Esercizi di GEOMETRIA e ALGEBRA LINEARE (Ingegneria Ambientale e Civile - Curriculum Ambientale)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizi di GEOMETRIA e ALGEBRA LINEARE (Ingegneria Ambientale e Civile - Curriculum Ambientale)"

Transcript

1 Esercizi di GEOMETRIA e ALGEBRA LINEARE (Ingegneria Ambientale e Civile - Curriculum Ambientale). Tra le seguenti matrici, eseguire tutti i prodotti possibili: 2 ( ) A = B = C = D = ( 0 ) E = ( ) F = Data la matrice A = 0 2 2, calcolare A A t A + I Calcolare i determinanti e, quando possibile, le inverse delle seguenti matrici: 4 A = 2 2 B = C = D = Determinare quali tra i seguenti sottoinsiemi sono sottospazi vettoriali. Per i sottospazi vettoriali determinare la dimensione ed una base. U = (x, y) R 2 x + y = 0} U 2 = (x, y) R 2 x + y = 3} U 3 = (x, y, z) R 3 2x = y + } U 4 = (x, y, z, t) R 4 x + y z = 0, t = 3x} 5. Determinare la dimensione ed una base dei seguenti sottospazi vettoriali: U = L((, 0, ), (2,, ), ( 6, 2, 4)) R 3 U 2 = L((, 2, 3), (4,, 5), ( 3, 3, 2), (6, 3, )) R 3

2 U 3 = L((, 0, ), (2,, )) R 3 U 4 = L((8, 3, 5, 0), (0,,, 0), (3,, 2, )) R 4 U 5 = L((2,,, 0), (0,,, ), (0, 0, 0, )) R 4 U 6 = L((3, 0,, ), (,, 0, ), (2h, h + 2, h, h + )) (al variare di h R). 6. Stabilire quali tra le seguenti applicazioni sono lineari; per queste ultime determinare la dimensione ed una base del nucleo e dell immagine. Stabilire inoltre quali sono iniettive, quali suriettive e quali isomorfismi. f : R 4 R 3 f (x, y, z, t) = (x y, y + z, t) f 2 : R 3 R 2 f 2 (x, y, z) = (x + 3y, y 4z x) f 3 = f 2 f f 4 : R 2 R 3 f 4 (x, y) = (x + y, y, x) f 5 : R 2 R 4 f 5 (x, y) = (3x, x, 2x, 0) f 6 : R 3 R 2 f 6 (x, y, z) = (x + 3, y) f 7 : R 3 R 3 f 7 (x, y, z) = (2x + y, z, x y). 7. Per ciascuna delle seguenti applicazioni lineari determinare la matrice associata rispetto alle basi B e B, dimensione ed una base dell immagine e del nucleo: (a) f : R 4 R 3, f(x, y, z, t) = (x y, y + z, t) B = ((2,, 0, 0), (,, 0, ), (0,, 0, 0), (, 0,, )) B = ((,, ), (0,, ), (, 4, 3)); (b) g : R 3 R 2, g(x, y, z) = (x + 3y, y 4z x) B = ((,, ), (0,, ), (, 4, 3)), B = base canonica di R 2 ; (c) h = g f, B = ((2,, 0, 0), (,, 0, ), (0,, 0, 0), (, 0,, )), B = base canonica di R Data la famiglia di applicazioni lineari f λ : R 3 R 4 f λ (x, y, z) = (x y + ( λ)z, λx + 2y + λz, 2x, λy + 2z) determinare la dimensione di Im f λ al variare di λ R. 2

3 9. Determinare gli eventuali valori di λ R per i quali l applicazione lineare: f λ : R 3 R 3, f λ (x, y, z) = (5x + 2y, (λ 2)z, y x) è un isomorfismo. Per tali valori di λ determinare l inversa di f λ. 0. Determinare l applicazione lineare f : R 3 R 4 tale che Kerf = L((, 0, )), f((2,, 3)) = ( 2, 0,, 3), f((, 0, 0)) = (2, 3,, )).. ( Determinare) l applicazione lineare f : R 3 R 2 che ha la 5 matrice come matrice associata rispetto alle basi B = ((,, ), (0, 2, ), (2, 4, 3)) di R 3 e B = ((, ), (0, 2)) di R Calcolare il rango delle seguenti matrici: A = B = C = D = Risolvere, quando possibile, i seguenti sistemi lineari: 3x 5y 3z t = 2 2x y + t = 3 2x 3y + 5z = x + y z = 2 3x y z t = 2 x 4y + 6z = 5x 2y z = 5 x 5y + 6z = 0 x 3y = 4 y 3z = 2 2x + y z + t = 2 2x + 2y + z + 2t = 0 4x + 7y z + 5t = 6 8x + 2y 4z + 2t = 3 4. Discutere i seguenti sistemi lineari, al variare del parametro λ R: 3

4 λx + λy + z + t = λ x λy + z = 3λ 2x + 2z + λt = 4 ( λ)x + 2y + t = 2λ ( λ)x + y + z + t = 2 x + λy = 2 x + y + 3z t = 4 x + αy 3z + 4t = 2x y + 2z 2t = 4 3x + y z + αt = 3 4x + 3y 4z + 6t = 2 3x + y + z = ( λ)x 2y + z = 2x + 3y = λ 4x y + (2 λ)z = 2 3x + 3y + 3z = α 3x + αy + z = 0 y + αz = 2 5. Data la matrice 2 A = 2 2 trovare, se esiste, una matrice regolare E tale che E AE sia diagonale Data la matrice A = 3 2 0, trovare una matrice regolare 0 0 E tale che E AE sia diagonale. 0 0 Dire se la matrice B = è simile alla matrice A Trovare il rango delle seguenti forme quadratiche: q (x, y) = 4x 2 6xy + y 2 q 2 (x, y) = 4x 2 4xy + y 2 q 3 (x, y, z) = x 2 + y 2 + 2z 2 + 2xz 2yz. 8. Data la forma quadratica q : R 3 R definita da q(x, y, z) = 3x 2 + y 2 + 5z 2 2xz, determinare la matrice associata a q rispetto alla base B = ((, 0, ), (0, 3, 0), (5,, )). 4

5 9. Data la famiglia di forme quadratiche q α : R 3 R definita da q α (x, y, z) = αx 2 + (2α 3)y 2 + αz 2 + 2αxy, determinare gli eventuali valori di α R per i quali q α è degenere e quelli per i quali q α è definita; 20. Date le matrici A, B S 3 (R): A = B = verificare che A e B sono congruenti. 2. La matrice A S 4 (R) ha polinomio caratteristico: A (t) = (t 2 t 6)(t 2 9t + 20). La matrice B S 4 (R) ha polinomio caratteristico: B (t) = (t 2 )(t3 + 6t 2 + 3t 0). A e B sono congruenti? 22. In E 2, fissato un sistema di riferimento cartesiano, sono date le rette r di equazione 3x 4y+2 = 0 e s di equazione 2x y+8 = 0. Determinare la mutua posizione di r e s. Scrivere l equazione della retta r parallela a r e passante per P ( 3 2, ) e della retta s passante per P ed ortogonale a r. Calcolare poi l area del trapezio formato dalle rette r, s, r, s. 23. In E 2, fissato un sistema di riferimento cartesiano, sono dati i punti A (, 2), B (3, 3), C (4, 7), D (2, 6). Verificare che ABCD è un parallelogramma e calcolarne l area. 24. Date in E 2, le rette r : 3x + 4y 7 = 0 e s : x + 3y + = 0, trovare una retta t che interseca r nel punto A (, ) e dista 3 5 dall origine del riferimento. Calcolare l area del triangolo formato dalle rette r, s, t. 25. Dati in E 2 i punti A (0, 0), B (, 0), C (, 2), determinare i punti D E 2 in modo tale che A, B, C, D} sia l insieme dei vertici di un parallelogramma. 26. Dati in E 3 i punti A (, 0, ), B (2,, 0), C (3, 0, ), verificare che A, B, C sono affinemente indipendenti e trovare un equazione cartesiana del piano π passante per A, B, C. Scrivere poi una equazione della retta r per P (,, ), e ortogonale a π. 5

6 27. In E 3, verificare che il piano α : 2x + y + z + 2 = 0 e la x + y 5 = 0 retta r : sono paralleli e calcolarne la distanza. Scrivere y z 3 = 0 l equazione del piano contenente r e parallelo a α. Scrivere l equazione del piano passante per P (0,, 2) e ortogonale a r. 28. Dati, in E 3 x + y = 0, il punto P (, 2, 0) e le rette r : 2x z 2 = 0 y + z = 0 e s :, verificare che r e s sono incidenti e trovare le x 2z + 2 = 0 coordinate del punto A = r s. Scrivere un equazione del piano π passante per l origine, per P e per A. Scrivere inoltre una rappresentazione cartesiana del piano passante per P = (, 0, ) e parallelo a π. x + 2y 3z = 29. Dati la retta r : ed il piano π : αx + 3y x + y + z = 3 2z = 2α, discutere, al variare di α R, la reciproca posizione di r e π. 30. Date le rette di E 3, x y + z 3 = 0 r : 2x + y z 3 = 0 s : x 4 = y 5 = z verificare che sono sghembe e calcolarne la distanza. 3. Date in E 3 le rette x + ky z = 0 r k : x y = k s k : 3x 6y kz + = 0 x 2y kz + 3 = 0 (k 0) determinare, al variare di k R 0}, la mutua posizione di r k e s k. 32. Date le rette di E 3, r : x + 2y 2z 20 = 0 z + 6 = 0 x = + 2t s : y = t z = 4 verificare che sono parallele e calcolarne la distanza. 6

7 Soluzioni es. 3 det A = 7, det B = 0, det C = 4, det D = 442. es. 4 Una base di U è (, )}; U 2 e U 3 non sono sottospazi vettoriali; una base di U 4 è (, 0,, 3), (0,,, 0)}; es. 5 dim U = 2; dim U 2 = 2; dim U 3 = 2; dim U 4 = 3; dim U 5 = 3; dim U 6 = 3 per h ; dim U = 2 per h = ; es. 6 f è suriettiva, dim Ker f =, Ker f = L((,,, 0)). f 2 è suriettiva, dim Ker f 2 =, Ker f 2 = L(( 3,, )). f 3 è suriettiva, dim Ker f 3 = 2, Ker f 3 = L(( 2,, 0, ), ( 3, 0,, )). dim Im f 4 = 2, f 4 è iniettiva, Im f 4 = L((, 0, ), (,, 0)). dim Im f 5 =, dim Ker f 5 =, Im f 5 = L((3,, 2, 0)), Ker f 5 = L((0, )). f 6 non è lineare. f 7 è un automorfismo es. 7 (a) A = ( ) 4 3 (b) A = ( ) (c) A = es. 8 per λ 2, dim Im f λ = 3; per λ = 2, dim Im f λ = 2. es. 9 λ 2, f (x, y, z) = ( 7 x 2 7 z, 7 x z, λ 2 y) es. 0 f(x, y, z) = (2x 2z, 3x + 3y + 3z, x z, x + 2y z); non esistono. es. f(x, y, z) = (5x y + z, 2x + 3z) es. 2 ρ(a) = ρ(b) = ρ(c) = ρ(d) = 2 es. 3 es. 4 - il sistema è possibile con 2 soluzioni; - il sistema è impossibile; - il sistema è possibile con soluzioni; - il sistema è impossibile; - Per λ 0, il sistema è di Cramer, per λ = 0 è impossibile, per λ = è possibile con 2 soluzioni; 7

8 - per λ 0, 3 il sistema è impossibile, per λ = 0 è possibile con soluzioni, per λ = 3 ha una soluzione; - per ogni λ R il sistema è possibile con soluzioni. - il sistema è possibile per ogni α, è impossibile per α =. - il sistema è possibile per ogni α R. 5. E = E = 0 3 ; A e B sono simili; ρ(q ) = 2, ρ(q 2 ) =, ρ(q 3 ) = q α è degenere per α = 0, 3 ; q α è definita positiva per α > r : 6x 8y = 0, s : 4x + 3y 9 = 0, 23. Area = 7. Area = t : 2x+y 3 = 0, Area = 5 2 oppure t : x+2y 3 = 0, Area = D (0, 2), D 2 (2, 2). 26. π : y + z = 0, x = y = z. 27. d(r, α) = 2 3 6, 2x + y + z 7 = 0, x y z 3 = A (2, 2, 2), π : 2x y 3z = 0, π : 2x y 3z + = Per α 2 sono incidenti in P (2, 2 5, 3 5 ); per α = 2, r π. 30. d(r, s) = 3; perpendicolare comune x = y = z. 3. le rette sono sgembe per k R 5, 0, }, sono incidenti per k = 5 e k = ; per k = 0, s k non è una retta. 32. d(r, s) = 3. 8

Esercizi di GEOMETRIA (Ing. Ambientale e Civile - Curriculum Civile) 1. Tra le seguenti matrici, eseguire tutti i prodotti possibili:

Esercizi di GEOMETRIA (Ing. Ambientale e Civile - Curriculum Civile) 1. Tra le seguenti matrici, eseguire tutti i prodotti possibili: Esercizi di GEOMETRIA (Ing. Ambientale e Civile - Curriculum Civile). Tra le seguenti matrici, eseguire tutti i prodotti possibili: 2 ( ) A = 0 3 4 B = C = 2 2 0 0 2 D = ( 0 ) E = ( ) 4 4 2 0 5 F = 4 2

Dettagli

Esercizi di GEOMETRIA I - Algebra Lineare B = , calcolare A A t A + I

Esercizi di GEOMETRIA I - Algebra Lineare B = , calcolare A A t A + I Esercizi di GEOMETRIA I - Algebra Lineare. Tra le seguenti matrici, eseguire tutti i prodotti possibili: 2 ( ) A = 0 3 4 B = 2 0 0 2 D = ( 0 ) E = ( ) 4 4 2 C = 2 0 5 F = 4 2 6 2. Data la matrice A = 0

Dettagli

Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica

Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica 1) Dati i vettori a = (2, 4), b = (1, 2), c = ( 1, 1), d = (3, 6), stabilire se c e d appartengono a Span(a, b}). 2) Nello spazio vettoriale

Dettagli

Esercizi di Geometria e Algebra Lineare

Esercizi di Geometria e Algebra Lineare Esercizi di Geometria e Algebra Lineare 1) Dati i vettori a = (2, 4), b = (1, 2), c = ( 1, 1), d = (3, 6), stabilire se c e d appartengono a Span(a, b}) 2) Nello spazio vettoriale R 3 sul campo R, sia

Dettagli

Esame di Geometria - 9 CFU (Appello del 26 gennaio 2016)

Esame di Geometria - 9 CFU (Appello del 26 gennaio 2016) Esame di Geometria - 9 CFU (Appello del 26 gennaio 206) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Al variare del parametro α R, si considerino la retta { x + y z = r : 2x + αy + z = 0 ed

Dettagli

ALGEBRA LINEARE E GEOMETRIA

ALGEBRA LINEARE E GEOMETRIA ALGEBRA LINEARE E GEOMETRIA A 11 luglio 2017 60 minuti Istruzioni: Scrivere cognome, nome, matricola in STAMPATELLO negli appositi spazi. Per ogni quiz nella prima parte, indicare l affermazione giudicata

Dettagli

Esercizi per il corso di Algebra e Geometria L.

Esercizi per il corso di Algebra e Geometria L. Esercizi per il corso di Algebra e Geometria L AA 2006/2007 1 Foglio 1 In tutti gli esercizi che seguiranno lo spazio ambiente sarà il piano cartesiano a valori nel campo dei numeri reali, dove supporremo

Dettagli

Esame di geometria e algebra

Esame di geometria e algebra Laurea Ing. 9 febbraio 2007 Traccia I 1 In R 3 si consideri il sottoinsieme H = {(a, b, 2a + b) a, b R}. Stabilire se H è un sottospazio vettoriale di R 3 e, in caso affermativo, determinarne la dimensione

Dettagli

I Compito di Geometria - Ingegneria Edile - 25 ottobre 2000 Tra parentesi [ ] è indicato il punteggio di ogni esercizio.

I Compito di Geometria - Ingegneria Edile - 25 ottobre 2000 Tra parentesi [ ] è indicato il punteggio di ogni esercizio. I Compito di Geometria - Ingegneria Edile - 25 ottobre 2000 Tra parentesi [ ] è indicato il punteggio di ogni esercizio. A [8] Sono date le matrici A M 34 (IR) e b M 31 (IR) A = 1 0 2 2 0 k 1 k, b = 1

Dettagli

MATRICI E SISTEMI LINEARI

MATRICI E SISTEMI LINEARI - - MATRICI E SISTEMI LINEARI ) Calcolare i seguenti determinanti: a - c - d - e - f - g - 8 7 8 h - ) Calcolare per quali valori di si annullano i seguenti determinanti: a - c - ) Calcolare il rango delle

Dettagli

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi)

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi) Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006 Matematica 2 (Analisi) Nome:................................. N. matr.:.................................

Dettagli

(2) Dato il vettore w = (1, 1, 1), calcolare T (w). (3) Determinare la matrice A associata a T rispetto alla base canonica.

(2) Dato il vettore w = (1, 1, 1), calcolare T (w). (3) Determinare la matrice A associata a T rispetto alla base canonica. 1. Applicazioni lineari Esercizio 1.1. Sia T : R 2 R 3 l applicazione lineare definita sulla base canonica di R 2 nel seguente modo: T (e 1 ) = (1, 2, 1), T (e 2 ) = (1, 0, 1). a) Esplicitare T (x, y).

Dettagli

Politecnico di Torino Facoltà di Architettura. Raccolta di esercizi proposti nelle prove scritte

Politecnico di Torino Facoltà di Architettura. Raccolta di esercizi proposti nelle prove scritte Politecnico di Torino Facoltà di Architettura Raccolta di esercizi proposti nelle prove scritte relativi a: algebra lineare, vettori e geometria analitica Esercizio. Determinare, al variare del parametro

Dettagli

1 Esonero di GEOMETRIA 2 - C. L. Matematica Aprile 2009

1 Esonero di GEOMETRIA 2 - C. L. Matematica Aprile 2009 1. Si consideri la matrice 1 Esonero di GEOMETRIA 2 - C. L. Matematica Aprile 2009 A = ( 1 1 1 3 Sia g : R 2 R 2 R la forma bilineare e simmetrica avente A come matrice associata rispetto alla base canonica

Dettagli

Esame di geometria e algebra

Esame di geometria e algebra Laurea Ing. 9 febbraio 2007 Traccia I 1 In R 3 si consideri il sottoinsieme H = {(a, b, 2a + b) a, b R}. Stabilire se H è un sottospazio vettoriale di R 3 e, in caso affermativo, determinarne la dimensione

Dettagli

GEOMETRIA E ALGEBRA LINEARE Prova scritta del 16 GENNAIO Compito A

GEOMETRIA E ALGEBRA LINEARE Prova scritta del 16 GENNAIO Compito A Cognome e Nome: Matricola: Corso di laurea: GEOMETRIA E ALGEBRA LINEARE Prova scritta del 16 GENNAIO 2019 - Compito A (a) (b) (c) (d) Parziali 1 2 3 4 Regole: TOTALE: Scrivere solo con penna nera o blu

Dettagli

Esame di Geometria - 9 CFU (Appello del 14 gennaio A)

Esame di Geometria - 9 CFU (Appello del 14 gennaio A) Esame di Geometria - 9 CFU (Appello del 4 gennaio 24 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Si considerino le rette s : { x x 2 2x 3 = 2 3x x 2 =, { x + x s 2 : 2 x 3 = x 2 =.. Stabilire

Dettagli

GEOMETRIA E ALGEBRA LINEARE Prova scritta del 9 GENNAIO Compito A

GEOMETRIA E ALGEBRA LINEARE Prova scritta del 9 GENNAIO Compito A Cognome e Nome: Matricola: Corso di laurea: GEOMETRIA E ALGEBRA LINEARE Prova scritta del 9 GENNAIO 2018 - Compito A (a) (b) (c) (d) Parziali 1 2 3 4 Regole: TOTALE: Scrivere solo con penna nera o blu

Dettagli

Tempo a disposizione: 150 minuti. 1 Studiare, al variare del parametro reale k, il seguente sistema lineare: x + ky = k 2x + ky + z = 0.

Tempo a disposizione: 150 minuti. 1 Studiare, al variare del parametro reale k, il seguente sistema lineare: x + ky = k 2x + ky + z = 0. Università degli Studi di Catania Anno Accademico 014-015 Corso di Laurea in Informatica Prova in itinere di Matematica Discreta (1 CFU) 1 Dicembre 014 A Tempo a disposizione: 150 minuti 1 Studiare, al

Dettagli

Tempo a disposizione: 150 minuti. 1 Studiare, al variare del parametro reale k, il seguente sistema lineare: x + ky = k 2x + ky + z = 0.

Tempo a disposizione: 150 minuti. 1 Studiare, al variare del parametro reale k, il seguente sistema lineare: x + ky = k 2x + ky + z = 0. Università degli Studi di Catania Anno Accademico 014-015 Corso di Laurea in Informatica Prova in itinere di Matematica Discreta (1 CFU) 1 Dicembre 014 A Tempo a disposizione: 150 minuti 1 Studiare, al

Dettagli

GEOMETRIA. 17 FEBBRAIO ore. Istruzioni: Scrivere cognome, nome, numero di matricola in stampatello negli appositi spazi.

GEOMETRIA. 17 FEBBRAIO ore. Istruzioni: Scrivere cognome, nome, numero di matricola in stampatello negli appositi spazi. GEOMETRIA 7 FEBBRAIO 2009 2 ore Istruzioni: Scrivere cognome, nome, numero di matricola in stampatello negli appositi spazi. Trascrivere i risultati dei quiz della prima parte nella tabella in questa pagina.

Dettagli

Esame di geometria e algebra

Esame di geometria e algebra Laurea Ing. 26 febbraio 2007 Traccia I COG 1 In R 3 sono assegnati i vettori: u 1 = (2, h, 0), u 2 = (1, 0, h), u 3 = (h, 1, 2). Stabilire se esistono valori reali del parametro h per cui S = {u 1, u 2,

Dettagli

Algebra lineare e geometria AA Esercitazione del 14/6/2018

Algebra lineare e geometria AA Esercitazione del 14/6/2018 Algebra lineare e geometria AA. 2017-2018 Esercitazione del 14/6/2018 1) Siano A, B due matrici n n tali che 0 < rk(a) < rk(b) = n. (a) AB è invertibile. (b) rk(ab) = nrk(b). (c) det(ab) = det(a). (d)

Dettagli

1. Esercizi (1) Calcolare + ( 1) + 3 2, 2. (2) siano X, Y, Z R 3. Dimostrare che se X +Y = X +Z, allora Y = Z;

1. Esercizi (1) Calcolare + ( 1) + 3 2, 2. (2) siano X, Y, Z R 3. Dimostrare che se X +Y = X +Z, allora Y = Z; Esercizi () Calcolare 4 + () + () siano X Y Z R Dimostrare che se X +Y = X +Z allora Y = Z; () dimostrare che i vettori sono linearmente dipendenti; (4) dimostrare che i vettori 4 sono linearmente indipendenti;

Dettagli

Esercitazione di Geometria I 13 dicembre Esercizio 1. Esercizio 2. Esercizio 3

Esercitazione di Geometria I 13 dicembre Esercizio 1. Esercizio 2. Esercizio 3 Esercitazione di Geometria I 13 dicembre 2008 a. Completa la seguente definizione: i vettori v 1, v 2,..., v n del K-spazio vettoriale V si dicono linearmente dipendenti se... b. Siano w 1, w 2, w 3 vettori

Dettagli

Compito Parziale di Algebra lineare e Geometria analitica. 2x + 3y + 2z = 0 x y z = 0

Compito Parziale di Algebra lineare e Geometria analitica. 2x + 3y + 2z = 0 x y z = 0 Compito Parziale di Algebra lineare e Geometria analitica ) Dire se il seguente sottoinsieme di R 3 H = (x; y; z) R 3 : x + 3y + z = x y z = è o non un sottospazio vettoriale di R 3 e eventualmente calcolarne

Dettagli

CdL in Ingegneria Informatica (A-Faz), (Orp-Z) CdL in Ingegneria del Recupero Edilizio ed Ambientale

CdL in Ingegneria Informatica (A-Faz), (Orp-Z) CdL in Ingegneria del Recupero Edilizio ed Ambientale Prova scritta di Geometria assegnata il 13 Dicembre 2003 Sia Si consideri l equazione AX = A t. 0 1 1 A = 1 1 5 R 3,3. 1 2 1 h 1) Determinare i valori di h per cui tale equazione ammette soluzioni. 2)

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI GENNAIO 2015 DOCENTE: M. LONGO

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI GENNAIO 2015 DOCENTE: M. LONGO FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI GENNAIO 2015 DOCENTE: M. LONGO 1. Domande Domanda 1. Dire quando una funzione f : X Y tra dee insiemi X ed Y si dice iniettiva.

Dettagli

Università degli Studi di Catania CdL in Ingegneria Civile e Ambientale

Università degli Studi di Catania CdL in Ingegneria Civile e Ambientale CdL in ngegneria Civile e Ambientale Prova scritta di Algebra Lineare e Geometria del 26 gennaio 2018 Usare solo carta fornita dal Dipartimento di Matematica e nformatica, riconsegnandola tutta. 1) Siano

Dettagli

Esonero di GEOMETRIA 1 - C. L. Matematica 21 Febbraio M 2 (R) a + 2b d = 0.

Esonero di GEOMETRIA 1 - C. L. Matematica 21 Febbraio M 2 (R) a + 2b d = 0. Esonero di GEOMETRIA 1 - C. L. Matematica 21 Febbraio 2013 1. Si considerino i seguenti sottospazi vettoriali di M 2 (R): ( ) ( ) 0 1 0 1 U =,, 1 0 1 0 ( ) a b V = c d } M 2 (R) a + 2b d = 0. (a) Si determinino

Dettagli

ESAME DI GEOMETRIA. 6 febbraio 2002 CORREZIONE QUIZ

ESAME DI GEOMETRIA. 6 febbraio 2002 CORREZIONE QUIZ ESAME DI GEOMETRIA 6 febbraio CORREZIONE QUIZ. La parte reale di ( + i) 9 è positiva. QUIZ Si può procedere in due modi. Un primo modo è osservare che ( + i) =i, dunque ( + i) 9 =(+i)(i) 4 = 4 ( + i) :

Dettagli

I VERIFICA DI GEOMETRIA 1 CORSO DI LAUREA IN MATEMATICA - 4 DICEMBRE 2007

I VERIFICA DI GEOMETRIA 1 CORSO DI LAUREA IN MATEMATICA - 4 DICEMBRE 2007 A I VERIFICA DI GEOMETRIA 1 CORSO DI LAUREA IN MATEMATICA - 4 DICEMBRE 2007 ESERCIZIO 1. Si consideri il seguente sistema di equazioni lineari x + y + 2z = 1 2x + ky + 4z = h 2x 2y + kz = 0 (a) Determinare,

Dettagli

Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento)

Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Relazioni 1) Quali delle seguenti relazioni sono di equivalenza? x, y R {0} xry x/y Q x, y Z xry x + y è divisibile per 17

Dettagli

Tempo a disposizione: 150 minuti. 1 È dato l endomorfismo f : R 3 R 3 definito dalle relazioni

Tempo a disposizione: 150 minuti. 1 È dato l endomorfismo f : R 3 R 3 definito dalle relazioni Università degli Studi di Catania Anno Accademico 2014-2015 Corso di Laurea in Informatica Prova in itinere di Matematica Discreta (12 CFU) 17 Aprile 2015 Prova completa Tempo a disposizione: 150 minuti

Dettagli

Algebra lineare Geometria 1 15 luglio 2009

Algebra lineare Geometria 1 15 luglio 2009 Algebra lineare Geometria 1 15 luglio 2009 Esercizio 1. Nello spazio vettoriale reale R 3 [x] si considerino l insieme A k = {1 + x, k + (1 k)x 2, 1 + (k 1)x 2 + x 3 }, il vettore v k = k + kx x 3 e la

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 8 LUGLIO 2015

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 8 LUGLIO 2015 FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 8 LUGLIO 2015 MATTEO LONGO Svolgere entrambe le parti (Teoria ed Esercizi Si richiede la sufficienza su entrambe le parti 1

Dettagli

GEOMETRIA. 2 Febbraio ore. Istruzioni: Scrivere cognome, nome, numero di matricola in stampatello negli appositi spazi.

GEOMETRIA. 2 Febbraio ore. Istruzioni: Scrivere cognome, nome, numero di matricola in stampatello negli appositi spazi. GEOMETRIA 2 Febbraio 2007 2 ore Istruzioni: Scrivere cognome, nome, numero di matricola in stampatello negli appositi spazi. Trascrivere i risultati dei quiz della prima parte nella tabella in questa pagina.

Dettagli

Dipartimento di Matematica Corso di laurea in Fisica Compito di Geometria assegnato il 1 Febbraio 2002

Dipartimento di Matematica Corso di laurea in Fisica Compito di Geometria assegnato il 1 Febbraio 2002 Compito di Geometria assegnato il 1 Febbraio 2002 Trovare l equazione della conica irriducibile tangente all asse x nel punto A(2, 0), tangente all asse y e passante per i punti B(1, 1) e C(2, 2) Scrivere

Dettagli

CdL in Ingegneria Informatica (A-D e O-Z) - Ingegneria Elettronica (A-D e O-Z) -Ingegneria REA

CdL in Ingegneria Informatica (A-D e O-Z) - Ingegneria Elettronica (A-D e O-Z) -Ingegneria REA CdL in Ingegneria Informatica (A-D e O-Z) - Ingegneria Elettronica (A-D e O-Z) -Ingegneria REA Prova scritta di Algebra lineare e Geometria- 1 Settembre 016 Durata della prova: tre ore. È vietato uscire

Dettagli

(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica.

(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica. 5 luglio 010 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A ESERCIZI DA CONSEGNARE prof.

Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A ESERCIZI DA CONSEGNARE prof. Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A. 2015-2016 ESERCIZI DA CONSEGNARE prof. Cigliola Consegna per Martedì 6 Ottobre Esercizio 1. Una matrice quadrata A si

Dettagli

Corso di Matematica B - Ingegneria Informatica Testi di Esercizi. A1. Siano u, v, w vettori. Quali tra le seguenti operazioni hanno senso?

Corso di Matematica B - Ingegneria Informatica Testi di Esercizi. A1. Siano u, v, w vettori. Quali tra le seguenti operazioni hanno senso? A. Languasco - Esercizi Matematica B - 4. Geometria 1 A: Vettori geometrici Corso di Matematica B - Ingegneria Informatica Testi di Esercizi A1. Siano u, v, w vettori. Quali tra le seguenti operazioni

Dettagli

1. Esercizi (1) Porre in forma trigonometrica i seguenti numeri complessi: 5, 2 i2, 1 + i. (2) Calcolare le seguenti radici: 2 2i,

1. Esercizi (1) Porre in forma trigonometrica i seguenti numeri complessi: 5, 2 i2, 1 + i. (2) Calcolare le seguenti radici: 2 2i, . Esercizi () Porre in forma trigonometrica i seguenti numeri complessi: 5, i, + i. () Calcolare le seguenti radici: 3 i, 5 i, 5. (3) Risolvere le seguenti equazioni: z z + 3 = ; z z = i; z + z =. (4)

Dettagli

ALGEBRA LINEARE E GEOMETRIA

ALGEBRA LINEARE E GEOMETRIA ALGEBRA LINEARE E GEOMETRIA A 28 giugno 2017 60 minuti Istruzioni: Scrivere cognome, nome, matricola in STAMPATELLO negli appositi spazi. Per ogni quiz nella prima parte, indicare l affermazione giudicata

Dettagli

Algebra lineare Geometria 1 11 luglio 2008

Algebra lineare Geometria 1 11 luglio 2008 Algebra lineare Geometria 1 11 luglio 2008 Esercizio 1. Si considerino la funzione: { R f : 3 R 3 (α, β, γ) ( 2β α γ, (k 1)β + (1 k)γ α, 3β + (k 2)γ ) dove k è un parametro reale, e il sottospazio U =

Dettagli

1. Esercizi 3 + ( 1) , z 3 = 1., z 2 = 3

1. Esercizi 3 + ( 1) , z 3 = 1., z 2 = 3 () Calcolare [ [ () Siano z = z z z z ; z z + z z ; z z ;. Esercizi + ( ) z = + z = ] ; ]. Calcolare z z z z. () Nel piano complesso individuare i numeri + i ( i) + i i ; (4) scrivere la forma trigonometrica

Dettagli

CdL in Ingegneria Gestionale e CdL in Ingegneria del Recupero Edilizio ed Ambientale

CdL in Ingegneria Gestionale e CdL in Ingegneria del Recupero Edilizio ed Ambientale CdL in Ingegneria Gestionale e CdL in Ingegneria del Recupero Edilizio ed Ambientale Prova scritta di Geometria- 18 Giugno 008 Durata della prova: tre ore. È vietato uscire dall aula prima di aver consegnato

Dettagli

Compito di Geometria e Algebra per Ing. Informatica ed Elettronica

Compito di Geometria e Algebra per Ing. Informatica ed Elettronica Compito di Geometria e Algebra per Ing Informatica ed Elettronica 17-02-2015 1) Sia f : R 4 R 3 la funzione lineare definita da f((x, y, z, t)) = ( x + y 2z + kt, x + y + t, 2x + y + z) (x, y, z, t) R

Dettagli

Esercizi su Rette e Piani

Esercizi su Rette e Piani Esercizi su Rette e Piani Raffaella Di Nardo dinardo@calvino.polito.it 1 aprile 2004 Esercizio 1. In R 2, determinare l equazione dellal retta per P 0 e parallela al vettore u = 3i j. Esercizio 2. Data

Dettagli

PROVA SCRITTA DI GEOMETRIA 2 14 Febbraio 2017

PROVA SCRITTA DI GEOMETRIA 2 14 Febbraio 2017 PROVA SCRITTA DI GEOMETRIA 2 14 Febbraio 2017 La prova orale deve essere sostenuta entro il 28 Febbraio 2017 A Fissato un sistema di riferimento cartesiano nello spazio si consideri la quadriche Q di equazione

Dettagli

CORSO DI LAUREA in Ingegneria Informatica (Vecchio Ordinamento)

CORSO DI LAUREA in Ingegneria Informatica (Vecchio Ordinamento) CORSO D LAUREA in ngegneria nformatica (Vecchio Ordinamento) Prova scritta di Geometria assegnata il 19/3/2002 Sia f : R 3 R 4 l applicazione lineare la cui matrice associata rispetto alle basi canoniche

Dettagli

Soluzioni agli Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento)

Soluzioni agli Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Soluzioni agli Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Relazioni 1) Quali delle seguenti relazioni sono di equivalenza? x, y R {0} xry x/y Q x, y Z xry x + y è divisibile

Dettagli

Esame di Geometria - 9 CFU (Appello del 20 Giugno A)

Esame di Geometria - 9 CFU (Appello del 20 Giugno A) Esame di Geometria - 9 CFU (Appello del 20 Giugno 2012 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio 1. Siano dati, al variare del parametro k R, i piani: π 1 : x 2y + 2z = 2, π 2 : z =

Dettagli

CORSO DI FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA - LAUREA IN INGEGNERIA AMBIENTE-TERRITORIO Padova I Appello TEMA n.1

CORSO DI FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA - LAUREA IN INGEGNERIA AMBIENTE-TERRITORIO Padova I Appello TEMA n.1 CORSO DI FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA - LAUREA IN INGEGNERIA AMBIENTE-TERRITORIO Padova 16-06-2012 I Appello TEMA n.1 Esercizio 1. (a) In R 3 dotato del prodotto scalare usuale, si consideri

Dettagli

Algebra Lineare e Geometria, a.a. 2012/2013

Algebra Lineare e Geometria, a.a. 2012/2013 Diario delle esercitazioni e lezioni per il corso di Algebra Lineare e Geometria, a.a. 2012/2013 (solo la parte per Fisici e Matematici, non ci sono le lezioni del Modulo B) Lidia Stoppino Lezione 1 9

Dettagli

{ Teorema di Rouché -Capelli Un sistema di equazioni lineari A x=b ammette soluzioni se e solo se r (A)=r ( A b).

{ Teorema di Rouché -Capelli Un sistema di equazioni lineari A x=b ammette soluzioni se e solo se r (A)=r ( A b). Modulo di Geometria e Algebra 13 Luglio 215 Esercizio 1 Si discuta la compatibilità del seguente sistema e si determinino le sue soluzioni al variare di k R 2 k)x= x+2 k) y+4 2 k)t= x+2 y+1 k)z +4t= x+2

Dettagli

ESERCIZI DI ALGEBRA LINEARE (II PARTE) In ogni sezione gli esercizi sono tendenzialmente ordinati per difficoltà crescente.

ESERCIZI DI ALGEBRA LINEARE (II PARTE) In ogni sezione gli esercizi sono tendenzialmente ordinati per difficoltà crescente. ESERCIZI DI ALGEBRA LINEARE (II PARTE) versione: 4 maggio 26 In ogni sezione gli esercizi sono tendenzialmente ordinati per difficoltà crescente Autovettori e autovalori Esercizio Trova gli autovalori

Dettagli

Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003

Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003 Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria assegnati da dicembre 2000 a dicembre 2003 11/12/2000 n R 4 sono assegnati i punti A(3, 0, 1, 0), B(0, 0, 1, 0), C(2, 1, 0,

Dettagli

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile.

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile. COGNOME............................... NOME..................................... Punti ottenuti Esame di geometria Scrivi cognome e nome negli spazi predisposti in ciascuno dei tre fogli. Per ogni domanda

Dettagli

Esercizi di ripasso: geometria e algebra lineare.

Esercizi di ripasso: geometria e algebra lineare. Esercizi di ripasso: geometria e algebra lineare. Esercizio. Sia r la retta passante per i punti A(2,, 3) e B(,, 2) in R 3. a. Scrivere l equazione cartesiana del piano Π passante per A e perpendicolare

Dettagli

PROVA SCRITTA DI GEOMETRIA (C.L. Fisica)

PROVA SCRITTA DI GEOMETRIA (C.L. Fisica) PROVA SCRITTA DI GEOMETRIA (CL Fisica) 28 Febbraio 2005 1) Dato il sistema # 2x " y + 3z =1 "4x + 2y " 6z = b "1 x + y " z =1 & x + 4z = 0 a) (5 punti) lo si discuta al variare di b in R b) (2 punti) S

Dettagli

Esercizi per il corso di Algebra e Geometria L.

Esercizi per il corso di Algebra e Geometria L. Esercizi per il corso di Algebra e Geometria L. Alessandra Bernardi Il numero degli esercizi qui raccolti è volutamente elevato. Lo scopo è di fornire un ampio spettro di esercizi e la conseguente possibilità

Dettagli

Esame scritto di Geometria I

Esame scritto di Geometria I Esame scritto di Geometria I Università degli Studi di Trento Corso di laurea in Fisica A.A. 26/27 Appello di febbraio 27 Esercizio Sia f h : R R l applicazione lineare definita da f h (e ) = 2e + (2 h)e

Dettagli

Prova scritta di Geometria 18/01/2016, Soluzioni Ing. Meccanica a.a

Prova scritta di Geometria 18/01/2016, Soluzioni Ing. Meccanica a.a Prova scritta di Geometria 8//26, Soluzioni Ing. Meccanica a.a. 25-6 Esercizio È data la conica γ : 3x2 2xy + 3y 2 + 8x + 3 =. a) Verificare che la conica è un ellisse e determinarne la forma canonica.

Dettagli

Università degli Studi di Catania CdL in Ingegneria Civile e Ambientale (A-L)

Università degli Studi di Catania CdL in Ingegneria Civile e Ambientale (A-L) Prova scritta di Algebra Lineare e Geometria del 26 gennaio 2017 Sia {( x11 x V = 12 x 13 x 21 x 22 x 23 ) R 2,3 x 11 + x 12 + x 13 = x 21 + x 22 + x 23 }. 1) Sia ϕ : V V l applicazione lineare definita

Dettagli

Gruppo esercizi 1: Vettori e matrici [E.1] Date le due matrici e il vettore

Gruppo esercizi 1: Vettori e matrici [E.1] Date le due matrici e il vettore Gruppo esercizi 1: Vettori e matrici [E.1] Date le due matrici e il vettore A = 1 2 0 0 2 1 B = 2 1 0 1 0 2 u = (1, 2, 1), 3 2 1 1 1 1 [E.2] Date le due matrici e il vettore A = 1 2 0 0 1 0 0 1 3 B = 1

Dettagli

CdL in Ingegneria Informatica - Ingegneria Elettronica (P-Z) Ingegneria delle Telecomunicazioni

CdL in Ingegneria Informatica - Ingegneria Elettronica (P-Z) Ingegneria delle Telecomunicazioni CdL in Ingegneria Informatica - Ingegneria Elettronica (P-Z) Ingegneria delle Telecomunicazioni Prova scritta di Algebra lineare e Geometria- 9 Gennaio 3 Durata della prova: tre ore. È vietato uscire dall

Dettagli

Foglio di esercizi numero 2 Corso di Fondamenti di Algebra Lineare e Geometria Ingegneria Aerospaziale e Meccanica

Foglio di esercizi numero 2 Corso di Fondamenti di Algebra Lineare e Geometria Ingegneria Aerospaziale e Meccanica Foglio di esercizi numero 2 Corso di Fondamenti di Algebra Lineare e Geometria Ingegneria Aerospaziale e Meccanica Esercizio 1. Sia f l endomorfismo di R 4 definito nel modo seguente: f(x, y, z, w) = (w,

Dettagli

Esame di GEOMETRIA 27 giugno ore 11

Esame di GEOMETRIA 27 giugno ore 11 Esame di GEOMETRIA 27 giugno 2011 - ore 11 Istruzioni: Scrivere cognome, nome, matricola in STAMPATELLO negli appositi spazi. Per ogni quiz nella prima parte, indicare l affermazione giudicata corretta

Dettagli

CORSO DI FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA - LAUREA IN INGEGNERIA MECCANICA Padova II prova parziale TEMA n.1

CORSO DI FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA - LAUREA IN INGEGNERIA MECCANICA Padova II prova parziale TEMA n.1 CORSO DI FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA - LAUREA IN INGEGNERIA MECCANICA Padova 15-06-2010 II prova parziale TEMA n.1 Parte 1. Quesiti preliminari. Stabilire se le seguenti affermazioni sono

Dettagli

10 dicembre Soluzione esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

10 dicembre Soluzione esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... 10 dicembre 003 - Soluzione esame di geometria - Ingegneria gestionale - a.a. 003-004 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura 3 ore. ISTRUZIONI

Dettagli

Università di Reggio Calabria

Università di Reggio Calabria Università di Reggio Calabria COMPITO DI GEOMETRIA Corso di laurea in Ingegneria dell Informazione traccia A (11 luglio 2016) Nome..Cognome Matr TEST N.1 I vettori u=(1,2,0), v=(2,-3,0), w=(1,-1,0) di

Dettagli

Prova scritta di Algebra lineare e Geometria- 8 Settembre 2010

Prova scritta di Algebra lineare e Geometria- 8 Settembre 2010 CdL in Ingegneria d(el Recupero Edilizio ed Ambientale - - Ingegneria Edile-Architettura (A-L),(M-Z)- Ingegneria delle Telecomunicazioni - - Ingegneria Informatica (A-F), (R-Z) Prova scritta di Algebra

Dettagli

GEOMETRIA. 25 GENNAIO ore. Istruzioni: Scrivere cognome, nome, numero di matricola in stampatello negli appositi spazi.

GEOMETRIA. 25 GENNAIO ore. Istruzioni: Scrivere cognome, nome, numero di matricola in stampatello negli appositi spazi. GEOMETRIA 25 GENNAIO 2008 2 ore Istruzioni: Scrivere cognome, nome, numero di matricola in stampatello negli appositi spazi. Trascrivere i risultati dei quiz della prima parte nella tabella in questa pagina.

Dettagli

1.[25 punti] Risolvere il seguente sistema di equazioni lineari al variare del parametro reale λ: X +Y +Z = 2. X 2Y +λz = 2

1.[25 punti] Risolvere il seguente sistema di equazioni lineari al variare del parametro reale λ: X +Y +Z = 2. X 2Y +λz = 2 Università di Modena e Reggio Emilia Facoltà di Scienze MM.FF.NN. PROVA SCRITTA DI GEOMETRIA A del 27 giugno 2011 ISTRUZIONI PER LO SVOLGIMENTO. Scrivere cognome, nome, numero di matricola in alto a destra

Dettagli

L algebra lineare nello studio delle coniche

L algebra lineare nello studio delle coniche L algebra lineare nello studio delle coniche È possibile utilizzare le tecniche dell algebra lineare per studiare e classificare le coniche. Data l equazione generale di una conica, si considera la sua

Dettagli

CdL in Ingegneria Informatica (A-F), (G-S)

CdL in Ingegneria Informatica (A-F), (G-S) CdL in ngegneria nformatica (A-F), (G-S) Prova scritta di Algebra Lineare e Geometria del giorno 29 Gennaio 2008 Usare solo carta fornita dal Dipartimento di Matematica e nformatica, riconsegnandola tutta.

Dettagli

Corso di Laurea in Matematica - Esame di Geometria 1 - Corsi A e B Prova scritta del 17 giugno 2009 Versione 1

Corso di Laurea in Matematica - Esame di Geometria 1 - Corsi A e B Prova scritta del 17 giugno 2009 Versione 1 Corso di Laurea in Matematica - Esame di Geometria - Corsi A e B Prova scritta del 7 giugno 9 Versione ) Nello spazio vettoriale V 3 rispetto ad una base ortonormale positiva si consideri il vettore u

Dettagli

1) Trovare una base per lo spazio delle soluzioni del seguente sistema omogeneo: 3x y + 11z = x y + 9z = 2x + y 6z = 0.

1) Trovare una base per lo spazio delle soluzioni del seguente sistema omogeneo: 3x y + 11z = x y + 9z = 2x + y 6z = 0. 12 Gennaio 211 Ingegneria...... Matricola... In caso di esito sufficiente desidero sostenere la prova orale: [ ] oggi [ ] Mercoledì 19 Gennaio ore 15. [ ] Giovedì 27 Gennaio ore 11. [ ] Lunedì 14 Febbraio

Dettagli

LAUREA IN INGEGNERIA CIVILE Corso di Matematica 2 II a prova di accertamento Padova Docenti: Chiarellotto - Cantarini TEMA n.

LAUREA IN INGEGNERIA CIVILE Corso di Matematica 2 II a prova di accertamento Padova Docenti: Chiarellotto - Cantarini TEMA n. LAUREA IN INGEGNERIA CIVILE Corso di Matematica II a prova di accertamento Padova 10-1-07 Docenti: Chiarellotto - Cantarini TEMA n.1 PARTE 1. Quesiti preliminari Stabilire se le seguenti affermazioni sono

Dettagli

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2

Dettagli

GEOMETRIA E ALGEBRA LINEARE Soluzioni Appello del 17 GIUGNO Compito A

GEOMETRIA E ALGEBRA LINEARE Soluzioni Appello del 17 GIUGNO Compito A Soluzioni Appello del 17 GIUGNO 2010 - Compito A a) Se h = 7 il sistema ha infinite soluzioni (1 variabile libera), mentre se h 7 la soluzione è unica. b) Se h = 7 allora Sol(A b) = {( 7z, 5z + 5, z),

Dettagli

Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria

Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria Avvertenze In quanto segue tutti i vettori hanno il medesimo punto d origine O l origine dello spazio cartesiano. Possiamo

Dettagli

Ingegneria Edile - Corso di geometria - anno accademico 2009/2010

Ingegneria Edile - Corso di geometria - anno accademico 2009/2010 prova scritta del 7// TEMPO A DISPOSIZIONE: 9 minuti Esercizio. In R si considerino i punti A =, B = e la retta r passante per A e B. (i)il punto C = r? vero falso (ii) Determinare l equazione di un piano

Dettagli

Prima di risolverli, è necessario prevedere se ci saranno soluzioni e, eventualmente, quante saranno.

Prima di risolverli, è necessario prevedere se ci saranno soluzioni e, eventualmente, quante saranno. Sistemi lineari Prima di risolverli, è necessario prevedere se ci saranno soluzioni e, eventualmente, quante saranno. La discussione di un sistema si imposta in questo modo: 1 studiare il rango della matrice

Dettagli

Geometria e algebra lineare 1/2/2017 Corso di laurea in Ing. Elett. Tel., Ing. Inf. Org. e Informatica Correzione. = 2 + 3t = 1 t

Geometria e algebra lineare 1/2/2017 Corso di laurea in Ing. Elett. Tel., Ing. Inf. Org. e Informatica Correzione. = 2 + 3t = 1 t Geometria e algebra lineare 1//017 Corso di laurea in Ing. Elett. Tel., Ing. Inf. Org. e Informatica Correzione A Esercizio 1A Siano r la retta di equazioni parametriche x y z = t = + 3t = 1 t ed r la

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere

Dettagli

Corso di Laurea in Management e Marketing Esercizi di Algebra Lineare (1)

Corso di Laurea in Management e Marketing Esercizi di Algebra Lineare (1) Corso di Laurea in Management e Marketing Esercizi di Algebra Lineare (1) 1) Si stabilisca se ciascuno dei seguenti sottoinsiemi di R 2 è costituito da vettori linearmente indipendenti. Si determini la

Dettagli

Cognome Nome A. Scrivere le risposte agli esercizi 1,2,4,5 negli spazi sottostanti.

Cognome Nome A. Scrivere le risposte agli esercizi 1,2,4,5 negli spazi sottostanti. Cognome Nome A Scrivere le risposte agli esercizi 1,2,4,5 negli spazi sottostanti. 1) 2) 4) 5) Geometria e algebra lineare { 16/1/2019 A 1) Siano r e r 0 le rette dello spazio di equazioni: r : x 2z =

Dettagli

CdL in Ingegneria Gestionale e CdL in Ingegneria del Recupero Edilizio ed Ambientale

CdL in Ingegneria Gestionale e CdL in Ingegneria del Recupero Edilizio ed Ambientale CdL in Ingegneria Gestionale e CdL in Ingegneria del Recupero Edilizio ed Ambientale della prova scritta di Algebra Lineare e Geometria- Compito A- 8 Aprile 8 E assegnato l endomorfismo f : R 3 R 3 definito

Dettagli

CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A PROVA SCRITTA DI GEOMETRIA DEL Corsi dei Proff. M. BORDONI, A.

CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A PROVA SCRITTA DI GEOMETRIA DEL Corsi dei Proff. M. BORDONI, A. CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A. - PROVA SCRITTA DI GEOMETRIA DEL -- Corsi dei Proff. M. BORDONI, A. FOSCHI Esercizio. E data l applicazione lineare L : R 4 R 3 definita dalla matrice A = 3

Dettagli

ESERCIZI DI MATEMATICA DISCRETA ANNO 2006/2007

ESERCIZI DI MATEMATICA DISCRETA ANNO 2006/2007 ESERCIZI DI MATEMATICA DISCRETA ANNO 6/7 //7 () Ridurre la seguente matrice ad una a scala ridotta utilizzando il metodo di Gauss-Jordan. Soluzione. () Determinare quante e quali sono le matrici a scala

Dettagli

Corsi di Laurea in INGEGNERIA per l AMBIENTE e il TERRITORIO E MECCANICA Corso di Fondamenti di Algebra Lineare e Geometria Padova TEMA n.

Corsi di Laurea in INGEGNERIA per l AMBIENTE e il TERRITORIO E MECCANICA Corso di Fondamenti di Algebra Lineare e Geometria Padova TEMA n. Corsi di Laurea in INGEGNERIA per l AMBIENTE e il TERRITORIO E MECCANICA Corso di Fondamenti di Algebra Lineare e Geometria Padova 21-02-2011 TEMA n.1 PARTE 1. Quesiti preliminari Stabilire se le seguenti

Dettagli

(E) : 4x 181 mod 3. h(h 1)x + 4hy = 0

(E) : 4x 181 mod 3. h(h 1)x + 4hy = 0 Dipartimento di Matematica e Informatica Anno Accademico 206-207 Corso di Laurea in Informatica (L-3) Prova scritta di Matematica Discreta (2 CFU) 6 Settembre 207 Parte A [0 punti] Sia data la successione

Dettagli

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE. Esercizi Esercizio. In R calcolare il modulo dei vettori,, ),,, ) ed il loro angolo. Esercizio. Calcolare una base ortonormale del sottospazio

Dettagli

A.A. 2010/2011. Esercizi di Geometria II

A.A. 2010/2011. Esercizi di Geometria II A.A. 2010/2011 Esercizi di Geometria II Spazi affini, euclidei e proiettivi Preparazione all esame scritto Esercizio 1. Sia A 3 (R) il 3 spazio affine reale numerico dotato del riferimento affine standard

Dettagli

CORSO DI LAUREA in Ingegneria Informatica

CORSO DI LAUREA in Ingegneria Informatica ngegneria nformatica Prova scritta di Algebra assegnata il 15/11/2001-A Nello spazio vettoriale R 4 sono dati i sottospazi V = L ((5, 1, 3, 5), (1, 2, 3, 4)) e W = {(x, y, z, t) R 4 x 2y + 3z = t y = 0}.

Dettagli

Geometria e algebra lineare 20/6/2017 Corso di laurea in Ing. Elett. Tel., Ing. Inf. Org. e Informatica Correzione. x 2y = 0

Geometria e algebra lineare 20/6/2017 Corso di laurea in Ing. Elett. Tel., Ing. Inf. Org. e Informatica Correzione. x 2y = 0 Geometria e algebra lineare 20/6/2017 Corso di laurea in Ing. Elett. Tel., Ing. Inf. Org. e Informatica Correzione A Esercizio 1A Siano r la retta di equazioni { x + y 2z = 1 e P il punto di coordinate

Dettagli

Cognome Nome A. Scrivere le risposte agli esercizi 1,2,3 negli spazi sottostanti.

Cognome Nome A. Scrivere le risposte agli esercizi 1,2,3 negli spazi sottostanti. Cognome Nome A Scrivere le risposte agli esercizi 1,2,3 negli spazi sottostanti. 1) 2) 3) Geometria e algebra lineare 5/11/2015 A 1) Sia π il piano passante per i punti A = ( 3, 2, 1), B = (0, 1, 2), C

Dettagli

T (a) La matrice associata alla trasformazione lineare T rispetto alle basi canoniche è semplicementre A = 1 1 5

T (a) La matrice associata alla trasformazione lineare T rispetto alle basi canoniche è semplicementre A = 1 1 5 8 Analogamente, T 0 = 6 4 5 4 2. (a) La matrice associata alla trasformazione lineare T rispetto alle basi canoniche è semplicementre 4 A = 5 C AB = 4 cioé la matrice dei coefficienti delle espressioni

Dettagli