Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile"

Transcript

1 Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 41

2 1 Derivata di una funzione 2 Punti di non derivabilità 3 Regole di calcolo delle derivate 4 Il teorema del valor medio e le sue conseguenze 5 Teorema di de l Hôpital 6 Limite della derivata e derivabilità 7 Derivata seconda, concavità e convessità ICD (Bari) Analisi Matematica 2 / 41

3 Calcolo differenziale Definire la tangente in un punto ad una curva. Definire la velocità di un oggetto in moto. ICD (Bari) Analisi Matematica 3 / 41

4 Definizione di derivata Definizione Sia f : (a, b) R e sia x 0 (a, b). Il rapporto incrementale di f relativo all intervallo di estremi x 0 e x 0 + h è definito da f(x 0 + h) f(x 0 ). h La funzione f si dice derivabile in x 0 se esiste finito lim h 0 f(x 0 + h) f(x 0 ). h Tale limite si chiama derivata prima o derivata di f in x 0 e si indica con f df (x 0 ) dx (x 0) Df(x 0 ). ICD (Bari) Analisi Matematica 4 / 41

5 Definizione di derivata La retta di equazione y = f(x 0 ) + f (x 0 )(x x 0 ) si chiama retta tangente al grafico di f nel punto (x 0, f(x 0 )). Se f è derivabile in ogni punto di (a, b) è ben definita la funzione f : (a, b) R (funzione derivata di f) data da x f (x). Se f è a sua volta derivabile, la derivata di f si chiama derivata seconda di f e si indica con f (x 0 ) d 2 f dx 2 (x 0) D 2 f(x 0 ). In modo analogo si definiscono le derivate di ordine n o derivate n-esime indicate con f n d n f (x 0 ) dx n (x 0) D n f(x 0 ). ICD (Bari) Analisi Matematica 5 / 41

6 Derivate delle funzioni elementari f(x) = c, c R x R, f (x) = 0 per ogni x R; f(x) = x n, n N x R f (x) = nx n 1 per ogni x R; f(x) = x{ α, α R \ {0}, f (x) = αx α 1 per ogni x (0, + ); f 0 se α > 1 (0) = + se 0 < α < 1 f(x) = a x, x R, f (x) = a x log a per ogni x R; f(x) = e x, x R, f (x) = e x per ogni x R; f(x) = log a x, x > 0, f (x) = 1 x log a per ogni x > 0; f(x) = log x, x > 0, f (x) = 1 x per ogni x > 0; ICD (Bari) Analisi Matematica 6 / 41

7 Derivate delle funzioni elementari f(x) = sen x, x R, f (x) = cos x per ogni x R; f(x) = cos x, x R, f (x) = sen x per ogni x R; f(x) = tg x, x dom tg, f (x) = 1 + tg 2 x = 1 cos 2 x x dom tg; per ogni f(x) = arcsen x, x [ 1, 1], f (x) = 1 1 x 2 per ogni x ( 1, 1); f(x) = arccos x, x [ 1, 1], f (x) = 1 1 x 2 per ogni x ( 1, 1); f(x) = arctg x, x R, f (x) = 1 1+x 2 per ogni x R. ICD (Bari) Analisi Matematica 7 / 41

8 Punti di non derivabilità Definizione Sia f : (a, b) R e x 0 (a, b). Se f è continua in x 0 e f(x 0 + h) f(x 0 ) f(x 0 + h) f(x 0 ) lim = + oppure lim = h 0 h h 0 h si dice che f ha in x 0 è un flesso a tangente verticale. ICD (Bari) Analisi Matematica 8 / 41

9 Derivata destra e sinistra Definizione Sia f : (a, b) R e x 0 (a, b). Se esiste finito il limite f(x 0 + h) f(x 0 ) lim h 0 + h allora f si dice derivabile a destra in x 0, tale limite si chiama derivata destra di f in x 0 e si denota con f +(x 0 ). Se esiste finito il limite f(x 0 + h) f(x 0 ) lim h 0 h allora f si dice derivabile a sinistra in x 0, tale limite si chiama derivata sinistra di f in x 0 e si denota con f (x 0 ). ICD (Bari) Analisi Matematica 9 / 41

10 Punti angolosi e cuspidi Casi in cui f +(x 0 ) e f (x 0 ) non sono uguali tra loro. Definizione Sia f : (a, b) R e x 0 (a, b). Se f è continua in x 0, esistono f (x 0 ), f +(x 0 ) e allora f (x 0 ) f +(x 0 ), Se almeno uno tra f (x 0 ) ed f +(x 0 ) appartiene ad R, si dice che f ha in x 0 un punto angoloso. Se f (x 0 ) =, f +(x 0 ) = + (oppure, viceversa, f (x 0 ) = +, f +(x 0 ) = ), si dice che f ha in x 0 una cuspide. ICD (Bari) Analisi Matematica 10 / 41

11 ICD (Bari) Analisi Matematica 11 / 41

12 Continuità e derivabilità Teorema Se f è derivabile in un punto x 0 allora è continua in x 0. In modo equivalente: se f non è continua in x 0 allora f non è derivabile in x 0. Il viceversa del teorema non vale (f(x) = x è continua in 0 ma non derivabile in 0). ICD (Bari) Analisi Matematica 12 / 41

13 Regole di derivazione Proposizione Siano f, g : (a, b) R e x 0 (a, b) tale che f e g siano derivabili in x 0. Sia c R. Allora le funzioni f + g, f g, cf, f g sono derivabili in x 0 e (f + g) (x 0 ) = f (x 0 ) + g (x 0 ); (f g) (x 0 ) = f (x 0 ) g (x 0 ); (cf) (x 0 ) = cf (x 0 ); (f g) (x 0 ) = f (x 0 ) g(x 0 ) + f(x 0 ) g (x 0 ). Se g(x 0 ) 0, f/g è derivabile in x 0 e ( ) f (x 0 ) = f (x 0 )g(x 0 ) f(x 0 )g (x 0 ) g (g(x 0 )) 2. ICD (Bari) Analisi Matematica 13 / 41

14 Derivazione di una funzione composta Teorema Sia g f la funzione composta di due funzioni f e g tali che f è derivabile in x; g è derivabile in y = f(x), allora g f è derivabile in x e si ha (g f) (x) = g (f(x))f (x). ICD (Bari) Analisi Matematica 14 / 41

15 Derivata di funzione inversa Teorema Sia f : (a, b) R una funzione continua e invertibile e g = f 1 la sua inversa. Se per x 0 (a, b) f è derivabile in x 0 ; f (x 0 ) 0, allora g = f 1 è derivabile in y 0 = f(x 0 ) e si ha g (y 0 ) = 1 f (x 0 ). ICD (Bari) Analisi Matematica 15 / 41

16 Applicazione del calcolo differenziale alla ricerca dei massimi e minimi di una funzione Sia f : [a, b] R. Abbiamo già definito il massimo e il minimo assoluti di f. Definizione Si dice M è massimo di f e x 0 [a, b] è punto di massimo se f(x 0 ) = M f(x) x [a, b]. Si dice m è minimo di f e x 0 [a, b] è punto di minimo se f(x 0 ) = m f(x) x [a, b]. ICD (Bari) Analisi Matematica 16 / 41

17 Estremi locali di una funzione Definizione Sia f : [a, b] R. Si dice M è massimo locale (o relativo) di f e x 0 [a, b] è punto di massimo locale se esiste un intervallo (x 0 δ, x 0 + δ) tale che f(x 0 ) = M f(x) x (x 0 δ, x 0 + δ) [a, b]. Si dice m è minimo locale (o relativo) di f e x 0 [a, b] è punto di minimo locale se esiste un intervallo (x 0 δ, x 0 + δ) tale che f(x 0 ) = m f(x) x (x 0 δ, x 0 + δ) [a, b]. ICD (Bari) Analisi Matematica 17 / 41

18 Estremi locali di una funzione Si noti che Il massimo e il minimo globale di f se esistono sono unici (ma i punti di massimo e minimo globale possono essere più di uno). I massimi e minimi locali possono essere più di uno. Ogni estremo globale è anche estremo locale (ma non viceversa). ICD (Bari) Analisi Matematica 18 / 41

19 Teorema di Fermat Teorema (di Fermat) Sia f : [a, b] R una funzione derivabile in x (a, b). Se x è un punto di estremo locale per f allora f (x) = 0. Definizione Un punto x si dice punto critico o punto stazionario per una funzione f se f è derivabile in x e f (x) = 0. Quindi, se f : (a, b) R e x (a, b) Non vale il viceversa. x di estremo locale x stazionario ICD (Bari) Analisi Matematica 19 / 41

20 Interpretazione geometrica Se f è derivabile in (a, b), nei punti di estremo relativo in (a, b) la retta tangente al grafico di f è orizzontale. ICD (Bari) Analisi Matematica 20 / 41

21 Un modo diverso di scrivere la derivata Sia f : (a, b) R e x 0 (a, b). Si è visto che se f è derivabile in x 0 esiste ed è finito f f(x 0 + h) f(x 0 ) (x 0 ) = lim. h 0 h Dal teo. del cambio di variabile nei limiti, se si pone x 0 + h = x, si ottiene f (x 0 ) = lim x x 0 f(x) f(x 0 ) x x 0. In modo analogo: f (x 0 ) = lim x x 0 f(x) f(x 0 ) x x 0 f +(x 0 ) = lim x x + 0 f(x) f(x 0 ) x x 0. ICD (Bari) Analisi Matematica 21 / 41

22 Teorema del valor medio o di Lagrange Teorema (del valor medio o di Lagrange) Sia f : [a, b] R una funzione. Se f è continua in [a, b]; f è derivabile in (a, b); allora esiste c (a, b) tale che f (c) = f(b) f(a). b a ICD (Bari) Analisi Matematica 22 / 41

23 Interpretazione geometrica Se valgono le ipotesi del teorema di Lagrange, esiste un punto in (a, b) in cui la retta tangente al grafico di f è parallela alla retta passante per (a, f(a)) e (b, f(b)). a x 0 b ICD (Bari) Analisi Matematica 23 / 41

24 Conseguenze del teorema di Lagrange Proposizione Sia f : (a, b) R una funzione derivabile. Se f ha n zeri distinti in (a, b) allora f : (a, b) R ha n 1 zeri distinti in (a, b). Quindi, se esistono x 1,..., x n (a, b) tali che x i x j se i j e f(x i ) = 0 per ogni i = 1,..., n allora esistono c 1,..., c n 1 (a, b) tali che c i c j se i j e f(c i ) = 0 per ogni i = 1,..., n 1. Per ogni i = 1,..., n 1, è possibile applicare il teorema di Lagrange a f in [x i, x i+1 ]. Si ottiene che esiste c i (x i, x i+1 ) tale che 0 = f(x i+1 ) f(x i ) = f (c i ) (x i+1 x i ), da cui f (c i ) = 0. ICD (Bari) Analisi Matematica 24 / 41

25 Conseguenze del teorema di Lagrange Proposizione (Test di monotonia) Sia f : (a, b) R una funzione derivabile. Allora f è crescente f (x) 0 x (a, b); f è decrescente f (x) 0 x (a, b). ICD (Bari) Analisi Matematica 25 / 41

26 Conseguenze del teorema di Lagrange Proposizione (Caratterizzazione delle funzioni a derivata nulla) Sia f : (a, b) R una funzione derivabile. Allora f è costante in (a, b) f (x) = 0 x (a, b). ICD (Bari) Analisi Matematica 26 / 41

27 Ricerca di massimi e minimi Sia f : [a, b] R. Se f è derivabile, per determinarne i massimi e minimi si procede nel seguente modo: Si calcolano f(a) e f(b). Si calcola f (x) e si risolve f (x) = 0. Se non vi sono punti stazionari, f(a) o f(b) sono estremi locali. Se x = x 0 (a, b) è un punto stazionario, si studia il segno di f in un intorno di x 0 per stabilirne la natura. Trovati eventuali punti di estremo locale, si calcola il valore di f in questi punti e lo si confronta con f(a) e f(b). ICD (Bari) Analisi Matematica 27 / 41

28 Teorema di De l Hôpital Teorema Siano f, g : (a, b) R due funzioni derivabili in (a, b) con g, g 0 in (a, b). Se lim x a x a f(x) = lim g(x) = 0 (o +, o ); + + esiste il limite (finito o infinito) f (x) lim x a + g (x) = L. Allora f(x) lim x a + g(x) = L. ICD (Bari) Analisi Matematica 28 / 41

29 Teorema di De l Hôpital Risultati analoghi valgono per x b e per x x 0 (a, b). Non si può applicare il teorema a forme non indeterminate. Per esempio x lim x 1 + log x = + ma 1 lim x 1 + 1/x = 1. ICD (Bari) Analisi Matematica 29 / 41

30 Limite della derivata e derivabilità Teorema Sia f : [a, b) R, continua in a, derivabile in (a, b) ed esista (finito o infinito) lim x a + f (x) = m R. Allora esiste f +(a) = m. Un enunciato analogo vale per la derivata sinistra e quindi per la derivata. Se f è continua in a ed esiste il limite destro in a della derivata allora esiste la derivata destra in a e coincide con quel limite. ICD (Bari) Analisi Matematica 30 / 41

31 Significato geometrico della derivata seconda La derivata seconda rappresenta la velocità di variazione della pendenza di un grafico, pertanto misura il grado di scostamento del grafico dall andamento rettilineo. Sia f una funzione tale che f(0) = f (0) = 0, f (0) 0. Si prova che la semicirconferenza che meglio approssima f in 0 ha raggio R tale che 1 R f (0) = 1 R. prende il nome di curvatura di f in 0 e R è il raggio di curvatura. ICD (Bari) Analisi Matematica 31 / 41

32 Convessità e corde Una figura geometrica F si dice convessa se per ogni coppia di punti P 1, P 2 F il segmento che congiunge P 1 e P 2 è interamente contenuto in F. Definizione Sia f : I R, I R intervallo. La funzione f si dice convessa in I se l epigrafico di f, cioè l insieme epi f = {(x, y) R 2 x I, y f(x)} è un insieme convesso. Si dice che f è concava in I se f è convessa in I. ICD (Bari) Analisi Matematica 32 / 41

33 Una definizione equivalente Definizione Sia f : I R, I R intervallo. La funzione f si dice convessa in I se, per ogni x 1, x 2 I il segmento di estremi (x 1, f(x 1 )) e (x 2, f(x 2 )) non ha punti sotto il grafico di f. Quindi, per ogni x 1, x 2 I e t [0, 1] f((1 t)x 1 + tx 2 ) (1 t)f(x 1 ) + tf(x 2 ). ICD (Bari) Analisi Matematica 33 / 41

34 Una definizione equivalente Definizione Sia f : I R, I R intervallo. La funzione f si dice concava in I se, per ogni x 1, x 2 I il segmento di estremi (x 1, f(x 1 )) e (x 2, f(x 2 )) non ha punti sopra al grafico di f. Quindi, per ogni x 1, x 2 I e t [0, 1] f((1 t)x 1 + tx 2 ) (1 t)f(x 1 ) + tf(x 2 ). ICD (Bari) Analisi Matematica 34 / 41

35 Se le disuguaglianze precedenti valgono con < (>) per t (0, 1), f si dice strettamente convessa (strettamente concava). Regolarità delle funzioni convesse o concave: Teorema Una funzione convessa (o concava) su un intervallo I è continua in I, salvo al più negli estremi di I. Inoltre f possiede derivata destra e sinistra in ogni punto interno ad I. ICD (Bari) Analisi Matematica 35 / 41

36 Convessità e derivate Se f è derivabile, la nozione di convessità risulta essere in relazione con la derivata prima e seconda. Teorema Sia f : (a, b) R. Se f è derivabile in (a, b) allora f è convessa (concava) in (a, b) se e solo se f è crescente (decrescente) in (a, b); Se f è derivabile due volte in (a, b) allora f è convessa (concava) in (a, b) se e solo se f (x) 0 (f (x) 0) per ogni x (a, b). I teoremi si modificano in maniera ovvia per funzioni strettamente convesse o strettamente concave. ICD (Bari) Analisi Matematica 36 / 41

37 Convessità e rette tangenti Teorema Sia f : (a, b) R derivabile in (a, b). Allora f è convessa in (a, b) se e solo se f(x) f(x 0 ) + f (x 0 )(x x 0 ) x, x 0 (a, b); f è concava in (a, b) se e solo se f(x) f(x 0 ) + f (x 0 )(x x 0 ) x, x 0 (a, b). Una funzione derivabile è convessa (concava) se il suo grafico si mantiene tutto sopra (sotto) ogni retta tangente al grafico. ICD (Bari) Analisi Matematica 37 / 41

38 Convessità e rette tangenti ICD (Bari) Analisi Matematica 38 / 41

39 Punti di flesso Definizione Sia f : (a, b) R una funzione e x 0 (a, b) un punto di derivabilità per f oppure in cui f (x 0 ) = ±. Il punto x 0 si dice di flesso per f se esiste un intorno destro di x 0 in cui f è convessa (concava) e un intorno sinistro di x 0 in cui f è concava (convessa). x 0 ICD (Bari) Analisi Matematica 39 / 41

40 Punti di flesso Attraversando un punto di flesso la derivata seconda di f cambia segno. Ci si aspetta dunque che in tale punto essa si annulli. Teorema Sia f : (a, b) R e sia x 0 (a, b) un punto di flesso per f. Se esiste f (x 0 ) allora f (x 0 ) = 0. Non vale il viceversa: f(x) = x 4 ha un punto di minimo in x 0 = 0 e f (0) = 0. ICD (Bari) Analisi Matematica 40 / 41

41 Significato geometrico dei punti di flesso Teorema Se f : (a, b) R è derivabile in (a, b) e x 0 (a, b) è un punto di flesso per f allora il grafico di f attraversa la propria retta tangente in (x 0, f(x 0 )). x 0 ICD (Bari) Analisi Matematica 41 / 41

Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile

Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Docente: Anna Valeria Germinario Università di Bari A.V.Germinario (Università di Bari) Analisi Matematica

Dettagli

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI MATEMATICA Classe VB Anno Scolastico 014-015 Insegnante: Prof.ssa La Salandra Incoronata 1 Nozioni di topologia su Intervalli; Estremo superiore

Dettagli

Calcolo Differenziale. Corsi di Laurea in Tecniche di Radiologia ecc... A.A Analisi Matematica - Calcolo Differenziale - p.

Calcolo Differenziale. Corsi di Laurea in Tecniche di Radiologia ecc... A.A Analisi Matematica - Calcolo Differenziale - p. Calcolo Differenziale Corsi di Laurea in Tecniche di Radiologia ecc... A.A. 2010-2011 - Analisi Matematica - Calcolo Differenziale - p. 1/33 Velocità istantanea Percorriamo il tratto di strada tra Udine

Dettagli

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA PRIMA PARTE Intervallo limitato di numeri reali Dati due numeri reali a e b, con a

Dettagli

Corso di Analisi Matematica Limiti di funzioni

Corso di Analisi Matematica Limiti di funzioni Corso di Analisi Matematica Limiti di funzioni Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 39 1 Definizione di ite 2 Il calcolo dei

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

Equazione della retta tangente al grafico di una funzione

Equazione della retta tangente al grafico di una funzione Equazione della retta tangente al grafico di una funzione Abbiamo già visto che in un sistema di assi cartesiani ortogonali, è possibile determinare l equazione di una retta r non parallela agli assi coordinati,

Dettagli

Argomento 6 Derivate

Argomento 6 Derivate Argomento 6 Derivate Derivata in un punto Definizione 6. Data una funzione f definita su un intervallo I e 0 incrementale di f in 0 di incremento h = 0 = il rapporto I, si chiama rapporto per = 0 + h =

Dettagli

STUDIO di FUNZIONE. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 1

STUDIO di FUNZIONE. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 1 STUDIO di FUNZIONE c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 1 Punti di estremo: punto di massimo assoluto Def. Sia 0 dom(f) = D. Si dice che 0 è un punto di massimo

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

{ x + 2y = 3 αx + 2y = 1 αx + y = 0. f(x) = e x 2 +3x+4 x 5. f(x) = x 3 e 7x.

{ x + 2y = 3 αx + 2y = 1 αx + y = 0. f(x) = e x 2 +3x+4 x 5. f(x) = x 3 e 7x. 0 Gennaio 006 Teoria: Definizione di derivata puntuale e suo significato geometrico Esercizio Determinare l equazione del piano contenente i vettori u = (,, 3 e v = (,, e passante per P o = (,, Scrivere

Dettagli

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE ROBERTO GIAMBÒ 1. DEFINIZIONI E PRIME PROPRIETÀ In queste note saranno presentate alcune proprietà principali delle funzioni convesse di una variabile

Dettagli

Proposizioni. Negazione di una proposizione. Congiunzione e disgiunzione di due proposizioni. Predicati. Quantificatori.

Proposizioni. Negazione di una proposizione. Congiunzione e disgiunzione di due proposizioni. Predicati. Quantificatori. Corso di laurea in Ingegneria elettronica e informatica - A13 Programma di Analisi matematica 1 - A13106 Anno accademico 2015-2016 Prof. Giulio Starita 1 - Insiemi, logica, numeri I concetti primitivi.

Dettagli

A.A. 2016/17 - Analisi Matematica 1

A.A. 2016/17 - Analisi Matematica 1 A.A. 2016/17 - Analisi Matematica 1 Argomenti svolti, libro di testo di riferimento: P. Marcellini, C. Sbordone: Elementi Calcolo. Liguori Editore. O. Bernardi: Temi d esame senza tema. Ed. Libreria Progetto.

Dettagli

Argomento 6: Derivate Esercizi. I Parte - Derivate

Argomento 6: Derivate Esercizi. I Parte - Derivate 6: Derivate Esercizi I Parte - Derivate E. 6.1 Calcolare le derivate delle seguenti funzioni: 1) log 5 3 + cos ) + 3 + 4 + 3 3) 5 tan 4) ( + 3e ) sin 5) arctan( + 1) 6) log 7) 10) + + 3 8) 3 3 1 + 16 11)

Dettagli

Teoremi di Fermat, Rolle, Lagrange, Cauchy, de l Hôpital

Teoremi di Fermat, Rolle, Lagrange, Cauchy, de l Hôpital Teoremi di Fermat, Rolle, Lagrange, Cauchy, de l Hôpital Copyright c 2007 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Teoremi

Dettagli

25 IL RAPPORTO INCREMENTALE - DERIVATE

25 IL RAPPORTO INCREMENTALE - DERIVATE 25 IL RAPPORTO INCREMENTALE - DERIVATE Definizione Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come P f (x, y = f(x

Dettagli

1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, () December 30, / 26

1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, () December 30, / 26 ANALISI 1 1 UNDICESIMA LEZIONE DODICESIMA LEZIONE TREDICESIMA LEZIONE Derivata - definizione e teoremi di calcolo delle derivate Massimi e minimi relativi e teorema di Fermat Teorema di Lagrange Monotonia

Dettagli

(1;1) y=2x-1. Fig. G4.1 Retta tangente a y=x 2 nel suo punto (1;1).

(1;1) y=2x-1. Fig. G4.1 Retta tangente a y=x 2 nel suo punto (1;1). G4 Derivate G4 Significato geometrico di derivata La derivata di una funzione in un suo punto è il coefficiente angolare della sua retta tangente Esempio G4: La funzione = e la sua retta tangente per il

Dettagli

Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A

Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A.2012-2013 (Grazie agli studenti del corso che comunicheranno eventuali omissioni o errori) 25 SETTEMBRE

Dettagli

Derivate. Rette per uno e per due punti. Rette per uno e per due punti

Derivate. Rette per uno e per due punti. Rette per uno e per due punti Introduzione Rette per uno e per due punti Rette per uno e per due punti Rette secanti e tangenti Derivata d una funzione in un punto successive Derivabilità a destra e a sinistra Rette per uno e per due

Dettagli

STUDIO DI UNA FUNZIONE INTEGRALE. Z x. ln t ln t 2 2 dt. f(x) =

STUDIO DI UNA FUNZIONE INTEGRALE. Z x. ln t ln t 2 2 dt. f(x) = STUDIO DI UNA FUNZIONE INTEGRALE Studiamo la funzione f di una variabile reale, a valori in R, definitada. Il dominio di f. f() = Z Denotiamo con g la funzione integranda. Allora g(t) = numeri reali tali

Dettagli

Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste

Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste CONCAVITA E CONVESSITA DI UNA FUNZIONE. FLESSI. SCHEMA GENERALE PER LO STUDIO DI FUNZIONE. FUNZIONI RAZIONALI E IRRAZIONALI INTERE E FRATTE. TEOREMA DI DE L HOSPITAL CON APPLICAZIONI AI LIMITI. 1 Concavit{

Dettagli

Derivate delle funzioni di una variabile.

Derivate delle funzioni di una variabile. Derivate delle funzioni di una variabile. Il concetto di derivata di una funzione di una variabile è uno dei più fecondi della matematica ed è quello su cui si basa il calcolo differenziale. I problemi

Dettagli

10 - Applicazioni del calcolo differenziale

10 - Applicazioni del calcolo differenziale Università degli Studi di Palermo Facoltà di Economia CdS Sviuppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 10 - Applicazioni del calcolo differenziale Anno Accademico 2015/2016

Dettagli

21 IL RAPPORTO INCREMENTALE - DERIVATE

21 IL RAPPORTO INCREMENTALE - DERIVATE 21 IL RAPPORTO INCREMENTALE - DERIVATE Definizione Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come P f (x, y = f(x

Dettagli

Corso di laurea: Ingegneria Civile Programma di Fondamenti di Analisi Matematica I a.a. 2011/2012 Docenti: Fabio Paronetto e Fabio Ancona

Corso di laurea: Ingegneria Civile Programma di Fondamenti di Analisi Matematica I a.a. 2011/2012 Docenti: Fabio Paronetto e Fabio Ancona Corso di laurea: Ingegneria Civile Programma di Fondamenti di Analisi Matematica I a.a. 2011/2012 Docenti: Fabio Paronetto e Fabio Ancona Gli argomenti denotati con un asterisco tra parentesi sono stati

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

TEORIA SULLE DERIVATE SECONDA. La condizione di continuità di una funzione è condizione necessaria ma non sufficiente per la sua derivabilità.

TEORIA SULLE DERIVATE SECONDA. La condizione di continuità di una funzione è condizione necessaria ma non sufficiente per la sua derivabilità. PROF.SSA MAIOLINO D. TEORIA SULLE DERIVATE SECONDA CONTINUITA DELLE FUNZIONI DERIVABILI Se una unzione y( è derivabile in un punto 0, allora è continua in 0. La condizione di continuità di una unzione

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi risolti

CONTINUITÀ E DERIVABILITÀ Esercizi risolti CONTINUITÀ E DERIVABILITÀ Esercizi risolti. Determinare [cos x] x kπ/ al variare di k in Z. Ove tale ite non esista, discutere l esistenza dei iti laterali. Identificare i punti di discontinuità della

Dettagli

Massimi, minimi, monotonia, e derivate

Massimi, minimi, monotonia, e derivate Massimi, minimi, monotonia, e derivate Punti di massimo, minimo per una funzione Definizione 1 Si dice che un punto c di un sottinsieme A di R e un punto interno ad A se e solo se c possiede qualche intorno

Dettagli

Diario del Corso di Analisi Matematica - a.a. 2014/15

Diario del Corso di Analisi Matematica - a.a. 2014/15 Diario del Corso di Analisi Matematica - a.a. 2014/15 1a SETTIMANA 23/09/14 (2 ore): Introduzione al corso: orario, esercitazioni, ricevimento studenti, sito web, tempi e modalità delle prove di valutazione

Dettagli

Calcolo Combinatorio Il fattoriale, coefficienti binomiali e loro proprietà; formula del binomio di Newton

Calcolo Combinatorio Il fattoriale, coefficienti binomiali e loro proprietà; formula del binomio di Newton Programma di Analisi 1 Note: - I programmi presentati sono estratti ed integrati da Programmi previsti in diverse Università, possono pertanto contenere parti simili, o in più, dei programmi ufficiali.

Dettagli

Derivazione. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Derivazione. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Derivazione Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

Diario del corso di Analisi Matematica 1 (a.a. 2016/17)

Diario del corso di Analisi Matematica 1 (a.a. 2016/17) Diario del corso di Analisi Matematica 1 (a.a. 2016/17) 16 settembre 2016 (2 ore) Presentazione del corso. Numeri naturali, interi, razionali, reali. 2 non è razionale. Come si risolve 2 + 1 = 0? 19 settembre

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

Registro di Meccanica /13 - F. Demontis 2

Registro di Meccanica /13 - F. Demontis 2 Registro delle lezioni di ISTITUZIONI ED ESERCITAZIONI DI MATEMATICA 1 Corso di Laurea in Chimica 8 CFU - A.A. 2015/2016 docente: Francesco Demontis ultimo aggiornamento: 17 dicembre 2015 1. Lunedì 05/10/2015,

Dettagli

Università degli Studi di Ancona Corso di Laurea in SS.FF.NN. Corso di MATEMATICA (A.A. 2002/2003) Docente: Prof. Piero MONTECCHIARI

Università degli Studi di Ancona Corso di Laurea in SS.FF.NN. Corso di MATEMATICA (A.A. 2002/2003) Docente: Prof. Piero MONTECCHIARI Università degli Studi di Ancona Corso di Laurea in SS.FF.NN. Corso di MATEMATICA (A.A. /3) Docente: Prof. Piero MONTECCHIARI STUDIO DI FUNZIONI Scritti dal tutore Dario GENOVESE 1 Dominio La prima cosa

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

= y h. m x0 (h) = y Q y P x Q x P. f(x 0 + h) f(x 0 )

= y h. m x0 (h) = y Q y P x Q x P. f(x 0 + h) f(x 0 ) ESERCIZI DI MATEMATICA: SCHEDA n.1 su derivate: la definzione Classe 5B Sc.Soc. Data:...... Teoria in sintesi. Data una funzione y = f(x) denita intorno ad x 0 (ovverosia il dominio contiene un intervallo

Dettagli

Capitolo 5. Calcolo infinitesimale

Capitolo 5. Calcolo infinitesimale Capitolo 5 Calcolo ininitesimale 5 Derivazione a b R ed ] a, Siano ( :(, DEFINIZINE Diremo che ( è derivabile nel punto se esiste inito il seguente ite ( ( e porremo per deinizione ( ( ( La unzione : (

Dettagli

Corso di Analisi Matematica

Corso di Analisi Matematica Corso di Laurea in Ingegneria Edile Corso di TEOREMI DEL CALCOLO DIFFERENZIALE Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Teorema di Estremi locali Richiamiamo la

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE

ISTITUTO ISTRUZIONE SUPERIORE ISTITUTO ISTRUZIONE SUPERIORE Federico II di Svevia Indirizzi: Liceo Scientifico Classico Linguistico Artistico e Scienze Applicate Via G. Verdi, 1 85025 MELFI (PZ) Tel. 097224434/35 Cod. Min.: PZIS02700B

Dettagli

PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale.

PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. PROGRAMMA Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. Gli insiemi numerici oggetto del corso: numeri naturali, interi relativi, razionali. Operazioni sui numeri

Dettagli

Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno

Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno Programma del Corso di Matematica A Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno Premessa (D) dopo un teorema o una proposizione citati sta ad

Dettagli

DERIVATE. 1.Definizione di derivata.

DERIVATE. 1.Definizione di derivata. DERIVATE Definizione di derivata Sia y = f( una funzione continua Fissato un punto o appartenente all insieme di definizione della funzione y = f(,sia Po = (; f(o il punto di ascissa o appartenente al

Dettagli

Matematica. dott. francesco giannino. a. a chiusura del corso. 1

Matematica. dott. francesco giannino. a. a chiusura del corso. 1 Matematica a. a. 2014-2015 dott. francesco giannino 99. chiusura del corso. 1 99. chiusura del corso 99. chiusura del corso. 2 Obiettivo del corso fornire strumenti matematici di base necessari nel prosieguo

Dettagli

24 IL RAPPORTO INCREMENTALE - DERIVATE

24 IL RAPPORTO INCREMENTALE - DERIVATE 24 IL RAPPORTO INCREMENTALE - DERIVATE Definizione Sia f una funzione reale di variabile reale. Allora, dati x, y 2 domf con x 6= y, sidefinisceilrapporto incrementale di f tra x e y come P f (x, y) =

Dettagli

PARTE 1: Elementi di base. Simboli e operazioni sugli insiemi. Simboli logici. Prodotto cartesiano.

PARTE 1: Elementi di base. Simboli e operazioni sugli insiemi. Simboli logici. Prodotto cartesiano. PROGRAMMA di Analisi Matematica 1 A.A. 2008-2009, canale 1, prof.: Francesca Albertini, Claudio Marchi Ingegneria gestionale, meccanica e meccatronica, Vicenza Testo Consigliato: Analisi Matematica, M.

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2007 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2007 Sessione suppletiva ESAME DI STAT DI LIE SIENTIFI RS DI RDINAMENT 7 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Rispetto a un sistema di assi cartesiani

Dettagli

x log(x) + 3. f(x) =

x log(x) + 3. f(x) = Università di Bari, Corso di Laurea in Economia e Commercio Esame di Matematica per l Economia L/Z Dr. G. Taglialatela 03 giugno 05 Traccia dispari Esercizio. Calcolare Esercizio. Calcolare e cos log d

Dettagli

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame COGNOME NOME Matr. A Analisi Matematica (Corso di Laurea in Informatica e Bioinformatica) Firma dello studente Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni

Dettagli

Matematica e Statistica (A-E, F-O, P-Z)

Matematica e Statistica (A-E, F-O, P-Z) Matematica e Statistica (A-E, F-O, P-Z) Prova d esame (24/06/20) Università di Verona - Laurea in Biotecnologie - A.A. 200/ Tema A Matematica e Statistica (A-E, F-O, P-Z) Prova di MATEMATICA (A-E, F-O,

Dettagli

QUESITI DI ANALISI Derivate versione senza graci

QUESITI DI ANALISI Derivate versione senza graci QUESITI DI ANALISI Derivate versione senza graci Dai la denizione di derivata di una funzione f(x) in un punto x 0, illustra il suo signicato geometrico e serviti di tale denizione per dimostrare che f

Dettagli

Corso di Analisi Matematica Funzioni di una variabile

Corso di Analisi Matematica Funzioni di una variabile Corso di Analisi Matematica Funzioni di una variabile Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 24 1 Generalità 2 Funzioni reali

Dettagli

Corso di Analisi Matematica Successioni e loro limiti

Corso di Analisi Matematica Successioni e loro limiti Corso di Analisi Matematica Successioni e loro limiti Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 30 1 Definizione di successione

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

1 a Prova parziale di Analisi Matematica I (1) 22/11/2006 (civili + ambientali)

1 a Prova parziale di Analisi Matematica I (1) 22/11/2006 (civili + ambientali) a Prova parziale di Analisi Matematica I () ) Data la funzione f ( ) = tg + ln( cos ) a) determinare il campo di esistenza, b) calcolare il limite lim f ( ) π ) Definizione di limite finito: lim f ( )

Dettagli

1 a Prova parziale di Analisi Matematica I (A) 16/11/2007

1 a Prova parziale di Analisi Matematica I (A) 16/11/2007 Nome a Prova parziale di Analisi Matematica I (A) 6//7 ) Data la funzione ( ) = f e Calcolare il campo di esistenza e il suo comportamento agli estremi ) Definizione di derivata prima di una funzione f()

Dettagli

DERIV AT E. Arriviamo ora alla de nizione di derivata attraverso il concetto di rapporto incrementale.

DERIV AT E. Arriviamo ora alla de nizione di derivata attraverso il concetto di rapporto incrementale. DERIV AT E Il concetto di derivata di una funzione, è scaturito dal celebre problema della ricerca delle tangenti ad una curva in un suo punto, che ha lungamente impegnato i matematici prima di Newton

Dettagli

Traccia n.1 Studiare il comportamento della funzione: 3x + ex 3x e x. Svolgimento

Traccia n.1 Studiare il comportamento della funzione: 3x + ex 3x e x. Svolgimento Traccia n. Studiare il comportamento della funzione: Svolgimento f(x) = 3x + ex 3x e x Determinazione del campo di esistenza, E[f]. La funzione si presenta come rapporto di due funzioni; il campo di esistenza

Dettagli

ANALISI 1 - Teoremi e dimostrazioni vari

ANALISI 1 - Teoremi e dimostrazioni vari ANALISI 1 - Teoremi e dimostrazioni vari Sommario Proprietà dell estremo superiore per R... 2 Definitivamente... 2 Successioni convergenti... 2 Successioni monotone... 2 Teorema di esistenza del limite

Dettagli

Lezione 5 (9/10/2014)

Lezione 5 (9/10/2014) Lezione 5 (9/10/2014) Esercizi svolti a lezione Nota 1. La derivata di una funzione. Consideriamo una funzione f(x) : R R e definiamo il rapporto incrementale nel punto x 0 come r(h) = f(x 0 +h) f(x 0

Dettagli

5.1 Derivata di una funzione reale di variabile reale

5.1 Derivata di una funzione reale di variabile reale CAPITOLO 5 Calcolo differenziale 5.1 Derivata di una funzione reale di variabile reale Sia data la funzione f : X Y, e sia 0 X. Se la variabile indipendente passa dal valore 0 al valore 0 +, con molto

Dettagli

Primo Compito di Analisi Matematica Corso di laurea in Informatica, corso B 18 Gennaio Soluzioni

Primo Compito di Analisi Matematica Corso di laurea in Informatica, corso B 18 Gennaio Soluzioni Primo Compito di Analisi Matematica Corso di laurea in Informatica, corso B 8 Gennaio 06 Soluzioni Esercizio Siano z e z due numeri complessi con modulo e argomento rispettivamente (ρ, θ ) e (ρ, θ ) tali

Dettagli

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 1. Esercizi 3 1. Studiare la seguente funzione FINO alla derivata prima, con tracciamento di grafico ed indicazione

Dettagli

Soluzione Problema 1

Soluzione Problema 1 Soluzione Problema 1 1. Ricordiamo che una funzione h(x) è derivabile in un punto c se esiste finita la sua derivata nel punto c. Per il significato geometrico della derivata ciò significa che esiste ed

Dettagli

Convessità e derivabilità

Convessità e derivabilità Convessità e derivabilità Definizione 1 (convessità per funzioni derivabili) Sia f : (a, b) R derivabile su (a, b). Diremo che f è convessa o concava su (a, b) se per ogni 0 (a,b) il grafico di f sta tutto

Dettagli

ANALISI MATEMATICA 1. (Ingegneria Industriale, corsi A e B) Esempi di prove scritte

ANALISI MATEMATICA 1. (Ingegneria Industriale, corsi A e B) Esempi di prove scritte ANALISI MATEMATICA 1 (Ingegneria Industriale, corsi A e B) Esempi di prove scritte Rispondere ai quesiti a risposta multipla Qi, risolvere gli esercizi Ei, enunciare le definizioni Di e svolgere le dimostrazioni

Dettagli

variabili. se i limiti esistono e si chiamano rispettivamente derivata parziale rispetto ad x e rispetto ad y.

variabili. se i limiti esistono e si chiamano rispettivamente derivata parziale rispetto ad x e rispetto ad y. Funzioni di più variabili Derivate parziali Qui saranno considerate soltanto funzioni di due variabili, ma non c è nessuna difficoltà ad estendere le nuove nozioni a funzioni di n ( > variabili ( Definizione:

Dettagli

1 Definizione di derivata 1. 2 Calcolo di derivate Derivate di funzioni elementari Regole di derivazione... 6

1 Definizione di derivata 1. 2 Calcolo di derivate Derivate di funzioni elementari Regole di derivazione... 6 DEFINIZIONE DI DERIVATA Derivate Indice Definizione di derivata Calcolo di derivate 5. Derivate di funzioni elementari........................................ 5. Regole di derivazione..............................................

Dettagli

Funzioni convesse su intervallo

Funzioni convesse su intervallo Università degli Studi di Palermo Facoltà di Economia Dip. di Scienze Statistiche e Matematiche Silvio Vianelli Appunti del corso di Matematica Generale Funzioni convesse su intervallo Anno Accademico

Dettagli

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2 Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in CTF - anno acc. 2013/2014 docente: Giulia Giantesio, gntgli@unife.it Esercizi 8: Studio di funzioni Studio

Dettagli

Politecnico di Torino II Facoltà di Architettura - 5 Luglio 2011 Esercizio 1. Sono date le matrici 2 1, B = 1 4

Politecnico di Torino II Facoltà di Architettura - 5 Luglio 2011 Esercizio 1. Sono date le matrici 2 1, B = 1 4 A Politecnico di Torino II Facoltà di Architettura - 5 Luglio 20 Esercizio. Sono date le matrici A = ( ) 2, B = 4 ( ). 2 a) Calcolare la matrice A. b) Enunciare ed applicare la regola di Cramer per determinare

Dettagli

Programma delle lezioni svolte nel corso CLEM di Matematica Generale, Lettere M-Z, Prof. F. Manzini.

Programma delle lezioni svolte nel corso CLEM di Matematica Generale, Lettere M-Z, Prof. F. Manzini. Programma delle lezioni svolte nel corso CLEM di Matematica Generale, Lettere M-Z, Prof. F. Manzini. 1. Generalità sul corso e sulle modalità di esame. Insiemi ed operazioni sugli insiemi. Applicazioni

Dettagli

FUNZIONI CONVESSE. + e x 0

FUNZIONI CONVESSE. + e x 0 FUNZIONI CONVESSE Sia I un intervallo aperto di R (limitato o illimitato) e sia f(x) una funzione definita in I. Dato x 0 I, la retta r passante per il punto P 0 (x 0, f(x 0 )) di equazione y = f(x 0 )

Dettagli

Diario del Corso Analisi Matematica I

Diario del Corso Analisi Matematica I Diario del Corso Analisi Matematica I 1. Martedì 1 ottobre 2013 Presentazione del corso. Nozioni di Teoria degli Insiemi. Numeri Naturali, loro proprietà, rappresentazione geometrica, sommatoria, principio

Dettagli

Variazione di una funzione

Variazione di una funzione a) Variazione di una funzione Variazione di : Δ= 2-1 Δf Variazione di f: Δf= 2-1 =f( 2 )-f( 1 ) b) 1 Δ 2 In questo caso a una variazione di, Δ, corrisponde una piccola variazione di f, Δf Δf In questo

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013 Soluzioni dei problemi della maturità scientifica A.S. / Nicola Gigli Sun-Ra Mosconi June, Problema. Il teorema fondamentale del calcolo integrale garantisce che Quindi f (x) = cos x +. f (π) = cos π +

Dettagli

Analisi Matematica I Primo Appello ( ) - Fila 1

Analisi Matematica I Primo Appello ( ) - Fila 1 Analisi Matematica I Primo Appello (4-11-003) - Fila 1 1. Determinare la retta tangente alla funzione f() = (1 + ) 1+ in = 0. R. f(0) = 1, mentre la derivata è f () = ( e (1+) log(1+)) ( ) = e (1+) log(1+)

Dettagli

Conoscenze. L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la regola di Ruffini, il teorema. del resto.

Conoscenze. L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la regola di Ruffini, il teorema. del resto. Classe: TERZA (Liceo Artistico) Pagina 1 / 2 della Matematica La scomposizione dei polinomi in fattori primi L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (0/0/03) Università di Verona - Laurea in Biotecnologie - A.A. 0/3 Matematica e Statistica Prova di MATEMATICA (0/0/03) Università di Verona - Laurea in Biotecnologie

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero Il teorema degli zeri è fondamentale per determinare se una funzione continua in un intervallo chiuso [ a ; b ] si annulla in almeno un punto interno

Dettagli

Funzioni Monotone. una funzione f : A B. si dice

Funzioni Monotone. una funzione f : A B. si dice Funzioni Monotone una funzione f : A B si dice strettamente crescente: 1, 2 A, 1 < 2 f( 1 ) < f( 2 ). crescente: 1, 2 A, 1 < 2 f( 1 ) f( 2 ). strettamente decrescente: 1, 2 A, 1 < 2 f( 1 ) > f( 2 ). decrescente:

Dettagli

SCIENTIFICO COMUNICAZIONE OPZIONE SPORTIVA PROBLEMA 2. Figura 1

SCIENTIFICO COMUNICAZIONE OPZIONE SPORTIVA PROBLEMA 2. Figura 1 www.matefilia.it SCIENTIFICO COMUNICAZIONE OPZIONE SPORTIVA 216 - PROBLEMA 2 Nella figura 1 è rappresentato il grafico Γ della funzione continua f: [, + ) R, derivabile in ], + ), e sono indicate le coordinate

Dettagli

dato da { x i }; le rette verticali passanti per

dato da { x i }; le rette verticali passanti per Schema riepilogativo per lo studio di una funzione reale di una var. reale. Studio grafico-analitico delle funzioni reali di variabile reale y = f ( Sequenza dei passi utili allo studio di una funzione

Dettagli

Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti

Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti Docente: Anna Valeria Germinario Università di Bari A.V.Germinario (Università di

Dettagli

Punti di estremo e Teorema di Fermat

Punti di estremo e Teorema di Fermat Punti di estremo e Teorema di Fermat Nello studio di una funzione, le derivate sono (tra le altre cose) uno strumento utile per la determinazione di intervalli di monotonia e puntidiestremo. Definizione.

Dettagli

PER LA COMMISSIONE D ESAME 1E 2E 3E 4E 5E Totale

PER LA COMMISSIONE D ESAME 1E 2E 3E 4E 5E Totale Esame di Analisi Matematica Uno 31 Gennaio 2014 Fila: A 1 Università di Padova - Scuola di Ingegneria - Esame di Analisi Matematica Uno Lauree: Chimica e Materiali 31 Gennaio 2014 (Primo appello, a.a.

Dettagli

Analisi Matematica I DISEQUAZIONI Risposte Pagina Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 1

Analisi Matematica I DISEQUAZIONI Risposte Pagina Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 1 Analisi Matematica I DISEQUAZIONI Risposte Pagina Es. Es. Es. 3 Es. 4 Es. 5 AVVERTENZA: Scrivere le risposte scelte nello spazio in alto a destra. In ogni esercizio una sola risposta è corretta. Esercizio.

Dettagli

06 - Continuitá e discontinuitá

06 - Continuitá e discontinuitá Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 06 - Continuitá e discontinuitá Anno Accademico 2013/2014 D. Provenzano

Dettagli

Derivate. Capitolo Cos è la derivata?

Derivate. Capitolo Cos è la derivata? Capitolo 8 Derivate 8.1 Cos è la derivata? Consideriamo una funzione y f(x) e disegnamo il suo grafico. Sia x 0 nel dominio di f e consideriamo il punto (x 0, f(x 0 )) del grafico. Vogliamo determinare

Dettagli

LIMITI DI FUNZIONI. arbitrariamente vicino a L, scegliendo x sufficientemente vicino a x 0, con x x 0.

LIMITI DI FUNZIONI. arbitrariamente vicino a L, scegliendo x sufficientemente vicino a x 0, con x x 0. 55. Limiti al finito (ossia per ) LIMITI DI FUNZIONI Limite finito per f ( ) L R Il ite di f () per tendente a è L se è possibile rendere il valore di f () vicino a L, scegliendo sufficientemente vicino

Dettagli

1) D0MINIO. x x 4x + 3 Determinare il dominio della funzione f (x) = x Deve essere

1) D0MINIO. x x 4x + 3 Determinare il dominio della funzione f (x) = x Deve essere ) DMINIO + 3 Determinare il dominio della funzione f ) + 3 Deve essere Ovviamente, inoltre: se > + 3 ) 3) quindi < o 3 se < + 3, + 3 quindi 7 Determinare il dominio della funzione f ) + 5 Deve essere +

Dettagli

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2009/2010 Calcolo 1, Esame scritto del 19.01.2010

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2009/2010 Calcolo 1, Esame scritto del 19.01.2010 NOME:... MATRICOLA:.... Corso di Laurea in Fisica, A.A. 009/00 Calcolo, Esame scritto del 9.0.00 Data la funzione fx = e /x x x +, a determinare il dominio massimale di f ; b trovare tutti gli asintoti

Dettagli

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni Soluzioni dello scritto di Analisi Matematica II - /7/9 C.L. in Matematica e Matematica per le Applicazioni Proff. K. Payne, C. Tarsi, M. Calanchi Esercizio. a La funzione f è limitata e essendo lim fx

Dettagli