Corso di laurea in Chimica Matematica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Corso di laurea in Chimica Matematica"

Transcript

1 Corso di laurea in Chimica Matematica. Quali sono i valori x R, con 0 x < 2π, che risolvono le seguenti disequazioni? a) sinx > 2 ; b) 0 < cosx < ; c) sin x < / Calcolare: a) log 2 4; b) log 4 2; c) (5 log 2 320)log Per quali valori x R risulta: a) sin(2x) = 2 sin x b) log 2 0 x = log 0 x 2 4. Rappresentare graficamente i sottoinsiemi del piano caratterizzati dalle seguenti disuguaglianze: a) x, x 2 y ; b) 0 y x ; c) x 3 y x; d) log 0 x y ; 5. Risolvere le seguenti disequazioni: a) x + 2 3; b) x 2 7 9; c) (x 2 )(x 2) 0; d) xlog 2 (x + 2) > 0; e) 2x 2 x 2 4 0; f) xsin(2 x ) > Dato α > 0 disegnare il sottoinsieme del piano cartesiano definito da: A = {(x, y) : x + y = }. Qual è il minimo valore di α per il quale l insieme B = {(x, y) : x 2 + y 2 α} interseca A 7. Dire se le seguenti equazioni rappresentano una circonferenza, determinandone centro e raggio in caso affermativo: a) x 2 + y 2 + x + y + 4 = 0, b) x2 + y 2 2x 3y 3 4 = 0; c) x 2 + y 2 + 4x 6y + 4 = 0; d) 2(x 2 + y 2 ) 3x + 4y + 2 = 0.

2 8. Disegnare i sottoinsiemi del piano cartesiano individuati dalle disuguaglianze: 2x y 2 0 a) 2x + y ; b) x 2y ; c) y x ; x 0, y 0 d) x + y d) x + y ; e) f) x 2 y x. { x 2 + y 2 x, y ; 9. Quali dei seguenti numeri reali sono strettamente maggiori di uno? a) log 2 4; b) log 4 2; c) + log 3 (2 sin π 7 ); d) log 2 ( 0 π + 2 ) log 2 ( 5 π + ) ; e) log 2 9 (log 2 3) 2 ; 0. Quali sono i valori x R, con 0 x < 2π, che risolvono le seguenti equazioni e disequazioni? a) cosx > 3 2 ; b) tan2 x 3 = 0; c) 0 < cosx < 2 ; d) tan 2 (2x) 3 = 0; e) 2 sin 2 x + 3 cosx > 0.. Quale delle sottoelencate funzioni ha il grafico come nella figura a fianco? a) x, b) x, c) x, d) x +. y O x 2. Sia f la funzione definita da f(x) = sin(x/7) log 0 (x 2 + ). È vero che f(π) > 0? 3. Dire per quali valori x R sono definite le seguenti espressioni: a) log0 (x 4 ) ; b) log 0 (2 sinx ); c) log 0( (xcos x) 4 + sin 2 x ). 4 2

3 4. Quale delle sottoelencate funzioni ha il grafico come nella figura a fianco? a) (3 x) 3, b) (x 3) 3, c) (3 + x) 3, d) (3 x) 3, e) (x 3) Risolvere le seguenti disequazioni: a) tan 2 x tan x > 0, b) cos2x > Risolvere le seguenti disequazioni: a) 3x 2 7x + 2 < 0; b) x + 2 x < 2x; c) (x2 2)log 2 0 (x ) < Calcolare: a) ( 4 3 log ) /3 3 log 0 00; b) ( ) /2. 8. Risolvere le seguenti equazioni e disequazioni: a) < 2 sinx < 3; b) cos 2 x > 2 ; c) 3 tanx = 2 cosx; d) 2x2 > Sia f : R R la funzione definita da: { x 2 + se x 0, f(x) = se x < 0. a) Disegnare il grafico di f. b) Quanto vale f(sin(6/5))? 3

4 20. Disegnare i seguenti sottoinsiemi del piano cartesiano: a) A = {(x, y) : + x < y < } b) B = {(x, y) : 0 x < y < }, b) C = {(x, y) : 0 < y < (x ) 2, 0 < x < }. 2. Risolvere le seguenti disequazioni e sistemi di disequazioni: a) 2x x 2 x 2 > 0; b) 4x + 3 { 2x x 2 > 0 ; x 2 4x + 3 > 0 c) 6x2 x (log 0 x) 4 < 0; d) log 0 (2x 2 x + ) > Quale dei seguenti valori è positivo comunque si scelga il numero reale α (fra i valori per i quali sono definite le espressioni sottoindicate)? a) sin α 2, b) ( ) 3, [ log 2 c) tan 2 (α 2 +) α 2 π ] Rappresentare graficamente i seguenti sottoinsiemi del piano cartesiano: a) A = {(x, y) : 0 y x }, b) B = {(x, y) : x 2 y x}, c) C = {(x, y) : y, log 2 (x + y) 2}, d) D = {(x, y) : ( x, y ) B}. 24. Sia α un numero reale compreso fra π/2 e π e il cui seno vale 3/5. Quanto vale cosα? 25. Determinare i valori x [0, 2π] tali che: a) 4 sin 2 x > 0; b) 2 cos(2x) + = 0 ; c) sinx cosx < Risolvere le seguenti equazioni: a) 2 x + 2 x = 5/2, b) x(x 2 + ) = xsin(x ); c) 0 x2 =

5 27. Semplificare le seguenti espressioni: a) 2 ( log 3 x)log 3 (3x) 2 + (log 3 x) 2 ; b) (x y) 2 2x ( y x ) 2 ( x ). y 28. Risolvere le seguenti equazioni o disequazioni: a) sin 2 (x π 3 ) = 0; b) log 00 c) 0 x2 + x 2 = sin 0 + x 2 < ; + x 2 ; d) x2 x + x 2 3x + 2 < Disegnare il seguente sottoinsieme del piano xy: A = {(x, y) : x 2 y 3 2 x}. Quali sono i valori α > 0 per i quali l insieme ha intersezione non vuota con A? A α = {(x, y) : (x α) 2 y 3 (x α)} Individuare l insieme di definizione delle seguenti funzioni: 3 x ( a) f(x) = xlog 4 (x + 3) ; b) g(x) = 2 x sinx) Quanto vale f( )? 3. Risolvere le seguenti equazioni/sistemi/disequazioni: a) x(2 3x + x 2 ) > 0; b) { 2 log2 x < 0 x 5 x < 0 c) (log 2 x) 2 log 2 (x 3 ) + 4 log 2 2 > 0; d) (2 sinx ) x(π x) > 0 e) 3 a a + 2 < 0; f) { 2x πy = 0 y = sin x. 32. Siano f(x) = (x )log 2 (x + ) ; g(x) = log 0 f(x). Individuare l insieme di definizione di f e g e calcolare f( /2). 5

6 33. A che altezza arriva una scala di 2m appoggiata a un muro con un inclinazione di 60? Qual è la distanza della scala dalla base del muro? 34. a) Disegnare i seguenti sottoinsiemi del piano: A = {(x, y) : x 2 + y 2 <, x 2 + (y + ) 2 > 2}; B = {(x, y) : 2 x < y < x + }. b) Scrivere le condizioni che individuano gli insiemi ottenuti da A e B traslandoli verso destra della lunghezza. 35. Gli insiemi: A = {(x, y) : y 3 > x 2 + x + }, B = {(x, y) : 2 y sinx < 0} hanno intersezione non vuota? 6

2. Determina i valori delle funzioni trigonometriche seno e coseno di un angolo ottuso α sapendo che tan α = 15.

2. Determina i valori delle funzioni trigonometriche seno e coseno di un angolo ottuso α sapendo che tan α = 15. Esercizi proposti di goniometria 1. Un settore circolare, in un cerchio di raggio 14 cm, ha area uguale a 42π cm 2. Determina la misura in gradi, primi e secondi dell angolo al centro corrispondente. 2.

Dettagli

1. Riconoscere la natura delle coniche rappresentate dalle seguenti equazioni e disegnarle:

1. Riconoscere la natura delle coniche rappresentate dalle seguenti equazioni e disegnarle: Università degli Studi della Basilicata Corsi di Laurea in Chimica / Scienze Geologiche Matematica II A. A. 204-205 (dott.ssa Vita Leonessa) Esercizi proposti n. 3: Funzioni a due variabili. Riconoscere

Dettagli

Corso di Laurea in Ingegneria Informatica Anno Accademico 2012/2013 Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Anno Accademico 2012/2013 Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Anno Accademico 2012/2013 Analisi Matematica 1 Nome... N. Matricola... Ancona, 12 gennaio 2013 1. Sono dati i numeri complessi z 1 = 1 + i; z 2 = 2 3 i; z 3 =

Dettagli

Esercizio L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11. L equazione log 116 x = 1 4. ha soluzione [1] [5] 2 [4] 1 2 [2] 4 [3] Risposta

Esercizio L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11. L equazione log 116 x = 1 4. ha soluzione [1] [5] 2 [4] 1 2 [2] 4 [3] Risposta L equazione log 116 x = 1 4 ha soluzione [1] 1 4 [2] 4 [3] 1 2 [4] 1 2 [5] 2 Per la definizione di logaritmo, abbiamo «1 «1 1 4 1 4 1 4 1 x = = = 16 2 4 4 2 14 = 1 2. Si considerino le seguenti tre espressioni

Dettagli

Prova scritta di Analisi Matematica T-B, Ingegneria Meccanica, 17/06/2014

Prova scritta di Analisi Matematica T-B, Ingegneria Meccanica, 17/06/2014 Prova scritta di Analisi Matematica T-B, Ingegneria Meccanica, 17/06/2014 MATRICOLA:...NOME e COGNOME:............................................. Desidero sostenere la prova orale al prossimo appello

Dettagli

; c) log 3 5 (x 2 1) log 5 (x + 1). 1 log(x + 4) ; c) f(x) =

; c) log 3 5 (x 2 1) log 5 (x + 1). 1 log(x + 4) ; c) f(x) = Corso di Analisi Matematica I per Ingegneria Gestionale, a.a. 25-6 Esercizi per il ricevimento del 3 ottobre 25. Semplificare il più possibile le seguenti espressioni: a) 32x+4 9 ; b) x3 x 2 x+ ( x) 4

Dettagli

Scritto di Matematica per Biotecnologie Anno Accademico 2007/08 15/09/2008

Scritto di Matematica per Biotecnologie Anno Accademico 2007/08 15/09/2008 Anno Accademico 2007/08 5/09/2008 COG segnare preferenza per 6/09, 7/09 o inizio ottobre a Calcolare la derivata della funzione f definita da fx = x 7 arctanx2 sinπx b Sia g una funzione tale che g x =

Dettagli

Esercizi di Matematica A.A. 2017/2018

Esercizi di Matematica A.A. 2017/2018 C.d.L. in Produzioni Animali - Scuola di Agraria e Medicina Veterinaria - Università di Bologna Cod. corso 65965 Esercizi di Matematica A.A. 2017/2018 Insiemistica Dati: A = {1, 2,, 4, 5} B = {1, 5, 7,

Dettagli

A Politecnico di Torino II Facoltà di Architettura Esame di Istituzioni di Matematiche II 13 gennaio 2009

A Politecnico di Torino II Facoltà di Architettura Esame di Istituzioni di Matematiche II 13 gennaio 2009 Politecnico di Torino II Facoltà di rchitettura Esame di Istituzioni di Matematiche II gennaio 2009 Teoria: Enunciare ed illustrare il Teorema Fondamentale del Calcolo Integrale. Esercizio. Calcolare l

Dettagli

Ripasso delle matematiche elementari: esercizi proposti

Ripasso delle matematiche elementari: esercizi proposti Ripasso delle matematiche elementari: esercizi proposti I Equazioni e disequazioni algebriche Esercizi sui polimoni.............................. Esercizi sulle equazioni di grado superiore al secondo............

Dettagli

Gruppo esercizi 1: Dominio [E.1] Disegnare nel piano cartesiano il dominio della funzione

Gruppo esercizi 1: Dominio [E.1] Disegnare nel piano cartesiano il dominio della funzione Gruppo esercizi 1: Dominio [E.1] Disegnare nel piano cartesiano il dominio della funzione [E.2] Disegnare nel piano cartesiano il dominio della funzione ( 4 x 2 y 2) ) (1 x 2 y2 y + x 2. 4 1 y ex y y x

Dettagli

Scritto di Analisi Matematica I per STM Anno Accademico 2016/17 04/09/2017

Scritto di Analisi Matematica I per STM Anno Accademico 2016/17 04/09/2017 Anno Accademico 2016/17 04/09/2017 COG ) lnx) 1) Scrivere l espressione lnxx2 lnx x come polinomio, ossia nella forma ) lnx) a m x m + a m 1 x m 1 + + a 1 x + a 0. 2) a) Dire per quali x R la serie + a

Dettagli

Provetta scritta di Calcolo I Corsi di laurea in Fisica - Scienza e Tecnologia dei Materiali Prova scritta del 7/12/2005 Fila A

Provetta scritta di Calcolo I Corsi di laurea in Fisica - Scienza e Tecnologia dei Materiali Prova scritta del 7/12/2005 Fila A Provetta scritta di Calcolo I Prova scritta del 7/2/25 Fila A ) Calcolare i limiti 3 x 3 x 4 ; b) lim sin(2x) + x2 x( cos(3x)) c) lim + 5 x 7 x 4 x 2 + x. 2) Determinare il massimo di x 3 (2 + x 4 ) 3/2,

Dettagli

Facoltà di Ingegneria Università di Pisa

Facoltà di Ingegneria Università di Pisa Facoltà di Ingegneria Università di Pisa Esame Debiti Formativi del 19/12/2005 1. 100 6 =... (A) 10 64 (B) 10 6 (C) 10 12 (D) 10 7 2. cos(120 ) + cos(60 ) =... (A) cos(60 ) (B) cos(180 ) (C) 0 (D) 1. log

Dettagli

Lezione 1-03/10/2018, dalle alle in aula 3 - Esempi svolti: Svolgimento di alcuni esercizi della settimana del 28/09/2018.

Lezione 1-03/10/2018, dalle alle in aula 3 - Esempi svolti: Svolgimento di alcuni esercizi della settimana del 28/09/2018. DIARIO DELLE LEZIONI DI TUTORATO DI ANALISI MATEMATICA I Corsi di laurea in Ingegneria delle Comunicazioni e Ingegneria Elettronica Tutor: Dott. Salvatore Fragapane Lezione 1-0/10/018, dalle 1.00 alle

Dettagli

Matematica per Biotecnologie Sanitarie Prima prova parziale 1/12/2010

Matematica per Biotecnologie Sanitarie Prima prova parziale 1/12/2010 1 Matematica per Biotecnologie Sanitarie Prima prova parziale 1/12/2010 NOME:....... COGNOME:.... N MATRICOLA:.... Svolgere gli esercizi in modo sintetico ed accurato negli spazi predisposti o nel lato

Dettagli

Matematica del Continuo Informatica per la Comunicazione Digitale Anno accademico Modelli di esercizi per la Parte 1

Matematica del Continuo Informatica per la Comunicazione Digitale Anno accademico Modelli di esercizi per la Parte 1 Matematica del Continuo Informatica per la Comunicazione Digitale Anno accademico 018-019 Modelli di esercizi per la Parte 1 La Parte 1 del compito scritto, o delle prove intermedie, potrebbe includere

Dettagli

(d) È soddisfatta per x > 0. (b) È soddisfatta per ogni numero reale x.

(d) È soddisfatta per x > 0. (b) È soddisfatta per ogni numero reale x. Test di recupero del debito in Analisi Matematica Facoltà di Ingegneria Industriale, Università del Salento 14/12/2010 tempo assegnato: 45 m codice prova: A ATTENZIONE! Il test viene superato con un punteggio

Dettagli

Precorso 2000 Test finale

Precorso 2000 Test finale 42 Esercizi di Analisi Matematica Versione 2006 Precorso 2000 Test finale Tempo concesso: 120 minuti Valutazione: risposta esatta +1, errata 1, mancante 0 punti (per 32 domande) Trovare i valori di a che

Dettagli

Frazioni. 8 Esercizi di Analisi Matematica Versione Argomenti: Operazioni sulle frazioni Tempo richiesto: Completare la seguente tabella: a b

Frazioni. 8 Esercizi di Analisi Matematica Versione Argomenti: Operazioni sulle frazioni Tempo richiesto: Completare la seguente tabella: a b 8 Esercizi di Analisi Matematica ersione 2006 razioni Argomenti: Operazioni sulle frazioni Difficoltà: Tempo richiesto: Completare la seguente tabella: a b a + b a b 1/3 1/2 1/3 1/2 1/3 1/2 a b a a + b

Dettagli

Esonero di Analisi Matematica (A)

Esonero di Analisi Matematica (A) Esonero di Analisi Matematica (A) Ingegneria Civile, 26 novembre 2001 () 1. Studiare il seguente limite: lim x x + ( e 1/x cos 1 ). x 2. Studiare gli eventuali massimi e minimi relativi ed assoluti della

Dettagli

Informazioni candidato. Sequenza delle risposte. Esercizio 1 del Primo Esonero Analisi Matematica 1 A.A. 2013/ La disequazione 3x 1

Informazioni candidato. Sequenza delle risposte. Esercizio 1 del Primo Esonero Analisi Matematica 1 A.A. 2013/ La disequazione 3x 1 4 3159-0 Università Roma Tre - Corso di Laurea in Ingegneria Meccanica (M Z) Esercizio 1 del Primo Esonero Analisi Matematica 1 A.A. 2013/2014 Leggere con attenzione le istruzioni riportate in questa prima

Dettagli

Corso di laurea in Scienze Biologiche Compito di Istituzioni di Matematiche assegnato il 16 giugno 1999

Corso di laurea in Scienze Biologiche Compito di Istituzioni di Matematiche assegnato il 16 giugno 1999 assegnato il 16 giugno 1999 16 2 x+7 x 2 + 3x 4 + (2x + 1)2 2 Scrivere l equazione della circonferenza passante per i punti A = (0, 2), B = (0, 10) e tangente alla retta r di equazione x 8 = 0 3 Sia f

Dettagli

Esercizi. f 2 (x) = 4x 5; 1 x ) Fra le funzioni dell esercizio precedente, individuare quelle pari e quelle dispari. 1 x 2 +3 ; f 15(x) =

Esercizi. f 2 (x) = 4x 5; 1 x ) Fra le funzioni dell esercizio precedente, individuare quelle pari e quelle dispari. 1 x 2 +3 ; f 15(x) = Analisi Matematica I prof. Antonio Greco Dominio e potenze Esercizi [201] 1) Trovare il dominio delle seguenti funzioni: f 1 (x) = 1 3x; f 2 (x) = 4x 5; f 3 (x) = x 2 ; f 4 (x) = x 3 ; f 5 (x) = 1/x; f

Dettagli

Esercitazioni di matematica Corso di Istituzioni di Matematica 1B Facoltà di Architettura Anno Accademico 2005/2006. Anna Scaramuzza.

Esercitazioni di matematica Corso di Istituzioni di Matematica 1B Facoltà di Architettura Anno Accademico 2005/2006. Anna Scaramuzza. Esercitazioni di matematica Corso di Istituzioni di Matematica 1B Facoltà di Architettura Anno Accademico 2005/2006 Anna Scaramuzza 5 Dicembre 2005 1 Le funzioni Una funzione f : X Y è una legge che associa

Dettagli

Gli insiemi, la logica

Gli insiemi, la logica Gli insiemi, la logica 1 Dato l insieme A = {x N : x < 5}, quale delle seguenti affermazioni è falsa: (a) 1 A (b) 5 / A (c) 2 A (d) A (e) {1, } A 2 Sono dati gli insiemi A = {, 5, 7, 9} e B = {5, 7} Quali

Dettagli

1) Calcolare, se esiste, il limite seguente. 1 cos x + log(1 + x) lim 1) 2) Dire per quali numeri reali x converge la serie. ( 1) n ( e 1 n 1.

1) Calcolare, se esiste, il limite seguente. 1 cos x + log(1 + x) lim 1) 2) Dire per quali numeri reali x converge la serie. ( 1) n ( e 1 n 1. Prova scritta di Analisi Matematica I del giorno 05-1-009 Appello riservato a studenti fuori corso o ripetenti 1) Calcolare, se esiste, il ite seguente 1 cos x + log(1 + x) x 0+ x(e x 1) ) Dire per quali

Dettagli

Esercizi per il corso di Matematica per Biotecnologie Sanitarie a.a A = [ 1, 1] ( 1, 1) A = {1} R. x =

Esercizi per il corso di Matematica per Biotecnologie Sanitarie a.a A = [ 1, 1] ( 1, 1) A = {1} R. x = 1 Esercizi per il corso di Matematica per Biotecnologie Sanitarie a.a. 2010 2011 Es. 1 Si considerino gli insiemi A = {2, 3} e B = {1, 2, 3}. (i) Calcolare A B (ii) Calcolare B\A (iii) Calcolare A B (iv)

Dettagli

QUESTIONARIO FINALE DI AUTOVALUTAZIONE

QUESTIONARIO FINALE DI AUTOVALUTAZIONE QUESTIONARIO FINALE DI AUTOVALUTAZIONE relativo a TRIGONOMETRIA a cura di Mariacristina Fornasari, Daniela Mari, Giuliano Mazzanti, Valter Roselli, Luigi Tomasi 1 1) L equazione 3 sin 2x = 2 ha, in [0,

Dettagli

ESERCIZI RECUPERO OFA. > 0 sono:

ESERCIZI RECUPERO OFA. > 0 sono: ESERCIZI RECUPERO OFA Le soluzioni della disequazione log (x x) 0 a) ], 1[ ], + [ ; b) [, 0[ ], 4] ; c) ], ] [4, + [ ; d) [ 1, 0[ ], ]. sono: 4 x Le soluzioni della disequazione 4x + 1 4 x > 0 sono: a)

Dettagli

Corso di laurea in Scienze Biologiche Compito di Istituzioni di Matematiche assegnato il 12 giugno 2000

Corso di laurea in Scienze Biologiche Compito di Istituzioni di Matematiche assegnato il 12 giugno 2000 assegnato il 1 giugno 1 Risolvere il sistema di disequazioni ( ) 1 x 1 3 9 3 log (13 x) > 3 x 9 x 4 + 1 < Scrivere le equazioni delle circonferenze che passano per il punto A = (, ) e sono tangenti alle

Dettagli

Ricevimento del 2 Febbraio 2011

Ricevimento del 2 Febbraio 2011 Ricevimento del 2 Febbraio 20 Davide Boscaini Queste sono le note del ricevimento del 2 Febbraio. Ho scelto di scrivere queste poche pagine per una maggior chiarezza e per chi non fosse stato presente

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Michele Campiti Prove scritte di Analisi Matematica Ingegneria Industriale aa 28 29 y f g x La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica per Ingegneria Industriale,

Dettagli

Università di Parma Facoltà di Agraria Esame di Matematica - Prima parte A.A Parma, 5 Dicembre 2005

Università di Parma Facoltà di Agraria Esame di Matematica - Prima parte A.A Parma, 5 Dicembre 2005 - Prima parte A.A. 2005-2006 Parma, 5 Dicembre 2005 1) [3 punti] Risolvete le seguenti disequazioni: a) x 2 + 2x < 3 ; b) 4x 1 x 2 2. 2) [4 punti] Mettete una crocetta su V se l affermazione è vera, su

Dettagli

UNIVERSITÀ DEGLI STUDI DI TRENTO

UNIVERSITÀ DEGLI STUDI DI TRENTO UNIVERSITÀ DEGLI STUDI DI TRENTO PROVA DI AMMISSIONE AI CORSI DI LAUREA IN Fisica Matematica Informatica Ingegneria dell Informazione e Organizzazione d Impresa, Ingegneria dell Informazione e delle Comunicazioni

Dettagli

Capitolo 8: introduzione alla trigonometria

Capitolo 8: introduzione alla trigonometria Capitolo 8: introduzione alla trigonometria 8.1 Trasformare da gradi sessagesimali a radianti o viceversa a 0 0 ; b 70 0 ; c 60 0 ; d 1 0 ; e 5 0 ; f 15 0 ; g 5 0 ; h 15 0 ; i 10 0 0 ; j 1 0 9 ; k 1 0

Dettagli

CODICE= Compiti di Analisi Matematica II per il Corso di Laurea in Ingegneria Edile A.A , Appelli 1, 2, 3 e 4

CODICE= Compiti di Analisi Matematica II per il Corso di Laurea in Ingegneria Edile A.A , Appelli 1, 2, 3 e 4 Compiti di Analisi Matematica II per il Corso di Laurea in Ingegneria Edile A.A. 00-0, Appelli,, 3 e 4 Cognome: Nome: Matricola: CODICE = 33877 A B C D E 3 4 5 6 7 8 9 CODICE=33877 PARTE A. Lo sviluppo

Dettagli

UNIVERSITÀ DEGLI STUDI DI PERUGIA Facoltà di Scienze MM. FF. e NN.

UNIVERSITÀ DEGLI STUDI DI PERUGIA Facoltà di Scienze MM. FF. e NN. A.A. 2010/2011 29 Novembre 2010 I esercitazione Esercizio 1. Dato il problema di Cauchy y = (y2 4) arctan(1 y 2 ) 1 + y (1) 2 + log(1 + e x2 1 ), y(0) = 0, (b) provare che la soluzione y di (5) è definita

Dettagli

A.A. 2018/2019 Corso di Laurea in Matematica Corso di Laurea in Informatica. Precorso di Matematica. L. Paladino. Foglio di esercizi n.

A.A. 2018/2019 Corso di Laurea in Matematica Corso di Laurea in Informatica. Precorso di Matematica. L. Paladino. Foglio di esercizi n. AA 2018/2019 Corso di Laurea in Matematica Corso di Laurea in Informatica Precorso di Matematica L Paladino Foglio di esercizi n 3 Risolvere le seguenti equazioni: 1) x + 2 = 2x 2 + 3x; 2) x + 3 = x 2

Dettagli

Corso di laurea in ingegneria gestionale a.a. 2015/2016 Tutor: Andrea Bendinelli

Corso di laurea in ingegneria gestionale a.a. 2015/2016 Tutor: Andrea Bendinelli Corso di analisi matematica I 12 c.f.u. Facoltà di ingegneria dell'informazione, informatica e statistica Corso di laurea in ingegneria gestionale a.a. 2015/2016 Tutor: Andrea Bendinelli 1 Indice I Esercitazione

Dettagli

Corso di Laurea in Informatica. I parziale di Analisi Matematica

Corso di Laurea in Informatica. I parziale di Analisi Matematica Corso di Laurea in Informatica I parziale di Analisi Matematica 18 Dicembre 2017 Marco Mughetti Cognome:... Nome:... Numero di matricola:... Email:... Risultati 1.(pt.1) 2.(pt.1) 3.(pt.1) 4.(pt.1) 5.(pt.6)

Dettagli

Campo di Esistenza. Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f.

Campo di Esistenza. Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f. Campo di Esistenza Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f. ESERCIZIO. Determinare il campo di esistenza della funzione f(x) = 9+2x. Soluzione:

Dettagli

Prova scritta di Analisi Matematica T-1, 19/12/2017. MATRICOLA:...NOME e COGNOME:...

Prova scritta di Analisi Matematica T-1, 19/12/2017. MATRICOLA:...NOME e COGNOME:... Prova scritta di Analisi Matematica T-1, 19/12/2017 MATRICOLA:...NOME e COGNOME:............................................. Ingegneria chimica e biochimica Ingegneria elettronica e telecomunicazioni

Dettagli

Esercizi con soluzioni dell esercitazione del 31/10/17

Esercizi con soluzioni dell esercitazione del 31/10/17 Esercizi con soluzioni dell esercitazione del 3/0/7 Esercizi. Risolvere graficamente la disequazione 2 x 2 2 cos(πx). 2. Determinare l insieme di definizione della funzione arcsin(exp( x 2 )). 3. Trovare

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi proposti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi proposti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi proposti. Risolvere la disequazione x x +. è soddisfatta x IR ]. Disegnare i grafici di (a) y = x + x + 3 ; (b) y = x x

Dettagli

Scritto d esame di Matematica I

Scritto d esame di Matematica I Capitolo 2: Scritti d esame 139 Pisa, 19 Gennaio 2005 x 1 + (x + 1) log x (x 1)(2x 2). 2. Studiare la convergenza dei seguenti integrali impropri 1 dx e 2x 1, 0 dx e 2x 1, e, nel caso in cui convergano,

Dettagli

Corso di laurea in Chimica. Matematica

Corso di laurea in Chimica. Matematica Corso di laurea in Chimica Matematica Esercizi di ricapitolazione per la prova in itinere (tratti dalle prove in itinere degli anni precedenti) (Gli esercizi segnati con una crocetta sono di livello più

Dettagli

Gli insiemi, la logica

Gli insiemi, la logica Gli insiemi, la logica 1 Dato l insieme A = {x N : x < 5}, quale delle seguenti affermazioni è falsa: (a) 1 A (b) 5 / A (c) A (d) A risp (e) {1, } A Sono dati gli insiemi A = {, 5, 7, 9} e B = {5, 7} Quali

Dettagli

Lezione 1-03/10/2018, dalle alle in aula 3 - Esempi svolti: Svolgimento di alcuni esercizi della settimana del 28/09/2018.

Lezione 1-03/10/2018, dalle alle in aula 3 - Esempi svolti: Svolgimento di alcuni esercizi della settimana del 28/09/2018. DIARIO DELLE LEZIONI DI TUTORATO DI ANALISI MATEMATICA I Corsi di laurea in Ingegneria delle Comunicazioni e Ingegneria Elettronica Tutor: Dott. Salvatore Fragapane Lezione 1-03/10/2018, dalle 12.00 alle

Dettagli

sin 3 x x x cos x lim Verificare se la funzione: (x 2)2 f(x) = ln (x 2) sia dotata di minimo assoluto nell intervallo aperto (3, + )

sin 3 x x x cos x lim Verificare se la funzione: (x 2)2 f(x) = ln (x 2) sia dotata di minimo assoluto nell intervallo aperto (3, + ) Esercizio 1 Verificare che il numero complesso z = ( 1 3 i)/2 algebrica: 2z 4 + 3z 3 2z 3 è radice dell equazione Esercizio 2 x 0 sin 3 x x x cos x Esercizio 3 Verificare se la funzione: (x 2)2 f(x) =

Dettagli

Cognome Nome Matricola Codice ESEMPIO 1

Cognome Nome Matricola Codice ESEMPIO 1 Cognome Nome Matricola Codice ESEMPIO 1 [1]. (E) Dire il comportamento della serie n=0 n+2n n 3 +n! motivando la risposta. [2]. (E) Dire il comportamento della serie n=0 n+2n n 3 +3 n motivando la risposta.

Dettagli

SIMULAZIONE PROVA DI VALUTAZIONE AI SENSI DEL DM 270/2004. (1) Calcolare il MCD e il mcm tra i numeri 390 e

SIMULAZIONE PROVA DI VALUTAZIONE AI SENSI DEL DM 270/2004. (1) Calcolare il MCD e il mcm tra i numeri 390 e Corso di Laurea in Matematica (A.A. 2007-2008) SIMULAZIONE PROVA DI VALUTAZIONE AI SENSI DEL DM 270/2004 Rispondere (nello spazio assegnato) alle seguenti domande (1) Calcolare il MCD e il mcm tra i numeri

Dettagli

Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Secondo test di verifica a. a. 2006/2007

Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Secondo test di verifica a. a. 2006/2007 Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Secondo test di verifica a. a. 2006/2007 Risolvere esattamente due tra gli esercizi seguenti. Le risposte non motivate non saranno prese

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA A.A Primo appello del 5/5/2010

COMPLEMENTI DI ANALISI MATEMATICA A.A Primo appello del 5/5/2010 COMPLEMENTI DI ANALISI MATEMATICA A.A. 29- Primo appello del 5/5/2 Qui trovate le tracce delle soluzioni degli esercizi del compito. Ho tralasciato i calcoli da Analisi (che comunque sono parte della risoluzione),

Dettagli

Correzione terzo compitino, testo B

Correzione terzo compitino, testo B Correzione terzo compitino, testo B 4 maggio 00 Parte Esercizio.. Procederemo per esclusione, mostrando come alcune funzioni della lista non possano avere il grafico in figura. La prima cosa che possiamo

Dettagli

Politecnico di Torino II Facoltà di Architettura - 5 Luglio 2011 Esercizio 1. Sono date le matrici 2 1, B = 1 4

Politecnico di Torino II Facoltà di Architettura - 5 Luglio 2011 Esercizio 1. Sono date le matrici 2 1, B = 1 4 A Politecnico di Torino II Facoltà di Architettura - 5 Luglio 20 Esercizio. Sono date le matrici A = ( ) 2, B = 4 ( ). 2 a) Calcolare la matrice A. b) Enunciare ed applicare la regola di Cramer per determinare

Dettagli

Esercitazioni di Fisica. venerdì 10:00-11:00 aula T4. Valeria Malvezzi

Esercitazioni di Fisica. venerdì 10:00-11:00 aula T4. Valeria Malvezzi Esercitazioni di Fisica venerdì 10:00-11:00 aula T4 Valeria Malvezzi E-mail: valeria.malvezzi@roma2.infn.it Richiami di trigonometria Definizioni goniometriche )α Relazione goniometrica fondamentale I

Dettagli

Informatica. Prova in itinere del giorno di. Formazione Analitica.C1. n + 1 4n + 3 = 1 2. lim. lim 3n n n (4n)! (2n)! [(n + 2)!

Informatica. Prova in itinere del giorno di. Formazione Analitica.C1. n + 1 4n + 3 = 1 2. lim. lim 3n n n (4n)! (2n)! [(n + 2)! Prova in itinere del giorno 28-11-2003 di Formazione Analitica.C1 1) Provare che n k=2 log (1 1k ) 2 = log n + 1 2n n N 2) Provare, utilizzando la definizione di ite, che n + 1 4n + 3 = 1 2 3) Calcolare

Dettagli

Scritto di Matematica per Biotecnologie Anno Accademico 2008/09 16/09/2009. a n. a n b n. dx. 2x + 4. dx = 1.

Scritto di Matematica per Biotecnologie Anno Accademico 2008/09 16/09/2009. a n. a n b n. dx. 2x + 4. dx = 1. Scritto di Matematica per Biotecnologie Anno Accademico 008/09 6/09/009 COG a Calcolare la derivata della funzione f definita da ln f = cos + sin e 3. b Risolvere la disequazione 3 + 5 5. c Provare che

Dettagli

Corsi di Laurea in Matematica e in Fisica. Prova scritta di Analisi Matematica I. Lecce, 12.IX.2016

Corsi di Laurea in Matematica e in Fisica. Prova scritta di Analisi Matematica I. Lecce, 12.IX.2016 Lecce, 12IX2016 1 Tracciare il grafico della funzione definita dalla seguente e- { 1 + x } f(x) = x exp 1 x sin(1/x)[e x + 2x 2 log cos x] x z 2 i z = z 2 e rappresentare le soluzioni sul piano complesso

Dettagli

ESERCIZI INTRODUTTIVI

ESERCIZI INTRODUTTIVI ESERCIZI INTRODUTTIVI () Data la proposizione p: Tutti gli uomini hanno la coda, discutere la validità delle seguenti proposte di negazione di p: (i) non tutti gli uomini hanno la coda; (ii) nessun uomo

Dettagli

Esercizi di Analisi Matematica I

Esercizi di Analisi Matematica I Esercizi di Analisi Matematica I (corso tenuto dal Prof Alessandro Fonda) Università di Trieste, CdL Fisica e Matematica, aa 2012/2013 1 Principio di induzione 1 Dimostrare che per ogni numero naturale

Dettagli

Anno Accademico Corso di Laurea in Scienze biologiche Prova scritta 1 di Istituzioni di Matematiche del 13 febbraio 2007 COMPITO A

Anno Accademico Corso di Laurea in Scienze biologiche Prova scritta 1 di Istituzioni di Matematiche del 13 febbraio 2007 COMPITO A del 13 febbraio 007 COMPITO A 1. Dire per quali valori del parametro reale λ, il seguente sistema lineare x + y = 1 x + y = x y = λ ammette soluzioni e trovarle.. Siano date le rette r : x + 3y + 3 = 0

Dettagli

EQUAZIONI E DISEQUAZIONI GONIOMETRICHE

EQUAZIONI E DISEQUAZIONI GONIOMETRICHE EQUAIONI E DISEQUAIONI GONIOMETRICHE Elementari (e riconducibili) Circ. goniometrica Lineari Metodo grafico Angolo aggiunto Form. Parametriche Omogenee Divisione per cos (x) Form. abbassamento di grado

Dettagli

Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Prova scritta del 10 gennaio 2007

Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Prova scritta del 10 gennaio 2007 Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Prova scritta del 0 gennaio 007 Primo esercizio. È assegnato il numero complesso z = + i. (a) Posto z = + i, determinare la forma trigonometrica

Dettagli

Esercizi su: insiemi, intervalli, intorni. 4. Per ognuna delle successive coppie A e B di sottoinsiemi di Z determinare A B, A B, a) A C d) C (A B)

Esercizi su: insiemi, intervalli, intorni. 4. Per ognuna delle successive coppie A e B di sottoinsiemi di Z determinare A B, A B, a) A C d) C (A B) Esercizi su: insiemi, intervalli, intorni. Per ognuna delle successive coppie A e B di sottoinsiemi di N determinare A B, A B, A c e B c. a) A = { N + = 0}, B = { N = 6}, b) A = { N < 5}, B = { N < },

Dettagli

1. Si considerino: l insieme A degli iscritti all Università di Pavia e l insieme B dei residenti a Pavia. Descrivere

1. Si considerino: l insieme A degli iscritti all Università di Pavia e l insieme B dei residenti a Pavia. Descrivere . Si considerino: l insieme A degli iscritti all Università di Pavia e l insieme B dei residenti a Pavia. Descrivere A B, A B, A \ B, B \ A.. Si considerino: l insieme A dei multipli di e l insieme B dei

Dettagli

Gruppo esercizi 1: Vettori e matrici [E.1] Date le due matrici e il vettore

Gruppo esercizi 1: Vettori e matrici [E.1] Date le due matrici e il vettore Gruppo esercizi 1: Vettori e matrici [E.1] Date le due matrici e il vettore A = 1 2 0 0 2 1 B = 2 1 0 1 0 2 u = (1, 2, 1), 3 2 1 1 1 1 [E.2] Date le due matrici e il vettore A = 1 2 0 0 1 0 0 1 3 B = 1

Dettagli

Corso di Laurea in Matematica a.a. 2009/2010

Corso di Laurea in Matematica a.a. 2009/2010 Corso di Laurea in Matematica a.a. 009/010 (1) Il numero ( 5) 4 è uguale a: (a) 5 (b) 8 5 (c) 5 (d) 4 5 () Il numero log 4 16 è uguale a: (a) 4 (b) 8 (c) (d) 1/ (3) È vero che: (a) 5 > 3 4 (b) 5 > 8 5

Dettagli

Funzioni elementari: funzioni trigonometriche 1 / 17

Funzioni elementari: funzioni trigonometriche 1 / 17 Funzioni elementari: funzioni trigonometriche 1 / 17 La circonferenza di equazione x 2 + y 2 = 1 é detta circonferenza goniometrica. La circonferenza goniometrica 1 P 1 α 0 A 1 2 / 17 La circonferenza

Dettagli

Esercizi per il corso di Matematica e Laboratorio

Esercizi per il corso di Matematica e Laboratorio Esercizi per il corso di Matematica e Laboratorio Corso di Laurea in Scienze Vivaistiche, ambiente e gestione del verde Prof. Lorenzo Fusi 5 settembre 01 Indice 1 Esercizi sulla retta Esercizi sulla parabola

Dettagli

A grande richiesta, esercizi di matematica.!

A grande richiesta, esercizi di matematica.! A grande richiesta, esercizi di matematica.! A partire dalla conoscenza del grafico di f(x) = sinx disegna il grafico delle seguenti funzioni g(x) =sin(x+π/4); g(x) = sin(x-π/3) g(x) =sin(2x); g(x) = sin(x/3)

Dettagli

Università degli Studi di Salerno - Facoltà di Ingegneria Matematica II - Prova Scritta - 09/06/2006

Università degli Studi di Salerno - Facoltà di Ingegneria Matematica II - Prova Scritta - 09/06/2006 Matematica II - Prova Scritta - 09/06/2006 f(x, y) = (y x)e x2 y 2, 2. Risolvere le seguenti equazioni differenziali: y 2 = 1 1 (2x y) 2, y 2y + y 2y = e x (x 1). 3. Calcolare il seguente integrale curvilineo

Dettagli

Goniometria per il TOL - Guida e formulario

Goniometria per il TOL - Guida e formulario Goniometria per il TOL - Guida e formulario Luca Talenti Gli argomenti più complessi del TOL sono probabilmente la goniometria e la trigonometria. Se non si arriva dal liceo scientifico, spesso questi

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 T. Totale

Es. 1 Es. 2 Es. 3 Es. 4 T. Totale Es. 1 Es. 2 Es. 3 Es. 4 T. Totale Analisi e Geometria 1 COMPITO A Docenti: F. Colombo, G. Mola, E. Munarini 11/11/2008 Ing. Industriale Cognome: Nome: Matricola: Punteggi: Es.1 = 6 punti, Es.2 = 12 punti,

Dettagli

Universitá di Roma Tor Vergata

Universitá di Roma Tor Vergata Universitá di Roma Tor Vergata Prof. A. Porretta 1) Determinare l estremo superiore e l estremo inferiore dei seguenti insiemi, e dire se si tratta di massimi o minimi. A = { } x [ π, π] : sin x 1 ; A

Dettagli

Università degli Studi di Perugia Dipartimento di Matematica e Informatica

Università degli Studi di Perugia Dipartimento di Matematica e Informatica Università degli Studi di Perugia Dipartimento di Matematica e Informatica Test di autovalutazione 04 ottobre 2017 Tempo concesso per lo svolgimento: 90 minuti Il test si intende superato se le risposte

Dettagli

Coordinate cartesiane nel piano

Coordinate cartesiane nel piano Coordinate cartesiane nel piano O = (0, 0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

15. Funzioni continue: esercizi

15. Funzioni continue: esercizi 15. Funzioni continue: esercizi Esercizio 15.7. Data la funzione f : R f(r) con legge α se 0 f() = β 2 se > 0, 1. dire se per α = β = 1 la funzione è invertibile e, in caso affermativo, determinare dominio,

Dettagli

Compito di Analisi Matematica 1 per Ingegneria Elettronica a delle Telecomunicazioni COGNOME: NOME: MATR.: 1. x n

Compito di Analisi Matematica 1 per Ingegneria Elettronica a delle Telecomunicazioni COGNOME: NOME: MATR.: 1. x n Compito di Analisi Matematica 1 per Ingegneria Elettronica a delle Telecomunicazioni 17 gennaio 2017 COGNOME: NOME: MATR.: Esercizio 1. Sia f : R R definita da f(x) = 1 4 x x + 1 2. a) Disegnare grafico

Dettagli

Riportare le risposte ai quesiti nell apposito modulo a lettura ottica, seguendo le indicazioni.

Riportare le risposte ai quesiti nell apposito modulo a lettura ottica, seguendo le indicazioni. Prova per l assolvimento dell obbligo formativo aggiuntivo 21 dicembre 2011 Riportare le risposte ai quesiti nell apposito modulo a lettura ottica, seguendo le indicazioni. ventuali calcoli possono essere

Dettagli

Prova scritta di Analisi Matematica T-1, 19/12/2017. MATRICOLA:...NOME e COGNOME:...

Prova scritta di Analisi Matematica T-1, 19/12/2017. MATRICOLA:...NOME e COGNOME:... Prova scritta di Analisi Matematica T-1, 19/1/17 MATRICOLA:...NOME e COGNOME:............................................. Ingegneria chimica e biochimica Ingegneria elettronica e telecomunicazioni 1)(3

Dettagli

b) Dimostrare che se f(x) è differenziabile in x 0, allora è continua in x 0.

b) Dimostrare che se f(x) è differenziabile in x 0, allora è continua in x 0. Analisi Matematica II - Calcolo in più variabili Nome, Cognome, Matricola: Corso di Laurea: Versione A Avvertenza: La prova d esame si compone di due esercizi e di due quesiti. La risposta ai quesiti va

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

A Politecnico di Torino II Facoltà di Architettura Esame di Istituzioni di Matematiche I 13 Gennaio 2009

A Politecnico di Torino II Facoltà di Architettura Esame di Istituzioni di Matematiche I 13 Gennaio 2009 A Esame di Istituzioni di Matematiche I 13 Gennaio 2009 Determinare l equazione del piano passante per il punto A = (2, 1, 3) e perpendicolare al vettore v dato da v = Au, dove A = 2 1 3 0 1 2, u = 1 3.

Dettagli

Generalità sulle funzioni

Generalità sulle funzioni Generalità sulle funzioni Docente:Alessandra Cutrì Definizione di funzione Dati due insiemi X e Y, una funzione f : X Y è una legge che ad ogni elemento x X associa un unico elemento y = f (x) Y ES: X

Dettagli

SIE (Ing. Edile) Fila A 18-dicembre-2006

SIE (Ing. Edile) Fila A 18-dicembre-2006 SIE (Ing Edile) Fila A 8-dicembre-2006 (4 pt) Determinare i valori del parametro k per cui risulta compatibile il sistema x + ky + z = k x y + kz = 0 x ky + z = k 2 (3 pt) Determinare i valori del parametro

Dettagli

Esercizi relativi al capitolo 2

Esercizi relativi al capitolo 2 Esercizi relativi al capitolo. Funzioni pari e dispari Stabilire se le seguenti funzioni sono pari, dispari o né pari né dispari.. f (x) = x 4 x. f (x) = 3 x 3 + x 3. f (x) = x3 3 x+x 4. f (x) = x sin

Dettagli

Politecnico di Torino II Facoltà di Architettura Esame di Istituzioni di Matematiche I 15 gennaio 2004

Politecnico di Torino II Facoltà di Architettura Esame di Istituzioni di Matematiche I 15 gennaio 2004 Esame di Istituzioni di Matematiche I 5 gennaio 2004 Monaco 02BJVa W0034 60 De ngelis 02BJVb W003 630 Pieraccini 0BJU Biglio 03BJV Esame completo Prova intermedia Teoria: teoremi sulle funzioni continue.

Dettagli

Programmazione disciplinare: Matematica 4 anno

Programmazione disciplinare: Matematica 4 anno Programmazione disciplinare: Matematica 4 anno CONTENUTI RISULTATI DI APPRENDIMENTO (Competenze) CONOSCENZE ABILITA TEMPI (settimane) Intervalli limitati e illimitati in R Saper riconoscere intervalli

Dettagli

Programmazione disciplinare: Matematica 4 anno

Programmazione disciplinare: Matematica 4 anno Programmazione disciplinare: Matematica 4 anno CONTENUTI Intervalli limitati e illimitati in R RISULTATI DI APPRENDIMENTO (Competenze) CONOSCENZE ABILITA TEMPI (settimane) Saper riconoscere intervalli

Dettagli

Esercizi Matematica 3

Esercizi Matematica 3 Esercizi Matematica 3 Dipartimento di Matematica ITIS V.Volterra San Donà di Piave Versione [1/13] Introduzione Gli esercizi presentati in questo volume, seguono la stessa struttura capitolo, sezione,

Dettagli

Compito A. Prova intermedia di Analisi Matematica I

Compito A. Prova intermedia di Analisi Matematica I Compito A Prova intermedia di Analisi Matematica I L Aquila, 5 novembre 2005 Docente: B. Rubino Cognome e nome: Matricola: Esercizio 1 Applicando il principio di induzione, dimostrare la seguente proprietà:

Dettagli

Statistica Matematica e Trattamento Informatico dei Dati. Analisi Matematica 3. Esercizi svolti nelle lezioni. V. Del Prete

Statistica Matematica e Trattamento Informatico dei Dati. Analisi Matematica 3. Esercizi svolti nelle lezioni. V. Del Prete Statistica Matematica e Trattamento Informatico dei Dati A.A.00-0 Analisi Matematica 3 Esercizi svolti nelle lezioni V. Del Prete Numeri complessi Argomenti ed esercizi svolti nelle lezioni 30.09.00 e

Dettagli

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 4) FUNZIONI ELEMENTARI.

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 4) FUNZIONI ELEMENTARI. Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 4) FUNZIONI ELEMENTARI Giovanni Villani FUNZIONI ELEMENTARI Funzione potenza con esponente n N Si definisce

Dettagli

Funzioni e grafici. prof. Andres Manzini

Funzioni e grafici. prof. Andres Manzini Università degli studi di Modena e Reggio Emilia Dipartimento di Scienze e Metodi dell Ingegneria Corso MOOC Iscriversi a Ingegneria Reggio Emilia Introduzione Definizione Si dice funzione (o applicazione)

Dettagli

Matematica 1 mod. A per Matematica Esempi di quiz

Matematica 1 mod. A per Matematica Esempi di quiz Matematica 1 mod. A per Matematica Esempi di quiz 1. Sia x un numero reale. Allora x 3: è uguale a 3x 2. può essere diverso da 3x 2. è sempre un numero irrazionale. 2. Sia S l insieme delle soluzioni della

Dettagli

y (b) f(x, y) = y log x sin x (c) f(x, y) = tan y (d) f(x, y) = e x y (f) f(x, y) = cos(x 2 + y 2 )

y (b) f(x, y) = y log x sin x (c) f(x, y) = tan y (d) f(x, y) = e x y (f) f(x, y) = cos(x 2 + y 2 ) FUNZIONI DI PIÙ VARIABILI. Siano date le seguenti funzioni: (a) f(x, y) = 3x + y (c) h(x, y) = x y (b) g(x, y) = xy (d) k(x, y) = x + y Determinare e disegnare nel piano cartesiano il dominio delle funzioni

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli