistemi di equazioni e disequazioni di primo

Dettagli

Tempo a disposizione: 150 minuti. 1 È dato l endomorfismo f : R 3 R 3 definito dalle relazioni

Tempo a disposizione: 150 minuti. 1 È dato l endomorfismo f : R 3 R 3 definito dalle relazioni Università degli Studi di Catania Anno Accademico 2014-2015 Corso di Laurea in Informatica Prova in itinere di Matematica Discreta (12 CFU) 17 Aprile 2015 Prova completa Tempo a disposizione: 150 minuti

Dettagli

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 2010 Tema A

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 2010 Tema A Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 21 Tema A Tempo a disposizione: 2 ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio va iniziato all inizio

Dettagli

I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica

I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica Negli esercizi che seguono si suppone fissato nello spazio

Dettagli

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente 1. Insiemi di generatori, lineare indipendenza, basi, dimensione. Consideriamo nello spazio vettoriale R 3 i seguenti vettori: v 1 = (0, 1, ), v = (1, 1, 1), v 3 = (, 1, 0), v 4 = (3, 3, ). Siano poi F

Dettagli

Corso di Matematica per CTF Appello 15/12/2010

Corso di Matematica per CTF Appello 15/12/2010 Appello 15/12/2010 Svolgere i seguenti esercizi: 1) Calcolare entrambi i limiti: a) lim(1 x) 1 e x 1 ; x 0 x log 2 x b) lim x 1 1 cos(x 1). 2) Data la funzione: f(x) = x log x determinarne dominio, eventuali

Dettagli

Protocollo dei saperi imprescindibili Ordine di scuola: tecnico della grafica

Protocollo dei saperi imprescindibili Ordine di scuola: tecnico della grafica DISCIPLINA: MATEMATICA Protocollo dei saperi imprescindibili Ordine di scuola: tecnico della grafica RESPONSABILE: CAGNESCHI F. - IMPERATORE D. CLASSE/INDIRIZZO: prima tecnico della grafica calcolo numerico

Dettagli

Esercizi per Geometria II Geometria euclidea e proiettiva

Esercizi per Geometria II Geometria euclidea e proiettiva Esercizi per Geometria II Geometria euclidea e proiettiva Filippo F. Favale 8 aprile 014 Esercizio 1 Si consideri E dotato di un riferimento cartesiano ortonormale di coordinate (x, y) e origine O. Si

Dettagli

Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile

Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Docente: Anna Valeria Germinario Università di Bari A.V.Germinario (Università di Bari) Analisi Matematica

Dettagli

1 Equazioni parametriche e cartesiane di sottospazi affini di R n

1 Equazioni parametriche e cartesiane di sottospazi affini di R n 2 Trapani Dispensa di Geometria, Equazioni parametriche e cartesiane di sottospazi affini di R n Un sottospazio affine Σ di R n e il traslato di un sottospazio vettoriale. Cioe esiste un sottospazio vettoriale

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo. Tempo 30 minuti. Durante la prova non si può uscire dall aula. Non si possono consultare

Dettagli

DERIVATE SUCCESSIVE E MATRICE HESSIANA

DERIVATE SUCCESSIVE E MATRICE HESSIANA FUNZIONI DI DUE VARIABILI 1 DERIVATE SUCCESSIVE E MATRICE HESSIANA Derivate parziali seconde e matrice hessiana. Sviluppo di Taylor del secondo ordine. Punti stazionari. Punti di massimo o minimo (locale

Dettagli

Esercizi di Geometria Affine

Esercizi di Geometria Affine Esercizi di Geometria Affine Sansonetto Nicola dicembre 01 Geometria Affine nel Piano Esercizio 1. Nel piano affine standard A (R) dotato del riferimento canonico, si consideri la retta τ di equazione

Dettagli