Soluzioni f(y)e iyx dy. f(y)e iy( x) dy = 1. = F 1 f( x)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Soluzioni f(y)e iyx dy. f(y)e iy( x) dy = 1. = F 1 f( x)"

Transcript

1 Soluzioni 8. Allora Quindi Usiamo la convenzione 3 F f(k) = f(k) = F f(x) = f(x) = F f(x) = = = F f( x) f(x)e ikx dx f(k)e ikx dk f(y)e iyx dy f(y)e iy( x) dy F f = F F f( x) = f( x) (a) f pari significa f( x) = f(x). Se f è pari allora F f = f( x) = f(x). Se F f(x) = f(x) allora f(x) = f( x). (b) f dispari significa f( x) = f(x). Come prima, F f(x) = f(x). (c) f = f P +f D (qualunque funzione è decomponibile nella somma di una funzione pari e una dispari). Allora F 4 f = F 4 (f P + f D ) = F (F f P + F f D ) = F (f P f D ) = f P + f D = f 3 f(x)e ikx dx = = = f(x)e ikx dx f( x)e ikx dx f(x)e ikx dx

2 4 f(x)e ikx dx = = = f(x)e ikx dx f( x)e ikx dx f(x)e ikx dx 5 f(k) = = = = f( k) f(x)e ikx dx f( x)e ikx dx f(x)e ikx dx 6 da cui 3 { se x < f(x) = altrimenti e ix dx = e ix ik f(k) = sin k k = eik e ik ik = sin k π k = sin k k 7 Se { se x < a f(x) = altrimenti F sin ak = f(k) = π k

3 3 allora, per la relazione di reciprocità, { sin ax F se k < a f(x) = = f(k) = π x altrimenti 8 k = è una discontinuità: regola dell / della somma di limite destro e sinistro. sin x (cos kx + i sin kx)dx = + π x k= π sin x cos x dx = x sin x cos x dx = π x 4 9 Si usi integrazione per parti e esercizio precedente. Già calcolato sopra. Si usi integrazione per parti e esercizi precedenti. Correzione del testo: Calcolare la trasformata di Fourier della funzione f(x) = e a x dove a >. Risposta: e a x e ikx = a a + k 3 ovvero Dall esercizio precedente segue che e ax = a π a a + k eikx dk = e a x cos kx a + k dk, x >

4 4 che è quanto si chiedeva di dimostrare. 4 In primo luogo si osservi che sin k k dk = π. Questo integrale può essere calcolato con i metodi dell analisi complessa oppure essere ottenuto come conseguenza del fatto che { sin k se x < π k eikx dk = altrimenti (esercizio 6). Ponendo x = si ottiene π sin k k da cui segue il risultato desiderato. Adesso si effettui nell integrale il cambiamento di variabili xt = u e si osservi che, per x >, π sin xt dt = t π e per x <, sin xt dt = π t π che è quanto si voleva dimostrare. = sin u u du = sin u du = u 5 Valgono le risposte e/o aiuti dati nel testo. 6 Valgono le risposte e/o aiuti dati nel testo. 7 Valgono le risposte e/o aiuti dati nel testo. 8 Valgono le risposte e/o aiuti dati nel testo. 9

5 5 Esercizio 6 del foglio 7. (da ricordare a memoria): Dunque, con la convenzione 3 ( ) f(k) = F + x e ikx + x = πe k = e ikx π + x dx = e k g(x) = a ix a + x = a ix (a + ix)(a ix) = a + ix = i x ia ( ) F = ie ikx a + ix x ia dx Metodo dei residui: polo semplice in x = ia. Per k >, chiusura nel semipiano inferiore, ( ) i F = = x ia Per k <, chiusura nel semipiano superiore, ( ) i ĝ(k) = F = (i)( i)e ak = e ak x ia Quindi a ix a + x Per k =, regola dell /: F = ĝ() = { e ak se k < se k > = π Integrale di Fourier della gaussiana (da ricordare a memoria): π e ax e ikx k dx = 4a e ax e ikx dx = per a = si ha la risposta al quesito, e k 4. a e k a e 4a

6 6 3 a = della formula dell esercizio precedente, k e 8. 4 Completare i quadrati e x +x = e (x +x+ 4)+ = e (x+ ) + e usare la proprietà di traslazione della trasformata di Fourier. 5 Banale. 6 Allora da cui Si derivi membro a membro rispetto a k: e x e ikx dx = ( ix)e x e ikx dx = k e 4 ( k ) e k 4, 4 xe x e ikx dx = i k ke 4 7 Come nell esercizio precedente, usando adesso quanto ottenuto nell esercizio : e a x e ikx = a a + k 8 Risposta: ( ik)e k ik

7 9 N. B. Con la convenzione 3, risulta comodo definire il prodotto di convoluzione nel come f g(x) = f(u)g(x u)du L esercizio è inteso con questa convenzione (lo stesso vale per gli esercizi seguenti). 7 f g(x) = = = i = i = sin ax f(u) sin(ax au)du f(u) ei(ax au) e i(ax au) du i ] [e iax f(u)e iau du e iax f(u)e iau du [e iax f(u)e iau du e iax f(u)e iau du f(u)e iau du ] (f è pari) 3 f(k) = ike k ĝ(k) = e k 4 f g(x) = x 3 x 3 e 3 3 Semplice generalizzazione di quanto visto in classe. 3 Usare Cauchy Schwarz.

8 8 33 f(k) = f(x)e ikx dx f(x)e ikx dx = = f L f(x) dx 34 Vedere lezione..

S.9. = f (z). (z + 1)(z + 3) = 1/2. = 1 2z 1. S-50 nino zanghì S.9.1. Se C. f (z)dz = 0 indipendentemente da C, allora ne segue che

S.9. = f (z). (z + 1)(z + 3) = 1/2. = 1 2z 1. S-50 nino zanghì S.9.1. Se C. f (z)dz = 0 indipendentemente da C, allora ne segue che S-5 nino zanghì S.9 S.9.. Se C f (z)dz = indipendentemente da C, allora ne segue che F(z) = z a f (z)dz è indipendente dal percorso che unisce a e z, purché tale percorso si trovi tutto dentro la regione

Dettagli

Esame di Fisica Matematica 2, a.a (5/6/2012)

Esame di Fisica Matematica 2, a.a (5/6/2012) Esame di Fisica Matematica 2, a.a. 2-22 (5/6/22) Tempo a disposizione: TRE ORE. Svolgere tutti gli esercizi. Scrivere chiaramente nome, cognome e numero di matricola. Non e consentito l uso di libri, appunti

Dettagli

Metodi Matematici per la Fisica

Metodi Matematici per la Fisica Metodi Matematici per la Fisica Prova scritta - 6 settembre Esercizio 6 punti Calcolare l integrale π dx I π + 4 cos x. Con la sostituzione z e ix quindi: x i lnz e dx idz/z l integrale diventa dz/z I

Dettagli

Metodi Matematici per la Fisica

Metodi Matematici per la Fisica Metodi Matematici per la Fisica Prova scritta - 6 ottobre 0 Esercizio (6 punti Si usi il metodo dei residui per calcolare l integrale J (z + sin 3 (/z, z con il cammino d integrazione percorso in senso

Dettagli

7.6 Esercizi svolti Trasformata di Fourier

7.6 Esercizi svolti Trasformata di Fourier 78 7 Trasformata di Fourier 7.6 Esercizi svolti Esercizio 7. Determinare la trasformata di Fourier delle seguenti funzioni : a x(t =u(t e t + u(t u(t + ; b x(t =e i3t p (t + ; c x(t =p (t ; ( d x(t =p

Dettagli

METODI MATEMATICI PER L INGEGNERIA - A.A Primo appello del 9/6/2010. e 2ix dx = e ix 2 dx = t e it dt = [ it e it e it ] π/2

METODI MATEMATICI PER L INGEGNERIA - A.A Primo appello del 9/6/2010. e 2ix dx = e ix 2 dx = t e it dt = [ it e it e it ] π/2 METODI MATEMATICI PER L INGEGNERIA - A.A. 29- Primo appello del 9/6/2 Risolvere i seguenti esercizi, spiegando il procedimento usato. Calcolare la proiezione in L 2 π 2, π 2 di xt = t sul sottospazio generato

Dettagli

u(x, 0) = 0 in R. Soluzioni

u(x, 0) = 0 in R. Soluzioni Es. Es. Es. 3 Es. 4 Totale Politecnico di Milano - Ingegneria Energetica Metodi Analitici e Numerici A 6 Giugno 7 Cognome: Nome: Matricola: Esercizio. a. Si consideri la funzione vx, t = e t x e t + e

Dettagli

ESERCITAZIONE 9: INTEGRALI DEFINITI. CALCOLO DELLE AREE E ALTRE APPLICAZIONI

ESERCITAZIONE 9: INTEGRALI DEFINITI. CALCOLO DELLE AREE E ALTRE APPLICAZIONI ESERCITAZIONE 9: INTEGRALI DEFINITI. CALCOLO DELLE AREE E ALTRE APPLICAZIONI Tiziana Raparelli 5/5/9 CONOSCENZE PRELIMINARI Vogliamo calcolare f ( x, ax + bx + c ) dx. Se a =, allora basta porre bx + c

Dettagli

Limitiamoci dapprima a considerare una funzione f di periodo 2π. Cercheremo di approssimarla con polinomi trigonometrici di ordine n della forma

Limitiamoci dapprima a considerare una funzione f di periodo 2π. Cercheremo di approssimarla con polinomi trigonometrici di ordine n della forma Serie di Fourier L idea che sta alla base degli sviluppi in serie di Fourier è quella di approssimare, in qualche senso, le funzioni (integrabili periodiche per mezzo di funzioni più regolari e/o più facilmente

Dettagli

(1) Per ciascuno dei seguenti spazi dire se è o meno uno spazio vettoriale (spiegare)

(1) Per ciascuno dei seguenti spazi dire se è o meno uno spazio vettoriale (spiegare) 1 Spazi vettoriali (1) Per ciascuno dei seguenti spazi dire se è o meno uno spazio vettoriale (spiegare) (a) R 5 (b) [0, ) (c) x R 2 : x 1 + 2x 2 = 0} (d) x R 2 : x 2 1 + 2x 2 = 0} (e) x R 2 : x 1 > x

Dettagli

ESERCIZI DI MATEMATICA APPLICATA

ESERCIZI DI MATEMATICA APPLICATA ANTONIO LEACI Analisi Complessa ( È data la funzione: f(z (z2 + e z sin z Si studi l analiticità di f(z nel piano complesso C Si determinino e si classifichino le eventuali singolarità Si calcoli il residuo

Dettagli

Metodi Matematici per la Fisica

Metodi Matematici per la Fisica Metodi Matematici per la Fisica Prova scritta - giugno 0 Esercizio 8 punti) Si consideri la funzione fz) = z sinz) sin[sinz)], si studino e classifichino le singolarità e, di conseguenza, si stabilisca

Dettagli

Convergenza puntuale ed uniforme delle serie di Fourier

Convergenza puntuale ed uniforme delle serie di Fourier Convergenza puntuale ed uniforme delle serie di Fourier 8 aprile 009 In questi appunti prendiamo in considerazione funzioni di variabile reale che possono assumere però valori complessi. Una funzione F

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 30 Gennaio 2018 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

Dispensa per il modulo METODI MATEMATICI Corso di Laurea in Fisica. La Trasformata Di Fourier

Dispensa per il modulo METODI MATEMATICI Corso di Laurea in Fisica. La Trasformata Di Fourier 1 Dispensa per il modlo METODI MATEMATICI Corso di Larea in Fisica La Trasformata Di Forier G. Nisticò 2 1. INTRODUZIONE Sia f na fnzione complessa di variabile reale, integrabile in modlo, cioè tale che

Dettagli

f(x) = E chiaro che in questo caso, l integrale di f si puo fare ed e finito: f(x)dx = dx = b a

f(x) = E chiaro che in questo caso, l integrale di f si puo fare ed e finito: f(x)dx = dx = b a 1. Lo spazio L 1 Avremo bisogno di calcolare integrali di funzioni definite su tutto R, e quindi ricordiamo brevemente alcuni esempi di funzioni integrabili. Definition 1. Si dice che una funzione f appartiene

Dettagli

Esame di Fisica Matematica III, a.a (8/2/2011)

Esame di Fisica Matematica III, a.a (8/2/2011) Esame di Fisica Matematica III, a.a. 010-011 (8//011) Tempo a disposizione: TRE ORE. Non e consentito l uso di appunti o calcolatrici. Svolgere tutti gli esercizi. Esercizio 1. Determinare la piu generale

Dettagli

Capitolo 4. Trasformate Integrali. 4.1 Trasformata di Fourier

Capitolo 4. Trasformate Integrali. 4.1 Trasformata di Fourier Capitolo 4 Trasformate Integrali 4. Trasformata di Fourier Nel capitolo abbiamo imparato a risolvere l eq. (3.) nel caso in cui il termine noto sia periodico e abbiamo dovuto poi allargare il discorso

Dettagli

3) Enunciare e dimostrare le regole di trasformazione algebriche e analitiche della trasformata di Fourier.

3) Enunciare e dimostrare le regole di trasformazione algebriche e analitiche della trasformata di Fourier. Lecce, 16/4/2008 1) Calcolare il valor principale del seguente integrale: x + 1 (x 2 + 4)x dx Y (t) 3Y (t) + 2Y (t) = H(t 1) e t t > 0, Y (0) = 0, Y (0) = 1, 3) Enunciare e dimostrare le regole di trasformazione

Dettagli

Esame di Metodi Matematici per l Ingegneria Prima prova in itinere. Novembre 2016 A.A. 2016/2017. Prof. M. Bramanti Tema A

Esame di Metodi Matematici per l Ingegneria Prima prova in itinere. Novembre 2016 A.A. 2016/2017. Prof. M. Bramanti Tema A Esame di Metodi Matematici per l Ingegneria Prima prova in itinere. Novembre 6 A.A. 6/7. Prof. M. Bramanti Tema A Cognome: Nome N matr. o cod. persona: Dom Dom Dom 3 Es Es Es 3 Tot. Punti Domande di teoria

Dettagli

Analisi Matematica 3, a.a Scritto del quinto appello, 11 settembre 2019 Testi 1

Analisi Matematica 3, a.a Scritto del quinto appello, 11 settembre 2019 Testi 1 Scritto del quinto appello, 11 settembre 019 Testi 1 1. a) Dato u L 1 R), sia vx) := u x); esprimere ˆv in termini di û. b) Caratterizzare le funzioni u L 1 R) tali che û è una funzione dispari a valori

Dettagli

Complementi di Matematica - Ingegneria Energetica/Elettrica/Sicurezza Prova scritta intermedia del 7 dicembre nx 1 + n α x 2.

Complementi di Matematica - Ingegneria Energetica/Elettrica/Sicurezza Prova scritta intermedia del 7 dicembre nx 1 + n α x 2. Complementi di Matematica - Ingegneria Energetica/Elettrica/Sicurezza Prova scritta intermedia del 7 dicembre 7. Si consideri la successione di funzioni f n, dove f n : [, [ R è definita da e dove α >

Dettagli

Serie di Fourier - Esercizi svolti

Serie di Fourier - Esercizi svolti Serie di Fourier - Esercizi svolti Esercizio 1 È data la funzione f con domf) = R, periodica di periodo, tale che onda quadra) 1 se < x < fx) = se x = e x = 1 se < x < 1) 1 Calcolare i coefficienti di

Dettagli

MODELLI e METODI MATEMATICI della FISICA. Esercizi - A.A

MODELLI e METODI MATEMATICI della FISICA. Esercizi - A.A MODELLI e METODI MATEMATICI della FISICA Esercizi - A.A. 08-9 settimana Esercizi:. Risolvere il problema di Cauchy y (x) = αy (x) + y (x) y (x) = αy (x) + y 3 (x) y 3(x) = αy 3 (x) con condizioni iniziali

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del quarto appello, 7 giugno 2018 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del quarto appello, 7 giugno 2018 Testi 1 Scritto del quarto appello, 7 giugno 28 Testi Prima parte, gruppo.. Trovare le soluzioni della disequazione tan(3x) nell intervallo x π/3. 2. Scrivere l equazione della retta tangente al grafico y = x

Dettagli

Analisi Reale e Complessa - a.a. 2008/2009

Analisi Reale e Complessa - a.a. 2008/2009 Terzo appello Esercizio Analisi Reale e Complessa - a.a. 8/9 Sia (a) Si provi che f L (R); f(x) eix x i. (b) Si calcoli con metodi di variabile complessa la trasformata di Fourier di f. (a) Si osservi

Dettagli

Corso di Laurea in Matematica, A.A. 2013/2014 Analisi Reale e Complessa, Esame del y 2 x2 + y 2 2 R 2 ; 1 }

Corso di Laurea in Matematica, A.A. 2013/2014 Analisi Reale e Complessa, Esame del y 2 x2 + y 2 2 R 2 ; 1 } NOME:................. MATRICOLA:................. Corso di Laurea in Matematica, A.A. 3/ Analisi Reale e Complessa, Esame del 8..5 Si stabilisca se la formula x + y α se f(x, y x + y x + y, x + y se x

Dettagli

Esame di Fisica Matematica III, a.a (27/9/2011)

Esame di Fisica Matematica III, a.a (27/9/2011) Esame di Fisica Matematica III, a.a. 010-011 (7/9/011) Tempo a disposizione: DUE ORE. Non e consentito l uso di appunti o calcolatrici. Svolgere tutti gli esercizi. Esercizio 1. Si determini, attraverso

Dettagli

18.3. Il nucleo del calore e altre applicazioni Il nucleo del calore.

18.3. Il nucleo del calore e altre applicazioni Il nucleo del calore. 18.3. Il nucleo del calore e altre applicazioni. 18.3.1. Il nucleo del calore. analisi dimensionale Vogliamo studiare la propagazione del calore in un filo (adiabaticamente isolato) di lunghezza infinita.

Dettagli

Provetta scritta di Calcolo I Corsi di laurea in Fisica - Scienza e Tecnologia dei Materiali Prova scritta del 7/12/2005 Fila A

Provetta scritta di Calcolo I Corsi di laurea in Fisica - Scienza e Tecnologia dei Materiali Prova scritta del 7/12/2005 Fila A Provetta scritta di Calcolo I Prova scritta del 7/2/25 Fila A ) Calcolare i limiti 3 x 3 x 4 ; b) lim sin(2x) + x2 x( cos(3x)) c) lim + 5 x 7 x 4 x 2 + x. 2) Determinare il massimo di x 3 (2 + x 4 ) 3/2,

Dettagli

MODELLI E METODI MATEMATICI DELLA FISICA A.A. 2016/2017 Prof. C. Presilla. Prova A1 27 aprile 2017

MODELLI E METODI MATEMATICI DELLA FISICA A.A. 2016/2017 Prof. C. Presilla. Prova A1 27 aprile 2017 MODELLI E METODI MATEMATICI DELLA FISICA A.A. 206/207 Prof. C. Presilla Prova A 27 aprile 207 Cognome Nome Matricola iscritto al secondo anno iscritto al terzo anno fuoricorso o con più di 55 CFU penalità

Dettagli

Esercizio 1. Calcolare per n Z z 2. Soluzione: Per n 0 si ha che l integrale é nullo per il teorema integrale di Cauchy. Per n = 1 si ha che 2

Esercizio 1. Calcolare per n Z z 2. Soluzione: Per n 0 si ha che l integrale é nullo per il teorema integrale di Cauchy. Per n = 1 si ha che 2 Sapienza - Università di Roma Facoltà di Ingegneria - A.A. -4 Esercitazione per il corso di Metodi Matematici per l Ingegneria (Docente Daniela Giachetti) a cura di Ida de Bonis Esercizio. Calcolare per

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA SECONDO ESONERO - 5 GIUGNO 6 Si svolgano cortesemente i seguenti Problemi. PRIMO PROBLEMA (PUNTEGGIO: 3/3) Dati due operatori hermitiani  and ˆB in uno spazio di Hilbert

Dettagli

19.1. Il nucleo del calore e altre applicazioni Il nucleo del calore.

19.1. Il nucleo del calore e altre applicazioni Il nucleo del calore. 19.1. Il nucleo del calore e altre applicazioni. 19.1.1. Il nucleo del calore. analisi dimensionale Vogliamo studiare la propagazione del calore in un filo (adiabaticamente isolato) di lunghezza infinita.

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 27 giugno 2017 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

3.2 Funzioni periodiche e sviluppi in Serie di Fourier

3.2 Funzioni periodiche e sviluppi in Serie di Fourier 3. Funzioni periodiche e sviluppi in Serie di Fourier Una prima classe di funzioni per cui si può effettuare l analisi armonica (3.5 contiene le funzioni periodiche (di periodo, tali cioè che f(t + = f(t,

Dettagli

Metodi Matematici per la Fisica

Metodi Matematici per la Fisica Si svolgano cortesemente i seguenti esercizi Esercizio (6 punti) Si calcoli l integrale Metodi Matematici per la Fisica Prova scritta - dicembre 03 I = sen (x) cosh 3 (x) Possiamo riscrivere l integrale

Dettagli

Esercitazione di Metodi Matematici per l Ottica del E. Scoppola. y 1 x, 1 y 1, x > 0, y < log x

Esercitazione di Metodi Matematici per l Ottica del E. Scoppola. y 1 x, 1 y 1, x > 0, y < log x Esercitazione di Metodi Matematici per l Ottica del 6-4 - 7 E. Scoppola Esercizio Determinare gli insiemi di definizione delle funzioni: fx) = x y y ) /4 loge x ) + loglog x y), gx) = x y y Per fx) abbiamo

Dettagli

Svolgimento degli esercizi N. 3

Svolgimento degli esercizi N. 3 Svolgimento degli esercizi N. 3 Prova scritta parziale n. del // Fila. Calcolare il valore del seguente integrale definito: ( x + e x ) dx. ( x + e x ) dx ( x + e 4x + x e x) dx x dx + e 4x dx + x e x

Dettagli

Metodi Matematici per la Fisica

Metodi Matematici per la Fisica Metodi Matematici per la Fisica Prova scritta - 7 febbraio Eserciio (6 punti) Calcolare il valore principale di Cauchy dell integrale con a e b reali e a, b >. J = P.V. Soluione L integrale può essere

Dettagli

Esame di Analisi Funzionale e Trasformate Quinto appello. Febbraio 2018 A.A. 2016/2017. Prof. M. Bramanti

Esame di Analisi Funzionale e Trasformate Quinto appello. Febbraio 2018 A.A. 2016/2017. Prof. M. Bramanti Esame di Analisi Funzionale e Trasformate Quinto appello. Febbraio 28 A.A. 26/27. Prof. M. Bramanti Cognome: Nome N matr. o cod. persona: Dom Dom 2 Dom 3 Es Es 2 Es 3 Tot. Punti Domande di teoria rispondere

Dettagli

Esercizio 1. (i) Si dia la definizione di successione delle somme parziali per una serie di funzioni. (ii) Data la serie n + 1.

Esercizio 1. (i) Si dia la definizione di successione delle somme parziali per una serie di funzioni. (ii) Data la serie n + 1. Sapienza - Università di Roma Facoltà di Ingegneria - A.A. 0-04 Esercitazione per il corso di Metodi Matematici per l Ingegneria a cura di Daniela Giachetti Esercizio. (i) Si dia la definizione di successione

Dettagli

METODI MATEMATICI DELLA FISICA A.A. 2004/2005 Prof. C. Presilla. Prova di recupero 14 settembre 2005

METODI MATEMATICI DELLA FISICA A.A. 2004/2005 Prof. C. Presilla. Prova di recupero 14 settembre 2005 METODI MATEMATICI DELLA FISICA A.A. 2004/2005 Prof. C. Presilla Prova di recupero 4 settembre 2005 Cognome Nome Corso di Laurea in sostituzione delle prove in itinere segnare) 2 3 penalità esercizio voto

Dettagli

Esame di Metodi Matematici per l Ingegneria Prima prova in itinere. Novembre 2017 A.A. 2017/2018. Prof. M. Bramanti Tema A

Esame di Metodi Matematici per l Ingegneria Prima prova in itinere. Novembre 2017 A.A. 2017/2018. Prof. M. Bramanti Tema A Esame di Metodi Matematici per l Ingegneria Prima prova in itinere. Novembre 2017 A.A. 2017/2018. Prof. M. Bramanti Tema A Cognome: Nome N matr. o cod. persona: Dom 1 Dom 2 Dom 3 Es 1 Es 2 Es 3 Tot. Punti

Dettagli

Esercizi sulle trasformate di Fourier

Esercizi sulle trasformate di Fourier Esercizi sulle trasformate di Fourier Corso di Fisica Matematica, a.a. 3-4 Dipartimento di Matematica, Università di Milano 8 Novembre 3 Questi esercizi richiederanno il calcolo di integrali a volte non

Dettagli

Esame di Fisica Matematica 2, a.a (8/7/2014)

Esame di Fisica Matematica 2, a.a (8/7/2014) Esame di Fisica Matematica 2, a.a. 23-24 (8/7/24) Tempo a disposizione: DUE ORE. Svolgere tutti gli esercizi, che hanno lo stesso nel determinare il voto finale. Scrivere chiaramente e a stampatello nome,

Dettagli

Analisi Matematica 3, a.a Scritto del quarto appello, 10 luglio 2019 Testi 1

Analisi Matematica 3, a.a Scritto del quarto appello, 10 luglio 2019 Testi 1 Scritto del quarto appello, luglio 29 Testi. Data f : [ π, π] C di classe C, scrivere i coefficienti di Fourier complessi di f in funzione di quelli di f e del numero mf := fπ f π. 2. Calcolare la Trasformata

Dettagli

Reti nel dominio delle frequenze. Lezione 10 2

Reti nel dominio delle frequenze. Lezione 10 2 Lezione 10 1 Reti nel dominio delle frequenze Lezione 10 2 Introduzione Lezione 10 3 Cosa c è nell Unità 3 In questa sezione si affronteranno Introduzione all Unità Trasformate di Laplace Reti nel dominio

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 3 FEBBRAIO 6 Si risolvano cortesemente i seguenti problemi. PRIMO PROBLEMA (PUNTEGGIO: 6/3) Si calcoli l integrale SOLUZIONE DEL PRIMO PROBLEMA M=. (+ x

Dettagli

Matematica - Prova d esame (25/06/2004)

Matematica - Prova d esame (25/06/2004) Matematica - Prova d esame (/6/4) Università di Verona - Laurea in Biotecnologie AI - A.A. /4. (a) Disegnare sul piano di Gauss i numeri z = i e w = i, e scriverne la forma trigonometrica. Calcolare z

Dettagli

Corso di Laurea in Ingegneria Informatica Prova scritta di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova scritta di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova scritta di Analisi Matematica 1 16 febbraio 017 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

z i z + 1 z + 1 3, da cui, ponendo come al solito z 2i z 2i 1, da cui si ricava x y. ln(7) + i(π + 2kπ). sin z = 3.

z i z + 1 z + 1 3, da cui, ponendo come al solito z 2i z 2i 1, da cui si ricava x y. ln(7) + i(π + 2kπ). sin z = 3. METODI MATEMATICI per l INGEGNERIA PRIMA PROVA IN ITINERE del 9 novembre ) Determinare l insieme di convergenza della serie n 3 n ( ) n z i z + precisando se è aperto o chiuso. ( ) z i Soluzione. Ponendo

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del sesto appello, 16 luglio 2018 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del sesto appello, 16 luglio 2018 Testi 1 Scritto del sesto appello, 6 luglio 208 Testi Prima parte, gruppo.. Trovare α [0, 2π) per cui vale l identità trigonometrica sin(x π/3) = cos(x + α). 2. Trovare il polinomio di Taylor (in 0) di ordine

Dettagli

Esame di Metodi Matematici per l Ingegneria Primo appello. Febbraio 2019 A.A. 2018/2019. Prof. M. Bramanti Tema A

Esame di Metodi Matematici per l Ingegneria Primo appello. Febbraio 2019 A.A. 2018/2019. Prof. M. Bramanti Tema A Esame di Metodi Matematici per l Ingegneria Primo appello. Febbraio 9 A.A. 8/9. Prof. M. Bramanti Tema A Cognome: Nome N matr. o cod. persona: Dom Dom Dom 3 Es Es Es 3 Tot. Punti Domande di teoria rispondere

Dettagli

Esercizio III Calcolare la trasformata di Fourier della funzione. Esercizio IV Sviluppare la funzione. Tema d esame. Giugno 2004

Esercizio III Calcolare la trasformata di Fourier della funzione. Esercizio IV Sviluppare la funzione. Tema d esame. Giugno 2004 Tema d esame. Giugno 24 Esercizio I Calcolare il seguente integrale col metodo dei residui 2π dφ < a < () + a 2 2a cos φ Esercizio II Trovare la soluzione dell equazione di Laplace nella regione del piano

Dettagli

f(n)r n e inx lim Se f(x) C(T) allora f S (r) f(x) = lim e inx

f(n)r n e inx lim Se f(x) C(T) allora f S (r) f(x) = lim e inx 17.1. Analisi di Fourier III. 17.1.1. Teorema di approssimazione di Weierstrass. Un polinomio trigonometrico è una qualunque funzione della forma n

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA Si svolgano cortesemente i seguenti esercizi. ESERCIZIO (5 PUNTI) METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 3 LUGLIO 4 Sia f (z) una funzione analitica nel dominio D = {z : z (, ), > }, con f (z),

Dettagli

Secondo appello 2005/ Tema 1

Secondo appello 2005/ Tema 1 Secondo appello 2005/2006 - Tema Esercizio Risolvere l equazione di variabile complessa determinando le soluzioni in forma algebrica. Ponendo z = x + iy con x, y R, si ottiene z 2 + 2iz + 2 z = 0, () (x

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 5 Giugno 2018 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

Esercitazione di riepilogo su serie di funzioni, e in particolare serie di Fourier

Esercitazione di riepilogo su serie di funzioni, e in particolare serie di Fourier Esercitazione di riepilogo su serie di funzioni, e in particolare serie di Fourier Serie di funzioni e convergenza totale Tenere presente: De nizione di convergenza puntuale e convergenza totale per una

Dettagli

Esame di Analisi Funzionale e Trasformate Secondo appello. Agosto 2018 A.A. 2017/2018. Prof. M. Bramanti

Esame di Analisi Funzionale e Trasformate Secondo appello. Agosto 2018 A.A. 2017/2018. Prof. M. Bramanti Esame di Analisi Funzionale e Trasformate Secondo appello. Agosto 08 A.A. 07/08. Prof. M. Bramanti Cognome: Nome N matr. o cod. persona: Dom Dom Dom 3 Es Es Es 3 Tot. Punti Domande di teoria rispondere

Dettagli

Modelli e Metodi Matematici della Fisica. Scritto 1

Modelli e Metodi Matematici della Fisica. Scritto 1 Modelli e Metodi Matematici della Fisica. Scritto 1 Cesi/Presilla A.A. 2 7 Canale 1 Cesi Presilla Nome Cognome Il voto dello scritto rimpiazza gli esoneri 1 2 3 penalità problema voto 1 2 3 4 5 7 8 penalità

Dettagli

ANALISI MATEMATICA 1 ESERCIZI ASSEGNATI IN AULA O A CASA Corso di Laurea in Matematica aa 2003/04 01/03/04

ANALISI MATEMATICA 1 ESERCIZI ASSEGNATI IN AULA O A CASA Corso di Laurea in Matematica aa 2003/04 01/03/04 ANALISI MATEMATICA ESERCIZI ASSEGNATI IN AULA O A CASA Corso di Laurea in Matematica aa 2003/04 0/03/04 Esercizio. Calcolare la somma della serie ( 2 k ). 3 k 2 k Esercizio 2. Scrivere sotto forma di frazione

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria Es. Es. Es. 3 Es. 4 Totale Teoria Analisi e Geometria Docente: Politecnico di Milano Ingegneria Industriale 5 Settembre Compito A Cognome: Nome: Matricola: Punteggi degli esercizi: Es.: 6 punti; Es.: punti;

Dettagli

ANALISI MATEMATICA T-B xx Maggio 2019 (tempo 90 minuti)

ANALISI MATEMATICA T-B xx Maggio 2019 (tempo 90 minuti) ESERCIZIO 1 La lunghezza della curva γ(t) = (e t, 2t, e t ), t [0, 1] è γ F d s =, con F (x, y, z) = (xy 4 z 2, 2x 2 y 3 z 2, x 2 y 4 z) ESERCIZIO 2 Sia x = x(t) la soluzione del problema di Cauchy t 2

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi con soluzione

EQUAZIONI DIFFERENZIALI Esercizi con soluzione EQUAZIONI DIFFERENZIALI Esercizi con soluzione 1. Calcolare l integrale generale delle seguenti equazioni differenziali lineari del primo ordine: (a) y 2y = 1 (b) y + y = e x (c) y 2y = x 2 + x (d) 3y

Dettagli

Integrali inde niti. F 2 (x) = x5 3x 2

Integrali inde niti. F 2 (x) = x5 3x 2 Integrali inde niti Abbiamo sinora studiato come ottenere la funzione derivata di una data funzione. Vogliamo ora chiederci, data una funzione f, come ottenerne una funzione, che derivata dia f. Esempio

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo. Tempo 3 minuti. Durante la prova non si può uscire dall aula. Non si possono consultare

Dettagli

f(x)e 2πixy dx g(y)e 2πixy dy

f(x)e 2πixy dx g(y)e 2πixy dy 18.2. Il paradiso dell integrale di Fourier. Lo spazio delle funzioni buone è il paradiso dell integrale di Fourier. teorema: Vale il Teorema 1 (teorema di inversione di Fourier per funzioni buone). Se

Dettagli

x + 2x(e 1 x 1) 4 lim x sinh 1 x E : 0 F :

x + 2x(e 1 x 1) 4 lim x sinh 1 x E : 0 F : ANALISI MATEMATICA 1 - PARTE II 11 gennaio 2010 Compito 1 1. Il limite vale sin 1 lim x sinh 1 x x + 2x(e 1 x 1) 4 Risp.: A : 1 B : e 6 C : e D : 1 6 E : 0 F : 2. Sia y(x) la soluzione del problema di

Dettagli

Equazioni differenziali a variabili separabili e lineari del primo ordine. Esercizi.

Equazioni differenziali a variabili separabili e lineari del primo ordine. Esercizi. Equazioni differenziali a variabili separabili e lineari del primo ordine. Esercizi. Mauro Saita Versione provvisoria. Dicembre 204 Per commenti o segnalazioni di errori scrivere, per favore, a: maurosaita@tiscalinet.it

Dettagli

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi svolti sulla trasformata di Fourier

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi svolti sulla trasformata di Fourier Corso di Metodi Matematici per l Ingegneria A.A. 6/7 Esercizi svolti sulla trasformata di Fourier Marco Bramanti Politecnico di Milano December 5, 6 Esercizi A. Esercizi sul calcolo di trasformate Esercizio

Dettagli

Il Principio di Indeterminazione di Heisenberg

Il Principio di Indeterminazione di Heisenberg Il Principio di Indeterminazione di Heisenberg Il Principio di Indeterminazione di Heisenberg è uno dei fondamenti della meccanica quantistica, e stabilisce che non è possibile ottenere nello stesso tempo

Dettagli

Trasformata di Fourier e applicazioni

Trasformata di Fourier e applicazioni Trasformata di Fourier e applicazioni Docente:Alessandra Cutrì Trasformata di Fourier della funzione gaussiana Esempio: Calcoliamo la trasformata di Fourier di f (x) = e x 2 x n f (x) L 1 (R) per ogni

Dettagli

Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema PIPPO COGNOME: NOME: MATR.: 1) 7; C: x sin(x) dx è A: π ; B:2 ; C: 0 ; D: π/2; E: N.A.

Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema PIPPO COGNOME: NOME: MATR.: 1) 7; C: x sin(x) dx è A: π ; B:2 ; C: 0 ; D: π/2; E: N.A. Prima prova in Itinere Ist. Mat., Prima parte, Tema PIPPO 4 aprile 7 COGNOME: NOME: MATR.: ) Una primitiva di x 5 e x3 è A: e x3 (x 3 ); B: e x3 (x 5 ) 7; C: ex3 (x 3 + ) D: ex3 (x 3 ) + 7; E: N.A. ) Il

Dettagli

Esercizi di riepilogo 2: soluzioni ( Verifica di analisi funzionale e serie di Fourier)

Esercizi di riepilogo 2: soluzioni ( Verifica di analisi funzionale e serie di Fourier) Esercizi di riepilogo 2: soluzioni ( Verifica di analisi funzionale e serie di Fourier) Spazi Vettoriali e Funzionali 1. Risposte: (a) Spazio vettoriale complesso. (b) Spazio vettoriale reale. (c) Non

Dettagli

MODELLI E METODI MATEMATICI DELLA FISICA A.A. 2016/2017 Prof. C. Presilla. Prova A2 18 luglio 2017

MODELLI E METODI MATEMATICI DELLA FISICA A.A. 2016/2017 Prof. C. Presilla. Prova A2 18 luglio 2017 MODELLI E METODI MATEMATICI DELLA FISICA A.A. 6/7 Prof. C. Presilla Prova A 8 luglio 7 Cognome Nome Matricola iscritto al secondo anno iscritto al terzo anno fuoricorso o con più di 55 CFU penalità esercizio

Dettagli

(1) Determinare l integrale generale dell equazione

(1) Determinare l integrale generale dell equazione FONDAMENTI DI ANALISI MATEMATICA (9 cfu Commissione F. Albertini, V. Casarino, M. Motta Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza Vicenza, 3 settembre 8 Quarto appello Avvertenza: Nella

Dettagli

1 Parziale di Studio di Funzioni di Interesse Fisico, 26/02/2009

1 Parziale di Studio di Funzioni di Interesse Fisico, 26/02/2009 Parziale di Studio di Funzioni di Interesse Fisico, 6/0/009. Riconsegnare il testo degli esercizi, firmato, congiuntamente all elaborato scritto.. Firmare e consegnare solo il materiale che si desidera

Dettagli

Dispense del corso di Analisi II

Dispense del corso di Analisi II Dispense del corso di Analisi II versione preliminare Paolo Tilli Dipartimento di Matematica Politecnico di Torino email: paolo.tilli@polito.it 8 gennaio 5 Capitolo 6 La trasformata di Fourier 6. Introduzione

Dettagli

Integrali doppi. Riccarda Rossi. Università di Brescia. Analisi Matematica B

Integrali doppi. Riccarda Rossi. Università di Brescia. Analisi Matematica B Integrali doppi Riccarda Rossi Università di Brescia Analisi Matematica B Riccarda Rossi (Università di Brescia) Integrali doppi Analisi Matematica B 1 / 92 Motivazione per l integrale di Riemann: calcolo

Dettagli

ANALISI DI FOURIER. 2πk. è periodica di periodo T. Più precisamente, essendo. T x + 2π = cos. s(x) = s x + T ) T +α. f(x) dx

ANALISI DI FOURIER. 2πk. è periodica di periodo T. Più precisamente, essendo. T x + 2π = cos. s(x) = s x + T ) T +α. f(x) dx ANALISI DI FOURIER Sia >. Una funzione f, definita per x R, si dice periodica di periodo, se f(x + = f(x, x R. ( Se una funzione è periodica di periodo, essa è anche periodica di periodo, 3,..., k,....

Dettagli

z n dove γ é la circonferenza di centro l origine e raggio 1.

z n dove γ é la circonferenza di centro l origine e raggio 1. . Calcolare ( n= n ) dove é la circonferena di centro l origine e raggio.. Mostrare che n= n l origine e raggio. é analitica nel complementare del cerchio di centro 3. Mostrare che n= e n sen (n) é analitica

Dettagli

UNIVERSITÀ DEGLI STUDI DI PERUGIA Facoltà di Scienze MM. FF. e NN.

UNIVERSITÀ DEGLI STUDI DI PERUGIA Facoltà di Scienze MM. FF. e NN. A.A. 213/214 2 Novembre 213 I esercitazione Esercizio 1. Dato il problema di Cauchy ( e y 2 2 1 ) arctan 3y 5 y = 2 sin (1) 2 x 2, 1 + x 2 y() = 1, (b) provare che la soluzione y di (3) è definita in tutto

Dettagli

Cognome e nome... Firma... Matricola...

Cognome e nome... Firma... Matricola... Analisi Matematica B 0 gennaio 2017 COMPITO 1 Cognome e nome................................ Firma................ Matricola................ Corso di Laurea: AMBL; CIVL; GESL. Istruzioni 1. COMPILARE la

Dettagli

Metodi Matematici della Fisica. S3

Metodi Matematici della Fisica. S3 Metodi Matematici della Fisica. S Filippo Cesi 0 Nome Cognome Devo verbalizzare questo esame come (fare una croce): 6 CFU 8 CFU 4 + 6 CFU altro: problema 4 5 6 7 8 9 0 test totale voto in trentesimi voto

Dettagli

ANALISI MATEMATICA II PROVA DI TEORIA (23/6/2009)

ANALISI MATEMATICA II PROVA DI TEORIA (23/6/2009) ANALISI MATEMATICA II PROVA DI TEORIA (23/6/2009) 1. Sia S = { } (x, y, z) : x 2 + y 2 = 4, 0 z 3 + x. Scrivere le equazioni parametriche di una superficie regolare che abbia S come sostegno. 2. Enunciare

Dettagli

Istituzioni di Matematiche Modulo A (ST)

Istituzioni di Matematiche Modulo A (ST) Istituzioni di Matematice Modulo A ST) II foglio di esercizi Ricordo alcuni iti notevoli: Inoltre, se a > 0 e b > 0 allora = 1, e x 1 1 + x) = 1, = 1 b x x b 1) x + x a = 0, ) x + e ax = 0 ESERCIZIO 1

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA SECONDO ESONERO - 6 GIUGNO 7 Si risolvano cortesemente i seguenti problemi PRIMO PROBLEMA (PUNTEGGIO: 3/3) Facendo uso delle proprietà della matrici di Pauli, si calcoli

Dettagli

COGNOME... NOME... Matricola... Corso Prof... Esame di ANALISI MATEMATICA II - 27 Gennaio cos x

COGNOME... NOME... Matricola... Corso Prof... Esame di ANALISI MATEMATICA II - 27 Gennaio cos x COGNOME... NOME... Matricola... Corso Prof.... Esame di ANALISI MATEMATICA II - 27 Gennaio 25 A ESERCIZIO. 4 punti) Verificare che la serie 7 2 cos x ) n è convergente per ogni x R, e calcolarne la somma.

Dettagli

Integrali (M.S. Bernabei & H. Thaler)

Integrali (M.S. Bernabei & H. Thaler) Integrali (M.S. Bernabei & H. Thaler) Integrali. Motivazione Che cos é un integrale? Sia f 0 e limitata b a f ( x) dx area f ( x, y) dxdy volume Definizione di integrale: b a dove f ( x) dx lim n n k b

Dettagli

Esame di Fisica Matematica 2, a.a (8/9/2014)

Esame di Fisica Matematica 2, a.a (8/9/2014) Esame di Fisica Matematica 2, a.a. 213-214 (8/9/214) Tempo a disposizione: DUE ORE. Svolgere tutti gli esercizi, che hanno lo stesso nel determinare il voto finale. Scrivere chiaramente e a stampatello

Dettagli

Corso di Laurea in Matematica Applicata PROVA DI ANALISI MATEMATICA 1 Mod. 1-2/2/2015 Tipologia A

Corso di Laurea in Matematica Applicata PROVA DI ANALISI MATEMATICA 1 Mod. 1-2/2/2015 Tipologia A Corso di Laurea in Matematica Applicata PROVA DI ANALISI MATEMATICA Mod. - 2/2/25 Tipologia A. Si enunci il criterio del rapporto per la convergenza delle serie..2 Se f : R R è una funzione continua e

Dettagli

Appello Straordinario AC

Appello Straordinario AC Appello Straordinario AC 2016-2017 Esercizio I Si consideri la seguente funzione f(z) f(z) = 1 (e z 1) sin(z). 1. Si determini la natura della singolarità di f in z = 0. 2. Nel caso si tratti di una singolarità

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 6 giugno 2017 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

Modelli e Metodi Matematici della Fisica. S1

Modelli e Metodi Matematici della Fisica. S1 Modelli e Metodi Matematici della Fisica S Filippo Cesi 0 Nome Cognome Devo verbalizzare questo esame come (fare una croce): 6 CFU 8 CFU 4 + 6 CFU altro: problema 4 5 6 7 8 9 0 test totale voto in trentesimi

Dettagli

Esame di Fisica Matematica 2, a.a (8/5/2014)

Esame di Fisica Matematica 2, a.a (8/5/2014) Esame di Fisica Matematica, a.a. 03-04 (8/5/04) Tempo a disposizione: DUE ORE E MEZZA. Svolgere tutti gli esercizi. Scrivere chiaramente nome, cognome e numero di matricola. Non è consentito l uso di libri,

Dettagli

Risoluzione del compito n. 2 (Febbraio 2018/1)

Risoluzione del compito n. 2 (Febbraio 2018/1) Risoluzione del compito n. Febbraio 18/1 PROBLEMA 1 Dopo averlo scritto in forma trigonometrica, determinate le radiciquadrate complesse del numero +i 3. Determinate tutte le soluzioni w C dell equazione

Dettagli

Modulo di Matematica

Modulo di Matematica Università degli Studi di Udine Anno Accademico 05/06 Corso di Laurea in Biotecnologie Modulo di Matematica Esame del 0/0/06 N.B.: scrivere nome, cognome e numero di matricola su ogni foglio consegnato.

Dettagli