Esame di Fisica Matematica 2, a.a (8/7/2014)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esame di Fisica Matematica 2, a.a (8/7/2014)"

Transcript

1 Esame di Fisica Matematica 2, a.a (8/7/24) Tempo a disposizione: DUE ORE. Svolgere tutti gli esercizi, che hanno lo stesso nel determinare il voto finale. Scrivere chiaramente e a stampatello nome, cognome e numero di matricola. Non è consentito l uso di libri, appunti o calcolatrici. Compiti illeggibili non verranno corretti; la poca chiarezza di esposizione porterà ad una diminuzione del voto. Esercizio. Si determini la soluzione generale dell equazione u t + (x 2 ) u x = u. per u = u(x, t). Se ne determini inoltre la soluzione che soddisfa u(x, ) = φ(x), con φ una funzione differenziabile arbitraria. Esercizio 2. Si risolva su un intervallo di tempo [, T ] finito l equazione delle onde con forzante u tt u xx = f(x, t) definita su x [, ] con condizioni al bordo di Dirichlet, u(, t) = = u(, t), con le condizioni iniziali u(x, ) = φ(x) = x ( x), u t (x, ) = ψ(x) = x (x ). Si assuma f(x, t) = [ + 3 cos 2 (x) + sin 2 (x)] sin(x) sin(t). Esercizio 3. Si risolva l equazione del calore con sorgente u t = u xx + f(x, t) definita per x [, ] con condizioni al bordo u(, t) = = u(, t) e con dato iniziale u(x, ) = φ(x) = 2 sin(x) cos(x) + 3 sin(x) cos 2 (x) sin 3 (x), per una sorgente descritta da f(x, t) = sin(x) sin(t) + sin(2x) sin(2t). Si ottenga inoltre una espressione asintotica u (x, t) della soluzione per t.

2 Tabella delle più comuni trasformate di Fourier Nel seguito indichiamo con δ(x) la delta di Dirac, con Θ(x) la funzione gradino, e con χ(a) la funzione caratteristica dell intervallo [ a, a], cioè Θ(x) = { per x per x < ; χ(x) = { per x > A per x A. La convenzione usata è la seguente: data una funzione f(x), la sua trasformata di Fourier è la funzione f(k) = + f(x) e ikx dx ; 2 la antitrasformata di Fourier della funzione f(k) è data da f(x) = 2 + f(k) e ikx dk. Il parametro A sarà sempre supposto essere reale e positivo. f(x) f(k) f(x) f(k) χ(a) 2/ [sin(ak)/k] 2/ sin(ax)/x χ(a) (/ 2) e x2 /(2A 2 ) (A/ 2) e A2 k 2 /2 (A/ 2) e A2 x 2 /2 (/ 2) e k2 /(2A 2 ) e A x 2/ A A 2 +k 2 2/ A A 2 +x 2 δ(x) (/ 2) e A k 2 δ(k) x e x2 /(2A 2 ) i k A 3 e A2 k 2 /2 i x e x2 /2 k e k2 /2 Integrale gaussiano generale Può essere utile ricordare che per c reale e negativo si ha + (p + qx + rx 2 ) e a+bx+cx2 dx = = e [a (b2 /(4c))] 4c 2 c (4c2 p 2bcq + b 2 r 2cr) Questa pagina è inserita in tutti i compiti, e non è necessariamente da utilizzare. 2

3 SOLUZIONI. Esercizio. Si determini la soluzione generale dell equazione u t + (x 2 ) u x = u. per u = u(x, t). Se ne determini inoltre la soluzione che soddisfa u(x, ) = φ(x), con φ una funzione differenziabile arbitraria. Soluzione. L equazione delle caratteristiche è dt = dx x 2 = du u. Dalla prima uguaglianza otteniamo ( ( + x)/( x) ) e t = C ; è conveniente scegliere il quadrato di questa per non avere la radice, vale a dire ζ = + x x e2t. Si noti che abbiamo eliminato il modulo per evitare che la curva con ζ = c sia composta di due componenti. Possiamo quindi esprimere x come x = ζ e2t ; () ζ + e2t è utile (anche in vista degli esercizi successivi) esprimere questa in funzione di x() = x. Ovviamente per t = abbiamo ζ = ( + x )/( x ), e quindi x(t) = (x + ) + (x ) e 2t. (2) (x + ) (x ) e2t L uguaglianza tra i termini in du ed in dt fornisce du/u = dt, log(u) = t + log K, u = Ke t. La soluzione generale è quindi u(x, t) = K[ζ(x, t)] e t. Al tempo t =, abbiamo ζ(x) := [ζ(x, t)] t= = ( + x)/( x) ; quindi la formula di soluzione generale fornisce u(x, ) = K[ ζ(x)]. 3

4 Richiedendo che questa soddisfi la condizione iniziale richiesta abbiamo K[ ζ(x)] = φ(x). Possiamo anche esprimere x in funzione di ζ come ottenendo quindi La soluzione cercata è quindi x = ζ ζ + := β( ζ), u(x, t) = φ K(ξ) = φ[β(ξ)]. [ ] ζ(x, t) ζ(x, t) + e t. Usando l espressione di ζ ricavata in precedenza, otteniamo [ ] ( + x)e 2t ( x) u(x, t) = φ ( + x)e 2t e t. + ( x) Esercizio 2. Si risolva su un intervallo di tempo [, T ] finito l equazione delle onde con forzante u tt u xx = f(x, t) definita su x [, ] con condizioni al bordo di Dirichlet, u(, t) = = u(, t), con le condizioni iniziali u(x, ) = φ(x) = x ( x), u t (x, ) = ψ(x) = x (x ). Si assuma f(x, t) = [ + 3 cos 2 (x) + sin 2 (x)] sin(x) sin(t). Soluzione. Passiamo in serie di Fourier di seni, e scriviamo quindi u(x, t) = φ(x) = ψ(x) = f(x, t) = α k (t) sin(kx) k= φ k sin(kx) k= ψ k sin(kx) k= F k (t) sin(kx). k= L equazione delle onde si riscrive quindi come α k = k 2 α k + F k (k ). ( ) 4

5 Ognuna di queste e un equazione per un oscillatore armonico (di frequenza k) forzato, con forzante F k (t). Come ben noto, la soluzione è qualitativamente diversa a seconda che la forzante sia in risonanza con la frequenza naturale dell oscillatore o meno. La forzante f(x, t) si riscrive come f(x, t) = F k (t) sin(kx) = k= (g k sin(t)) sin(kx), k= dove le costanti g k rappresntano lo sviluppo in serie di Fourier di seni della funzione g(x) = [ + 3 cos 2 (x) + sin 2 (x)] sin(x). Notiamo immediatamente che pur non conoscendo le g k, la frequenza temporale delle F k è nota ed uguale ad uno. Quindi l unica equazione in cui la F k (t) è in risonanza è quella per k =. In effetti lo sviluppo di Fourier di g(x) può essere calcolato esplicitamente: infatti Quindi abbiamo g k = 2 g = 2 g 3 = 2 f(x, t) = f (x) sin(kx) dx = per k, 3 ; f (x) sin(x) dx = 5 2, f (x) sin(3x) dx = 2. [ 5 2 sin(x) + ] 2 sin(3x) sin(t). Si poteva giungere allo stesso risultato senza effettuare integrali: la presenza di funzioni lineari o cubiche in {sin(x), cos(x)} suggerisce di cercare di esprimere f nella forma f (x) = A sin(x) + B sin(3x) con coefficienti A e B da determinare. Ricordando che e sostituendo nell equazione sin(3x) = [3 cos 2 (x) sin 2 (x)] sin(x) A sin(x) + B sin(3x) = sin(x) + 3 cos 2 (x) sin(x) + sin 3 (x), otteniamo le due equazioni A + 3B = 4, 4B = 2, 5

6 che portano allo stesso risultato. Naturalmente si poteva anche giungere a questo risultato con altre trasformazioni trigonometriche. 2 Calcoliamo inoltre i coefficienti φ k e ψ k. Abbiamo (ad esempio integrando per parti) 2 2 cos(k) k sin(k) x ( x) sin(kx) dx = k 3, e quindi φ k = 2 φ(x) sin(kx) dx = 4 4 cos(k) 2k sin(k) k 3 Allo stesso modo, ed in effetti con lo stesso integrale, abbiamo. ( ) ψ k = 2 ψ(x) sin(kx) dx = 4 cos(k) 4 + 2k sin(k) k 3. ( ) Consideriamo ora (*) per k, 3. La soluzione e immediata: α k (t) = a k sin(kt) + b k cos(kt). In t = dobbiamo avere α k () = φ k, α k () = ψ k ; ovviamente α k () = b k, α k () = ka k, e quindi a k e b k sono determinate da a k = ψ k k 4 cos(k) 4 + 2k sin(k) = k 4, b k = φ k = 4 4 cos(k) 2k sin(k) k 3 Passiamo ora a considerare i casi k = e k = 3, in cui effettivamente si ha una azione della forzante. Per k = 3 questa e non risonante. Infatti abbiamo la soluzione si scrive come In t = abbiamo α 3 = 9α 3 + sin(t) ; α 3 (t) = a 3 sin(3t) + b 3 cos(3t) + 6 sin(t). α 3 () = b 3, α 3 () = 3a 3 + /6. Imponendo α 3 () = φ 3, α 3 () = ψ 3, otteniamo. a 3 = 6 ψ 3 48, b 3 = φ 3 2 Il docente deve però ammettere che nelle sue intenzioni il segno del termine sin 3 (x) avrebbe dovuto essere negativo, ottenendo così più semplicemente, e praticamente senza calcoli, f (x) = sin(x) + sin(3x). Mi scuso per il refuso, che ha richiesto alcuni calcoli addizionali di trigonometria. 6

7 (non e necessario esprimere esplicitamente φ 3 e ψ 3, il che sarebbe comunque immediato dalle formule ricavate in precedenza); quindi risulta ( ) ψ3 α 3 (t) = 3 sin(3t) + 48 φ 3 cos(3t) + 6 sin(t). Per k = otteniamo invece un equazione risonante: la soluzione e In t = abbiamo α = α sin(t) ; α = a sin(t) + b cos(t) (5/4) t cos(t). α () = b, α () = a 5/4. Imponendo α () = φ, α () = ψ, otteniamo a = ψ + (5/4), b 3 = φ (nuovamente non e necessario esprimere esplicitamente φ e ψ ); quindi risulta ( α (t) = ψ + (5/4)) sin(t) + ψ 3 cos(t) (5/4) t cos(t). Possiamo infine esprimere la soluzione u(x, t) sommando tutti i contributi delle diverse armoniche: [ ] ψk u(x, t) = k sin(kt) + φ k cos(kt) sin(kx) k= + 5 [ 4 sin(t) sin(x) + 6 sin(t) ] 48 sin(3t) sin(3x) 5 t cos(t) sin(x). 4 L espressione esplicita di φ k e ψ k e fornita dalle formule (**) e (***). Notiamo infine che la norma della soluzione cresce (linearmente nel tempo, con un termine secolare) a causa della risonanza; questo pero non pone problemi legati alla assunzione implicita di avere u L 2 [, ] (per poter usare la serie di Fourier) in quanto la soluzione e richiesta solo per un tempo finito. Esercizio 3. Si risolva l equazione del calore con sorgente u t = u xx + f(x, t) definita per x [, ] con condizioni al bordo u(, t) = = u(, t) e con dato iniziale u(x, ) = φ(x) = 2 sin(x) cos(x) + 3 sin(x) cos 2 (x) sin 3 (x), 7

8 per una sorgente descritta da f(x, t) = sin(x) sin(t) + sin(2x) sin(2t). Si ottenga inoltre una espressione asintotica u (x, t) della soluzione per t. Soluzione. In considerazione dell intervallo su cui il problema e definito, e delle condizioni al bordo, passiamo ad una serie di Fourier di seni. Scriveremo quindi u(x, t) = φ(x) = f(x, t) = α k (t) sin(kx) k= k= B k sin(kx) F k (t) sin(kx). k= L equazione si esprime dunque attraverso le equazioni (per k N) α k = k 2 α k + F k, α k () = B k. ( ) Per quanto riguarda la φ proposta nel testo, notiamo che con semplici operazioni di trigonometria, questa si riscrive come φ(x) = sin(2x) + sin(3x) ; e quindi evidente che tutti i coefficienti B k sono nulli ad eccezione di B 2 =, B 3 =. Per quanto riguarda f(x, t), e evidente che F k (t) = ad eccezione di F (t) = sin(t), F 2 (t) = sin(2t). Dunque nelle (*) possiamo e dobbiamo distinguere i casi k = e k = 2, mentre tutte le altre si scriveranno come con soluzione α k = k 2 α k, α k (t) = a k e k2 t (k, 2). Dato che a k = α k () = B k, sappiamo gia che per k 4 avremo α k =, mentre per k = 3 risultera α 3 (t) = e 9t. Veniamo ora alle equazioni per k = e k = 2. Per k = abbiamo α = α + sin(t). 8

9 Possiamo senz altro scrivere α (t) = a e t + c sin(t) + c 2 cos(t). Sostituendo nell equazione, risulta che c e c 2 devono soddisfare le equazioni e quindi abbiamo la soluzione e quindi In t = risulta c = c 2, c 2 = c +, c = α (t) = a e t + + 2, c 2 = + 2 ; + 2 sin(t) + 2 cos(t). α () = a La condizione α () = B = impone quindi ed in conclusione α (t) = a = , + 2 ( e t cos(t) ) sin(t). Per k = 2 procediamo allo stesso modo (ma ora B 2 = ). Abbiamo e quindi α 2 = 4 α 2 + sin(2t), α 2 (t) = a 2 e 4t + c 3 sin(2t) + c 4 cos(2t). Sostituendo nell equazione, otteniamo e quindi abbiamo 2 c 3 = 4 c 4, 2 c 4 = 4 c 3 +, c 3 = 4 + 2, c 2 = 2(4 + 2 ) ; la soluzione e quindi α 2 (t) = a 2 e t sin(2t) 2(4 + 2 ) cos(2t). In t = risulta α 2 () = a

10 La condizione α 2 () = B 2 = impone quindi a 2 = + 2(4 + 2 ), ed in conclusione α 2 (t) = e 4t + 2(4 + 2 ) ( e 4t cos(2t) ) sin(2t). In conclusione, la soluzione cercata e quindi [ ( u(x, t) = e t + 2 cos(t) ) + [ + e 4t + + e 9t sin(3x). 2(4 + 2 ) + 2 sin(t) ] ( e 4t cos(2t) ) + sin(x) ] sin(2t) sin(2x) Per t i termini esponenziali divengono trascurabili e la soluzione si puo esprimere come [ ] u (x, t) = + 2 sin(t) + 2 cos(t) sin(x) [ ] sin(2t) 2(4 + 2 ) cos(2t) sin(2x). Naturalmente in questa appaiono solo le armoniche di Fourier (e le frequenze temporali) della sorgente.

Esame di Fisica Matematica 2, a.a (8/9/2014)

Esame di Fisica Matematica 2, a.a (8/9/2014) Esame di Fisica Matematica 2, a.a. 213-214 (8/9/214) Tempo a disposizione: DUE ORE. Svolgere tutti gli esercizi, che hanno lo stesso nel determinare il voto finale. Scrivere chiaramente e a stampatello

Dettagli

Esame di Fisica Matematica 2, a.a (8/5/2014)

Esame di Fisica Matematica 2, a.a (8/5/2014) Esame di Fisica Matematica, a.a. 03-04 (8/5/04) Tempo a disposizione: DUE ORE E MEZZA. Svolgere tutti gli esercizi. Scrivere chiaramente nome, cognome e numero di matricola. Non è consentito l uso di libri,

Dettagli

Esame di Fisica Matematica 2, a.a (5/6/2012)

Esame di Fisica Matematica 2, a.a (5/6/2012) Esame di Fisica Matematica 2, a.a. 2-22 (5/6/22) Tempo a disposizione: TRE ORE. Svolgere tutti gli esercizi. Scrivere chiaramente nome, cognome e numero di matricola. Non e consentito l uso di libri, appunti

Dettagli

Esame di Fisica Matematica III, a.a (8/2/2011)

Esame di Fisica Matematica III, a.a (8/2/2011) Esame di Fisica Matematica III, a.a. 010-011 (8//011) Tempo a disposizione: TRE ORE. Non e consentito l uso di appunti o calcolatrici. Svolgere tutti gli esercizi. Esercizio 1. Determinare la piu generale

Dettagli

Esame di Fisica Matematica III, a.a (27/9/2011)

Esame di Fisica Matematica III, a.a (27/9/2011) Esame di Fisica Matematica III, a.a. 010-011 (7/9/011) Tempo a disposizione: DUE ORE. Non e consentito l uso di appunti o calcolatrici. Svolgere tutti gli esercizi. Esercizio 1. Si determini, attraverso

Dettagli

Esame di Fisica Matematica 2, a.a (24/6/2014)

Esame di Fisica Matematica 2, a.a (24/6/2014) Esame di Fisica Matematica, a.a. 013-014 (4/6/014) Tempo a disposizione: DUE ORE. Svolgere tutti gli esercizi. Scrivere chiaramente nome, cognome e numero di matricola. Non e consentito l uso di libri,

Dettagli

Esercizi sulla soluzione dell equazione delle onde con il metodo della serie di Fourier

Esercizi sulla soluzione dell equazione delle onde con il metodo della serie di Fourier Esercizi sulla soluzione dell equazione delle onde con il metodo della serie di Fourier Corso di Fisica Matematica 2, a.a. 2013-2014 Dipartimento di Matematica, Università di Milano 13 Novembre 2013 1

Dettagli

Esercizi sulle equazioni delle caratteristiche

Esercizi sulle equazioni delle caratteristiche Esercizi sulle equazioni delle caratteristiche Corso di Fisica Matematica 2, a.a. 203-204 Dipartimento di Matematica, Università di Milano 27 Settembre 203 Equazioni omogenee Esercizio. Determinare le

Dettagli

Calcolo integrale. Regole di integrazione

Calcolo integrale. Regole di integrazione Calcolo integrale Linearità dell integrale Integrazione per parti Integrazione per sostituzione Integrazione di funzioni razionali 2 2006 Politecnico di Torino Proprietà Siano e funzioni integrabili su

Dettagli

Analisi Matematica II 6 aprile sin[π(x 2 + y 2 /5)] x 2 + y2

Analisi Matematica II 6 aprile sin[π(x 2 + y 2 /5)] x 2 + y2 Analisi Matematica II 6 aprile 07 Cognome: Nome: Matricola:. (0 punti) Si consideri la seguente corrispondenza tra R ed R f(x, y) = Determinare l insieme di definizione A R di f e sin[π(x + y /5)] x +

Dettagli

FISICA QUANTISTICA I PROVA SCRITTA DEL 20/9/ Si consideri il moto quantistico unidimensionale di una particella soggetta al potenziale

FISICA QUANTISTICA I PROVA SCRITTA DEL 20/9/ Si consideri il moto quantistico unidimensionale di una particella soggetta al potenziale FISICA QUANTISTICA I PROVA SCRITTA DEL 0/9/013 1. Si consideri il moto quantistico unidimensionale di una particella soggetta al potenziale V (x) = V 0 θ(x) αδ(x), V 0, α > 0, (1) con la funzione a gradino

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 9 Gennaio 2018 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

Modelli e Metodi Matematici della Fisica. Scritto 2

Modelli e Metodi Matematici della Fisica. Scritto 2 Modelli e Metodi Matematici della Fisica Scritto Cesi/Presilla AA 6 7 Canale 1 Cesi Presilla Nome Cognome Il voto dello scritto rimpiazza gli esoneri 1 3 penalità problema voto 1 3 5 6 7 8 9 penalità ritardo

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 27 giugno 2017 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

Analisi Vettoriale - A.A Foglio di Esercizi n Esercizio. y [17] + y [15] = 0. z + z = 0

Analisi Vettoriale - A.A Foglio di Esercizi n Esercizio. y [17] + y [15] = 0. z + z = 0 Analisi Vettoriale - A.A. 23-24 Foglio di Esercizi n. 5 Determinare l integrale generale di 1. Esercizio y [17] + y [15] = Posto y [15] = z l equazione proposta diventa Il cui integrale generale é z +

Dettagli

Metodo di separazione di variabili e applicazione delle serie di Fourier alle soluzioni di alcune EDP

Metodo di separazione di variabili e applicazione delle serie di Fourier alle soluzioni di alcune EDP Metodo di separazione di variabili e applicazione delle serie di Fourier alle soluzioni di alcune EDP Docente:Alessandra Cutrì Equazione delle onde unidimensionale non omogenea u tt (x, t = a 2 u xx (x,

Dettagli

Corso di Biomatematica 1 Esame del giorno 13 Gennaio Scrivere chiaramente e in stampatello in testa all elaborato:

Corso di Biomatematica 1 Esame del giorno 13 Gennaio Scrivere chiaramente e in stampatello in testa all elaborato: Corso di Biomatematica Esame del giorno 3 Gennaio 206 Scrivere chiaramente e in stampatello in testa all elaborato: Nome, Cognome, numero di matricola. Tempo a disposizione: DUE ORE. Risolvere TUTTI gli

Dettagli

Esercizi sulle trasformate di Fourier

Esercizi sulle trasformate di Fourier Esercizi sulle trasformate di Fourier Corso di Fisica Matematica, a.a. 3-4 Dipartimento di Matematica, Università di Milano 8 Novembre 3 Questi esercizi richiederanno il calcolo di integrali a volte non

Dettagli

Analisi Matematica A e B Soluzioni prova scritta parziale n. 4

Analisi Matematica A e B Soluzioni prova scritta parziale n. 4 Analisi Matematica A e B Soluzioni prova scritta parziale n. Corso di laurea in Fisica, 08-09 7 aprile 09. Determinare le soluzioni u(x) dell equazione differenziale u + u u = sin x + ex + e x. Soluzione.

Dettagli

Esame del giorno 17 Febbraio Scrivere chiaramente e in stampatello in testa all elaborato:

Esame del giorno 17 Febbraio Scrivere chiaramente e in stampatello in testa all elaborato: Corso di Biomatematica (G. Gaeta) Esame del giorno 17 Febbraio 2016 Scrivere chiaramente e in stampatello in testa all elaborato: Nome, Cognome, numero di matricola. Tempo a disposizione: DUE ORE. Non

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 6 giugno 2017 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d Esame (26/07/2010) Università di Verona - Laurea in Biotecnologie - A.A. 2009/10 1 Matematica e Statistica Prova d Esame di MATEMATICA (26/07/2010) Università di Verona

Dettagli

Modulo di Matematica, Corsi di Laurea in VIT e STAL - Raccolta degli Esami A.A

Modulo di Matematica, Corsi di Laurea in VIT e STAL - Raccolta degli Esami A.A Modulo di Matematica, Corsi di Laurea in VIT e STL - Raccolta degli Esami.. - Facoltà di graria Corsi di Laurea in VIT e STL Modulo di Matematica Esame del //.. / Scritto Teoria Esercizi Voto Istruzioni:

Dettagli

1 x 2 y 2 dxdy D. 3 (1 ρ2 ) 3/2 = 1 3. = π 12.

1 x 2 y 2 dxdy D. 3 (1 ρ2 ) 3/2 = 1 3. = π 12. INGEGNERIA CIVILE - AMBIENTE E TERRITORIO ANALISI MATEMATICA II SOLUZIONI DELLA PROVA SCRITTA DEL 19-6-15 ESERCIZIO 1 Calcolare 1 x y dxdy D dove D è il dominio piano delimitato dalla curva x + y = x e

Dettagli

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2017/2018. Prof. M. Bramanti.

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2017/2018. Prof. M. Bramanti. Prima prova in itinere di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 07/08. Prof. M. Bramanti Tema n 4 5 6 Tot. Cognome e nome (in stampatello) codice persona (o n

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del sesto appello, 16 luglio 2018 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del sesto appello, 16 luglio 2018 Testi 1 Scritto del sesto appello, 6 luglio 208 Testi Prima parte, gruppo.. Trovare α [0, 2π) per cui vale l identità trigonometrica sin(x π/3) = cos(x + α). 2. Trovare il polinomio di Taylor (in 0) di ordine

Dettagli

Esercizi sull equazione di Laplace

Esercizi sull equazione di Laplace Esercizi sull equazione di Laplace Corso di Fisica Matematica, a.a. 011-01 Dipartimento di Matematica, Università di Milano 16/1/01 Questi esercizi trattano la soluzione dell equazione di Laplace u xx

Dettagli

ANALISI MATEMATICA I, Compito scritto del 5/07/2016 Corso di Laurea in Matematica. COGNOME e NOME... MATR T

ANALISI MATEMATICA I, Compito scritto del 5/07/2016 Corso di Laurea in Matematica. COGNOME e NOME... MATR T ANALISI MATEMATICA I, Compito scritto del 5/7/6 Corso di Laurea in Matematica COGNOME e NOME... MATR... 3 4 T Nelle risposte devono essere riportati anche i conti principali e le motivazioni principali.

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Secondo compitino e primo appello, 12 gennaio 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Secondo compitino e primo appello, 12 gennaio 2017 Testi 1 Secondo compitino e primo appello, gennaio 7 Testi Prima parte, gruppo.. Determinare l insieme di definizione della funzione arcsin(e ).. Determinare lo sviluppo di Taylor di ordine 4 (in ) della funzione

Dettagli

Corso di Modelli Matematici in Biologia Esame del 6 Luglio 2016

Corso di Modelli Matematici in Biologia Esame del 6 Luglio 2016 Corso di Modelli Matematici in Biologia Esame del 6 Luglio 206 Scrivere chiaramente in testa all elaborato: Nome, Cognome, numero di matricola. Risolvere tutti gli esercizi. Tempo a disposizione: DUE ORE.

Dettagli

Esercizio 1. Dare la definizione di funzione continua in un punto x 0. 4x 3 2x 2 + x 3x 2 + 2x. (x + 1)3. y(x) = ln[(x 1)/x]. lim

Esercizio 1. Dare la definizione di funzione continua in un punto x 0. 4x 3 2x 2 + x 3x 2 + 2x. (x + 1)3. y(x) = ln[(x 1)/x]. lim Esame per il corso di Matematica per CTF (Prof. G. Gaeta) 3 Gennaio 24 Tempo a disposizione: tre ore; non sono ammessi ausili (libri, appunti, etc); sono ammesse calcolatrici senza funzioni di memoria

Dettagli

Analisi Matematica 3/Analisi 4 - SOLUZIONI (20/01/2016)

Analisi Matematica 3/Analisi 4 - SOLUZIONI (20/01/2016) Corso di Laurea in Matematica Docente: Claudia Anedda Analisi Matematica 3/Analisi 4 - SOLUZIONI (//6) ) i) Dopo averla classificata, risolvere l equazione differenziale tẋ x = t cos(t), t >. ii) Scrivere

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA SECONDO ESONERO - 6 GIUGNO 7 Si risolvano cortesemente i seguenti problemi PRIMO PROBLEMA (PUNTEGGIO: 3/3) Facendo uso delle proprietà della matrici di Pauli, si calcoli

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea (quadriennale) in Fisica a.a. 2002/03

TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea (quadriennale) in Fisica a.a. 2002/03 I seguenti quesiti ed il relativo svolgimento sono coperti dal diritto d autore, pertanto essi non possono essere sfruttati a fini commerciali o di pubblicazione editoriale senza autorizzazione esplicita

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del xy + 2x + 2y + 2xy + 2x + 2y + sin

Analisi Matematica II Corso di Ingegneria Gestionale Compito del xy + 2x + 2y + 2xy + 2x + 2y + sin Analisi Matematica II Corso di Ingegneria Gestionale Compito del 9--8 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Equazioni differenziali

Equazioni differenziali 4 Equazioni differenziali Determinare le primitive di una funzione f(x) significa risolvere y (x) = f(x) dove l incognita è la funzione y(x). Questa equazione è un semplice esempio di equazione differenziale.

Dettagli

Considerare il moto di un punto materiale di massa m = 1 soggetto ad un potenziale V (x):

Considerare il moto di un punto materiale di massa m = 1 soggetto ad un potenziale V (x): sercizio Considerare il moto di un punto materiale di massa m = soggetto ad un potenziale V (x): ẍ = V (x), dove V (x) = x x.. Scrivere esplicitamente l equazione del moto e verificare esplicitamente la

Dettagli

Modelli e Metodi Matematici della Fisica. S1/AC

Modelli e Metodi Matematici della Fisica. S1/AC Modelli e Metodi Matematici della Fisica. S/AC Filippo Cesi 2 Nome Cognome Devo verbalizzare questo esame come (fare una croce): 2 CFU (AA 2-) 6 CFU (solo anal. funzionale) 6 CFU (solo anal. complessa)

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 30 Gennaio 2018 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

4.5 Equazioni differenziali lineari del secondo ordine non omogenee 159

4.5 Equazioni differenziali lineari del secondo ordine non omogenee 159 4.5 Equazioni differenziali lineari del secondo ordine non omogenee 159 Una volta stabilito che per ogni funzione continua f l equazione (4.23) è risolubile, ci interessa determinarne l integrale generale.

Dettagli

Metodi Matematici per la Fisica

Metodi Matematici per la Fisica Metodi Matematici per la Fisica Prova scritta - 6 settembre Esercizio 6 punti Calcolare l integrale π dx I π + 4 cos x. Con la sostituzione z e ix quindi: x i lnz e dx idz/z l integrale diventa dz/z I

Dettagli

Esercitazione del Analisi I

Esercitazione del Analisi I Esercitazione del 0-- Analisi I Dott.ssa Silvia Saoncella silvia.saoncella 3[at]studenti.univr.it a.a. 0-0 Integrale di funzioni razionali Supponiamo di voler calcolare un integrale del tipo P () Q() d

Dettagli

Serie di Fourier - Esercizi svolti

Serie di Fourier - Esercizi svolti Serie di Fourier - Esercizi svolti Esercizio 1 È data la funzione f con domf) = R, periodica di periodo, tale che onda quadra) 1 se < x < fx) = se x = e x = 1 se < x < 1) 1 Calcolare i coefficienti di

Dettagli

Modelli e Metodi Matematici della Fisica. S2

Modelli e Metodi Matematici della Fisica. S2 Modelli e Metodi Matematici della Fisica. S Filippo Cesi 01 1 Nome Cognome Devo verbalizzare questo esame come fare una croce): 6 CFU 8 CFU 4 + 6 CFU altro: problema 1 4 5 6 7 8 9 10 test totale voto in

Dettagli

Secondo parziale di Matematica per l Economia lettere E-Z, a.a , compito A prof. Gianluca Amato

Secondo parziale di Matematica per l Economia lettere E-Z, a.a , compito A prof. Gianluca Amato Corso di Laurea in Economia e Management Secondo parziale di Matematica per l Economia lettere E-Z, a.a. 216 217, compito A prof. Gianluca Amato Regole generali Si svolga il primo esercizio e, a scelta

Dettagli

7. Equazioni differenziali

7. Equazioni differenziali 18 Sezione 7. Equazioni differenziali 7. Equazioni differenziali [versione: 25/5/2012] Richiamo delle nozioni fondamentali In un equazione differenziale l incognita da determinare è una funzione (e non

Dettagli

Esame scritto (parte di Meccanica Quantistica) 19/06/2017. Esercizio 1. Si consideri l oscillatore armonico descritto dalla Hamiltoniana

Esame scritto (parte di Meccanica Quantistica) 19/06/2017. Esercizio 1. Si consideri l oscillatore armonico descritto dalla Hamiltoniana Corso di Fisica Matematica 3 a.a. 06/7 Esame scritto (parte di Meccanica Quantistica) 9/06/07 Esercizio. Si consideri l oscillatore armonico descritto dalla Hamiltoniana H 0 = p m + mω x, e siano n (n

Dettagli

Modelli e Metodi Matematici della Fisica. S1/AC

Modelli e Metodi Matematici della Fisica. S1/AC Modelli e Metodi Matematici della Fisica. S1/AC Cesi A.A. 9 1 Nome Cognome 6 CFU (AA 9-1) 8 CFU 4 CFU (solo analisi complessa) 4 + 6 CFU altro: problema voto 1 4 6 7 8 9 Test totale coeff. voto in trentesimi

Dettagli

ESAME SCRITTO DI FISICA MODERNA. 17 Luglio Traccia di soluzione., e α una fase globale inosservabile. Per il secondo sistema

ESAME SCRITTO DI FISICA MODERNA. 17 Luglio Traccia di soluzione., e α una fase globale inosservabile. Per il secondo sistema ESAME SCRITTO DI FISICA MODERNA 7 Luglio 04 Traccia di soluzione ) Per il primo sistema la funzione d onda è x φ = x k = φ(x) = Ce iα e ik x () dove con k si è indicato l-autostato dell impulso, C è una

Dettagli

1

1 1 4 5 6 7 8 Analisi Matematica I (Fisica e Astronomia) TEST n. di Esame Scritto (0/01/015) Università di Padova - Lauree in Fisica ed Astronomia - A.A. 014/15 Cognome-Nome Matr. - IN STAMPATELLO SF /

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Terzo Appello 8 Settembre 2014

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Terzo Appello 8 Settembre 2014 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Terzo Appello 8 Settembre 24 Cognome: Nome: Matricola: Compito A Es.: 9 punti Es.2: 8 punti Es.3: 8 punti Es.4: 8 punti Totale. Sia F la

Dettagli

SOLUZIONI COMPITO del 1/02/2013 ANALISI MATEMATICA I - 9 CFU INGEGNERIA MECCANICA - INGEGNERIA ENERGETICA INGEGNERIA AMBIENTE e TERRITORIO TEMA A

SOLUZIONI COMPITO del 1/02/2013 ANALISI MATEMATICA I - 9 CFU INGEGNERIA MECCANICA - INGEGNERIA ENERGETICA INGEGNERIA AMBIENTE e TERRITORIO TEMA A SOLUZIONI COMPITO del /0/0 ANALISI MATEMATICA I - 9 CFU INGEGNERIA MECCANICA - INGEGNERIA ENERGETICA INGEGNERIA AMBIENTE e TERRITORIO TEMA A Esercizio Osserviamo che la serie proposta è a termini di segno

Dettagli

appunti per il corso di Analisi Matematica I corso di laurea in Ingegneria Gestionale, a.a autore: Giovanni Alberti

appunti per il corso di Analisi Matematica I corso di laurea in Ingegneria Gestionale, a.a autore: Giovanni Alberti appunti per il corso di Analisi Matematica I corso di laurea in Ingegneria Gestionale, a.a. 2014-15 autore: Giovanni Alberti Equazioni differenziali [versione: 2 gennaio 2015] Richiamo delle nozioni fondamentali

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a Michele Campiti Prove scritte di Analisi Matematica 2 Ingegneria Industriale a.a. 20 202 Grafico della funzione f(x, y) := sin(2x 2 y) cos(x 2y 2 ) in [ π/2, π/2] 2 Raccolta delle tracce di Analisi Matematica

Dettagli

Modelli e Metodi Matematici della Fisica. E2

Modelli e Metodi Matematici della Fisica. E2 Modelli e Metodi Matematici della Fisica. E Filippo Cesi 15 16 Nome Cognome problema voto 1 3 5 6 7 test totale voto in trentesimi Regolamento: 1) Tutti gli esercizi, in particolare quelli a carattere

Dettagli

tg α = sostituendo: cos α 9 = 1 Esercizi Trigonometria Es. n. 246 pag 742.

tg α = sostituendo: cos α 9 = 1 Esercizi Trigonometria Es. n. 246 pag 742. Esercizi Trigonometria Es. n. pag 7. Sviluppa con le formule di duplicazione e semplifica le seguenti espressioni: cos α + sen α + sen α Applichiamo le formule di duplicazione a cos α e sen α cos α sen

Dettagli

Risoluzione del compito n. 2 (Febbraio 2018/1)

Risoluzione del compito n. 2 (Febbraio 2018/1) Risoluzione del compito n. Febbraio 18/1 PROBLEMA 1 Dopo averlo scritto in forma trigonometrica, determinate le radiciquadrate complesse del numero +i 3. Determinate tutte le soluzioni w C dell equazione

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 16 febbraio 015 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

Metodi I Secondo appello

Metodi I Secondo appello Metodi I Secondo appello Chi recupera la prima prova fa la parte A in due ore. Chi recupera la seconda prova fa la parte B in due ore. Chi fa l appello per intero fa A., B., le prime tre domande di A.2

Dettagli

appunti per il corso di Analisi Matematica I corso di laurea in Ingegneria Gestionale, a.a autore: Giovanni Alberti

appunti per il corso di Analisi Matematica I corso di laurea in Ingegneria Gestionale, a.a autore: Giovanni Alberti appunti per il corso di Analisi Matematica I corso di laurea in Ingegneria Gestionale, a.a. 2013-14 autore: Giovanni Alberti Equazioni differenziali [versione: 22-12-2013] Richiamo delle nozioni fondamentali

Dettagli

Ricevimento del 2 Febbraio 2011

Ricevimento del 2 Febbraio 2011 Ricevimento del 2 Febbraio 20 Davide Boscaini Queste sono le note del ricevimento del 2 Febbraio. Ho scelto di scrivere queste poche pagine per una maggior chiarezza e per chi non fosse stato presente

Dettagli

Matematica - Prova d esame (25/06/2004)

Matematica - Prova d esame (25/06/2004) Matematica - Prova d esame (/6/4) Università di Verona - Laurea in Biotecnologie AI - A.A. /4. (a) Disegnare sul piano di Gauss i numeri z = i e w = i, e scriverne la forma trigonometrica. Calcolare z

Dettagli

y + P(x) y + Q(x) y = 0 y(x) = c 1y 1(x) + c 2 y 2(x).

y + P(x) y + Q(x) y = 0 y(x) = c 1y 1(x) + c 2 y 2(x). Proposizione 4. Se y 1(x) e y (x) sono soluzioni linearmente indipendenti di y + P(x) y + Q(x) y = 0 ogni altra soluzione della stessa equazione si scrive nella forma per una scelta opportuna delle costanti

Dettagli

1 x 2 y 2 dxdy D. 3 (1 ρ2 ) 3/2 = 1 3. = π 12.

1 x 2 y 2 dxdy D. 3 (1 ρ2 ) 3/2 = 1 3. = π 12. INGEGNERIA CIVILE - AMBIENTE E TERRITORIO ANALISI MATEMATICA II SOLUZIONI DELLA PROVA SCRITTA DEL 19-6-15 ESERCIZIO 1 Calcolare 1 x y dxdy D dove D è il dominio piano delimitato dalla curva x + y x e dalle

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 9 dicembre 4 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo. Tempo

Dettagli

Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola:

Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola: Analisi Matematica II - INGEGNERIA Gestionale - B luglio 7 Cognome: Nome: Matricola: IMPORTANTE: Giustificare tutte le affermazioni e riportare i calcoli essenziali Esercizio [8 punti] Data la matrice

Dettagli

Ingegneria Tessile, Biella Analisi II

Ingegneria Tessile, Biella Analisi II Ingegneria Tessile, Biella Analisi II Esercizi svolti In questo file sono contenute le soluzioni degli esercizi sui campi vettoriali (cf foglio 5 di esercizi) Attenzione: in alcuni esercizi il calcolo

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Versione da non divulgare. Scritta per comodità degli studenti. Può contenere errori. 1 1 Dipartimento di Matematica Sapienza, Università di Roma Roma, Dicembre 2013 Generalità

Dettagli

Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008. Dott.ssa G. Bellomonte

Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008. Dott.ssa G. Bellomonte Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008 Dott.ssa G. Bellomonte Indice 1 Introduzione 2 2 Equazioni differenziali lineari del primo ordine

Dettagli

Matematica III Corso di Ingegneria delle Telecomunicazioni Prova scritta del

Matematica III Corso di Ingegneria delle Telecomunicazioni Prova scritta del Matematica III Corso di Ingegneria delle Telecomunicazioni Prova scritta del 04-06-007 Esercizio. (8 punti) Si consideri il seguente campo vettoriale F = + y + z i y ( + y + z ) j z ( + y + z ) k a) (5

Dettagli

Modelli e Metodi Matematici della Fisica. Esonero 3

Modelli e Metodi Matematici della Fisica. Esonero 3 Modelli e Metodi Matematici della Fisica. Esonero 3 Cesi/Presilla A.A. 5 Nome Cognome penalità problema voto 1 3 5 7 8 penalità ritardo totale coeff. voto in trentesimi (1) (8 pt). Sia T l operatore su

Dettagli

1. Equazioni differenziali del primo ordine. Si chiamano equazioni differenziali del primo ordine tutte quelle che si possono ricondurre alla forma

1. Equazioni differenziali del primo ordine. Si chiamano equazioni differenziali del primo ordine tutte quelle che si possono ricondurre alla forma appunti per il corso di Analisi Matematica I corso di laurea in Ingegneria Gestionale, a.a. 2015-16 autore: Giovanni Alberti Equazioni differenziali [versione: 20 dicembre 2015] Richiamo delle nozioni

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 18 luglio 2017 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

Analisi Matematica 3, a.a Scritto del quinto appello, 11 settembre 2019 Testi 1

Analisi Matematica 3, a.a Scritto del quinto appello, 11 settembre 2019 Testi 1 Scritto del quinto appello, 11 settembre 019 Testi 1 1. a) Dato u L 1 R), sia vx) := u x); esprimere ˆv in termini di û. b) Caratterizzare le funzioni u L 1 R) tali che û è una funzione dispari a valori

Dettagli

Analisi I - IngBM COMPITO A 11 Gennaio 2014

Analisi I - IngBM COMPITO A 11 Gennaio 2014 Analisi I - IngBM - 03-4 COMPITO A Gennaio 04 COGNOME... NOME... MATRICOLA... VALUTAZIONE... +... =.... Istruzioni Il compito è composto di due parti. La prima parte deve essere svolta preliminarmente.

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 14 settembre 2015 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = x 2 + y 3 4y. 4 1, y 2 2(1 + }

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = x 2 + y 3 4y. 4 1, y 2 2(1 + } Analisi Matematica II Corso di Ingegneria Gestionale Compito del 8-09-07 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2008/2009 Calcolo 1, Esame scritto del f(x) = cos

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2008/2009 Calcolo 1, Esame scritto del f(x) = cos NOME:... MATRICOLA:.... Corso di Laurea in Fisica, A.A. 008/009 Calcolo, Esame scritto del 06.0.009 Consideriamo la funzione fx cos + x. a Determinare il dominio massimale di f. b Trovare tutti gli asintoti

Dettagli

Equazioni separabili. Un esempio importante

Equazioni separabili. Un esempio importante Equazioni separabili. Un esempio importante Esempio La soluzione generale dell equazione y = αy, α R (1) è data da y(x) = Ke αx, K R (2) C è un unica soluzione costante: y = 0: cioè y(x) = 0 per ogni x.

Dettagli

Dom. 1 Dom 2 Es. 1 Es. 2 Es. 3 Es. 4 Totale. Cognome: Nome: Matricola:

Dom. 1 Dom 2 Es. 1 Es. 2 Es. 3 Es. 4 Totale. Cognome: Nome: Matricola: Dom. Dom Es. Es. Es. Es. 4 Totale Analisi e Geometria Terzo appello 05 settembre 06 Compito A Docente: Numero nell elenco degli iscritti: Cognome: Nome: Matricola: Prima parte. Nel campo complesso C, l

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = e (x3 +x) y

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = e (x3 +x) y Analisi Matematica II Corso di Ingegneria Gestionale Compito del 8--7 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA A.A Primo appello del 5/5/2010

COMPLEMENTI DI ANALISI MATEMATICA A.A Primo appello del 5/5/2010 COMPLEMENTI DI ANALISI MATEMATICA A.A. 29- Primo appello del 5/5/2 Qui trovate le tracce delle soluzioni degli esercizi del compito. Ho tralasciato i calcoli da Analisi (che comunque sono parte della risoluzione),

Dettagli

Introduzione alle equazioni differenziali attraverso esempi. 20 Novembre 2018

Introduzione alle equazioni differenziali attraverso esempi. 20 Novembre 2018 Introduzione alle equazioni differenziali attraverso esempi 20 Novembre 2018 Indice: Equazioni separabili. Esistenza e unicità locale della soluzione di un Problemi di Cauchy. Equazioni differenziali lineari

Dettagli

Ist. di Fisica Matematica mod. A Sesta e settima esercitazione

Ist. di Fisica Matematica mod. A Sesta e settima esercitazione Ist. di Fisica Matematica mod. A Sesta e settima esercitazione Francesca Arici (farici@sissa.it Domenico Monaco (dmonaco@sissa.it 8-0 Gennaio 04 Esercizi del Capitolo 6 La numerazione seguita per gli Esercizi

Dettagli

Modelli e Metodi Matematici della Fisica. S1

Modelli e Metodi Matematici della Fisica. S1 Modelli e Metodi Matematici della Fisica S Filippo Cesi 0 Nome Cognome Devo verbalizzare questo esame come (fare una croce): 6 CFU 8 CFU 4 + 6 CFU altro: problema 4 5 6 7 8 9 0 test totale voto in trentesimi

Dettagli

ANALISI MATEMATICA L-C, B-S

ANALISI MATEMATICA L-C, B-S ANALISI MAEMAICA L-C, B-S 25-6 SERIE DI FOURIER MASSIMO CICOGNANI Per la pubblicazione in rete di queste dispense si deve ringraziare Marco Frison che le ha trascritte interamente in Latex 1 Lo spazio

Dettagli

u(x, 0) = 0 in R. Soluzioni

u(x, 0) = 0 in R. Soluzioni Es. Es. Es. 3 Es. 4 Totale Politecnico di Milano - Ingegneria Energetica Metodi Analitici e Numerici A 6 Giugno 7 Cognome: Nome: Matricola: Esercizio. a. Si consideri la funzione vx, t = e t x e t + e

Dettagli

Analisi Matematica 1 Foglio 1 Lunedì 3 ottobre. f(x) = log x 2 6x + 5.

Analisi Matematica 1 Foglio 1 Lunedì 3 ottobre. f(x) = log x 2 6x + 5. Analisi Matematica Foglio Lunedì 3 ottobre Esercizio. Trovare il dominio naturale della funzione f data da ( ) f(x) = log x 2 6x + 5. Esercizio 2. Dire quali tra le seguenti funzioni sono iniettive :.

Dettagli

(a) E è convesso; (b) (1, 0) non è punto interno; (c) E non è misurabile.

(a) E è convesso; (b) (1, 0) non è punto interno; (c) E non è misurabile. Cognome Nome Matricola Laurea Civ Amb Gest Inf Eln Tlc Mec Non scrivere qui 3 4 5 6 A Università degli Studi di Parma Dipartimento di Ingegneria e Architettura Esame di Analisi Matematica Soluzioni A.A.

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea in Fisica a.a.2001/02

TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea in Fisica a.a.2001/02 I seguenti quesiti ed il relativo svolgimento sono coperti dal diritto d autore, pertanto essi non possono essere sfruttati a fini commerciali o di pubblicazione editoriale senza autorizzazione esplicita

Dettagli

Soluzioni. 152 Roberto Tauraso - Analisi Risolvere il problema di Cauchy. { y (x) + 2y(x) = 3e 2x y(0) = 1

Soluzioni. 152 Roberto Tauraso - Analisi Risolvere il problema di Cauchy. { y (x) + 2y(x) = 3e 2x y(0) = 1 5 Roberto Tauraso - Analisi Soluzioni. Risolvere il problema di Cauchy y (x) + y(x) = 3e x y() = R. Troviamo la soluzione generale in I = R. Una primitiva di a(x) = è A(x) = a(x) dx = dx = x e il fattore

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1 Analisi Matematica I per Ingegneria Gestionale, a.a. 206-7 Scritto del secondo appello, febbraio 207 Testi Prima parte, gruppo.. Trovare le [0, π] che risolvono la disequazione sin(2) 2. 2. Dire se esistono

Dettagli

Per determinare una soluzione particolare descriveremo un metodo che vale solo nel caso in cui la funzione f(x) abbia una forma particolare:

Per determinare una soluzione particolare descriveremo un metodo che vale solo nel caso in cui la funzione f(x) abbia una forma particolare: 42 Roberto Tauraso - Analisi 2 Ora imponiamo condizione richiesta: ( lim c e 4x + c 2 + c 3 e 2x cos(2x) + c 4 e 2x sin(2x) ) = 3. x + Il limite esiste se e solo c 3 = c 4 = perché le funzioni e 2x cos(2x)

Dettagli

1 Primitive e integrali indefiniti

1 Primitive e integrali indefiniti Analisi Matematica 2 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 2 CALCOLO INTEGRALE Primitive e integrali indefiniti. Definizione di primitiva e di integrale indefinito Data una funzione

Dettagli

Università degli Studi di Firenze Corso di Laurea triennale in Fisica e Astrofisica

Università degli Studi di Firenze Corso di Laurea triennale in Fisica e Astrofisica Università degli Studi di Firenze Corso di Laurea triennale in Fisica e Astrofisica Analisi Matematica I (A.A. 5/6) Proff. F. Bucci & E. Paolini Appello n. 3 prova scritta ( Marzo 6) Importante: Per l

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (/07/202) Università di Verona - Laurea in Biotecnologie - A.A. 20/2 Matematica e Statistica Prova di MATEMATICA (/07/202) Università di Verona - Laurea in Biotecnologie

Dettagli

Correzione Quarto scritto di Matematica per Biologi, corso B, 2010

Correzione Quarto scritto di Matematica per Biologi, corso B, 2010 Correzione Quarto scritto di Matematica per Biologi, corso B, 010 31 gennaio 011 1 Parte 1 Esercizio 1.1. Per risolvere questo esercizio bisogna ricordarsi (formula.5 pag. 66 del vostro libro) che per

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d Esame (0/09/200) Università di Verona - Laurea in Biotecnologie - A.A. 2009/0 Matematica e Statistica Prova d Esame di MATEMATICA (0/09/200) Università di Verona - Laurea

Dettagli