3.2 Funzioni periodiche e sviluppi in Serie di Fourier

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "3.2 Funzioni periodiche e sviluppi in Serie di Fourier"

Transcript

1 3. Funzioni periodiche e sviluppi in Serie di Fourier Una prima classe di funzioni per cui si può effettuare l analisi armonica (3.5 contiene le funzioni periodiche (di periodo, tali cioè che f(t + = f(t, t R. (3.3 In tal caso è lecito aspettarsi che gli ω n dell eq. (3.5 siano tutti multipli interi dell armonica fondamentale ω = π ovvero Infatti dall identità ω n = n π, n Z. (3.31 segue e πin cos(πn + i sin(πn = 1, n Z (3.3 e iωn(t+ e i π n(t+ = e i π nt e iπn = e iωnt, n Z, t R. (3.33 Notare che la scelta di condizioni al contorno periodiche seleziona fra le possibili soluzioni dell equazione agli autovalori (3.8 solo quelle con ω n dato dalla (3.31. Senza occuparci per il momento di discutere la convergenza della serie f(t = n Z V n e iωnt (3.34 (detta serie trigonometrica di Fourier, vediamo subito come si possono calcolare i coefficienti V n nota la f(t; basta moltiplicare ambo i membri per e iω lt (l Z e integrare su un periodo (supponendo di poter integrare termine a termine per ottenere: e iωlt f(tdt = V n e iωlt e iωnt dt. (3.35 n Z Con il cambio di variabile x = πt, suggerito dalla (3.31, e usando l identità π e i(n lx dx = πδ nl, (

2 detta relazione di ortogonalità, si ottiene subito: V l = 1 e iω lt f(tdt. (3.37 L eq. (3.37 è di grande importanza perché ci fornisce i coefficienti della serie di Fourier (3.34 e quindi, grazie alla proprietà P1, il modo per risolvere l equazione differenziale (3.1 con termine noto f(t periodico. I passi sono i seguenti: con la (3.37 si calcolano i coefficienti V l della serie di Fourier (3.34 di f(t; per ognuna delle armoniche, cioè per ognuno dei termini di tale serie, si applica la procedura che ci ha portato dal termine noto (3.16 alla soluzione (3.18, ottenendo così i coefficienti U n dati dalla (3.7; la soluzione dell equazione differenziale sarà data perciò dalla serie di Fourier ( Convergenza puntuale delle serie trigonometriche di Fourier Vogliamo ora discutere le proprietà di convergenza della serie con i coefficienti a n dati da a n e inx (3.38 n Z a n = 1 π e inx f(x dx. (3.39 π Per comodità siamo passati alla variabile x = πt, in cui il periodo è π. Notiamo subito che per f(x periodica, f(x + π = f(x, l integrale può essere esteso a qualsiasi altro intervallo di ampiezza π 3. 3 Vale infatti l identità, x R x+π x ( g(xdx = + x+π + x π 86 g(xdx

3 Notiamo inoltre che affinché la (3.39 abbia senso bisogna che l integrale esista; ciò succede certamente se f(x è sommabile 4, perché tale rimane dopo essere stata moltiplicata per il fattore e inx, il cui modulo vale 1. Ci conviene anzitutto enunciare il seguente lemma di Riemann: qualunque sia l intervallo (a, b, finito o infinito, per ogni f(x sommabile, vale lim f(xe ±ikx dx = lim f(x cos(kx dx = lim f(x sin(kx dx =. k a k a k a (3.4 Dimostrazione: ci limitiamo a dimostrare tale lemma nel caso particolare in cui f(x sia di classe C 1, cioè continua con la sua derivata prima. In tal caso è lecito integrare per parti e si ha da cui a a f(xe ±ikx dx = 1 ±ik f(x e±ikx b 1 a ik f(xe ±ikx dx 1 { f(b + f(a + k a a f (xe ±ikx dx, (3.43 f (x dx }. (3.44 La parentesi graffa non contiene più termini dipendenti da k, quindi il secondo membro tende a zero per k, e di conseguenza anche il primo. Usando le formule di Eulero si completa la dimostrazione, nel caso particolare di funzioni di classe C 1 ; nel caso generale la dimostrazione prosegue usando il fatto che per ogni funzione sommabile f(x e ogni ε > esiste una g C 1 tale che a f(x g(x dx < ε. [q.e.d.] Dimostriamo ora il = x g(xdx + g(xdx + g(y + πdy (3.4 x (nell ultimo integrale si è effettuato il cambio di variabile x = y + π. Se l integrando g(x è una funzione periodica di periodo π, allora i due ultimi addendi della (3.4 si cancellano e vale x+π x g(xdx = g(xdx, x. (3.41 Le due scelte più consuete sono x = oppure x =. 4 Definiremo più avanti che cosa significa funzione sommabile; per ora può essere tranquillamente letto come sinonimo di funzione assolutamente integrabile. 87

4 EOREMA: Condizione sufficiente affinché la serie (3.38 converga puntualmente a f(x è che la funzione f(x (sommabile nell intervallo (, π sia di classe C 1 nell intorno del punto x. Dimostrazione Definiamo la ridotta N-esima della serie (3.38 come S N (x = N l= N a l e ilx. (3.45 Sostituendo in (3.45 la definizione (3.39 dei coefficienti a l si ottiene Usando l identità N l= N e ilα = e inα N = la (3.45 diventa S N (x = 1 π π n= sin(n + 1/α sin α/ dyf(y N l= N e il(x y. (3.46 ( e iα n = e inα 1 ei(n+1α iα(n+1/ 1 ei(n+1/α = e 1 e iα e iα/ e iα/ S N (x = 1 π dyf(y sin [(N + 1/(x y] π sin(x y/ = 1 sin [(N + 1/t] dtf(x + t, (3.48 π dove nell ultimo passaggio si è posto t = x y e si è usata la periodicità dell integrando per fissare l intervallo di integrazione 5. Notare che per calcolare lim N S N (x non si possono applicare direttamente le formule di Riemann (3.4 alla (3.48, poiché la funzione f(x +t diverge come f(x t per t 6. Si noti che l integrale si può spezzare come segue: = δ1 non è integrabile: essa δ + + ; (3.49 δ 1 δ 5 sin(n + 1/t e hanno periodo 4π, ma il loro rapporto ha periodo π. 6è integrabile se f(x =, allora si applicano le formule di Riemann e si ottiene correttamente lim N S N (x =. 88 (3.47

5 δ 1, δ (, π si possono applicare le formule di Riemann al primo e terzo integrale, quindi sin [(N + 1/t] δ sin [(N + 1/t] lim f(x + t dt = lim f(x + t dt ; (3.5 N N δ 1 perciò la somma della serie nel punto x dipende solo dal comportamento locale della funzione f(x (sommabile in (, π in un intorno (arbitrariamente piccolo del punto x. Usando l identità 1 π sin [(N + 1/t] dt = 1, (3.51 π che si può verificare direttamente con il metodo dei residui (o anche considerando il caso particolare della (3.48 per f(x = 1, si può scrivere S N (x f(x = 1 [( dt sin N + 1 ] f(x + t f(x t. (3.5 π Adesso la funzione che moltiplica sin(n + 1/t è sommabile nell intervallo (, π; infatti in tale intervallo si annulla solo nell origine e f(x + t f(x lim t = f (x. (3.53 Si può quindi passare al limite per N e applicare le formule di Riemann per ottenere f(x = lim N S N(x. (3.54 [q.e.d] Notare che il eorema (3.54 può essere esteso al caso in cui nel punto x la funzione abbia una discontinuità di I specie, ma sia di classe C 1 sia in un intorno sinistro che in un intorno destro di x. Al posto della (3.5 si scrive infatti S N (x f(x + + f(x = 1 π + 1 π [( dt sin N + 1 ] f(x + t f(x t ] f(x + t f(x + [( dt sin N + 1 t dove f(x e f(x + sono i limiti destro e sinistro nel punto x e si è usata l identità sin (N + 1/ t sin (N + 1/ t dt = dt = π. ( , (3.55

6 Dalle formule di Riemann segue allora: lim S N(x = f(x + + f(x N, (3.57 di cui la (3.54 è ovviamente un caso particolare. Se il punto x cade in uno degli estremi dell intervallo di definizione della f(x, continua a valere la (3.57 purché la funzione sia continuata periodicamente: f(x + π = f(x. 3.. Importanti commenti In vista di una successiva applicazione fisica, torniamo alla variabile t = x: π f(t = a n e iωnt (3.58 n= i cui coefficienti sono, secono la (3.37, a m = 1 / / f(te iωmt dt. (3.59 Se la funzione f(t assume valori reali si vede subito che i coefficienti a n soddisfano la relazione seguente: a n = a n. (3.6 È utile osservare che, posto a n = a n e iαn, si può allora scrivere: a n e iωnt + a n e iωnt = a n [ e i(ωnt αn + e i(ωnt αn] = A n cos(ω n t α n, (3.61 con A n = a n. (3.6 Quindi per f(t reale la serie (3.58 diventa f(t = a + A n cos(ω n t α n Un integrale dalle importanti applicazioni fisiche è 9

7 1 / / f(t dt = 1 = 1 = 1 / / ( m= m= n= m= n= a me iωmt ( a ma n / / a ma n δ mn = n= e iωmt e iωnt dt n= a n e iωnt dx a n, (3.64 dove si sono sfruttate le identità: / e iωmt e iωnt = δ mn, (3.65 / note come relazioni di ortogonalità, su cui torneremo più avanti. risultato (3.64 si può ottenere più semplicemente sfruttando la (3.59: Il 1 / / f(t dt = 1 ( / a me iωmt f(t = a n. / m= n= La (3.64, che prende il nome di equazione di Parseval scritta nella base delle funzioni esponenziali, illustra come ogni componente di Fourier contribuisca separatamente all integrale; non ci sono cioè termini di interferenza del tipo a ma n. Qualora f(t rappresenti la corrente elettrica attraverso una resistenza R, la (3.64 moltiplicata per R mostra che la potenza media dissipata per effetto Joule è uguale alla somma delle potenze dissipate sulle varie frequenze. Per f(t reale la (3.64 diventa infatti: 1 / f(t dt = a + a n = a + / ( An, (3.66 dove nell ultimo passaggio si è ricordata la (3.6. In questo caso a è la componente di corrente continua della f(t e A n / il valore efficace della corrente alternata di pulsazione ω n. Serie di Fourier e funzioni trigonometriche Molto spesso anziché usare il sistema trigonometrico in forma esponenziale { e ilx, l Z } è utile usare il sistema trigonometrico tout court: {1, sin x, cos x, sin(x, cos(x,...} = {sin(nx, cos(nx}, n =, 1,, (3.67

8 È immediato verificare direttamente che le (3.67 formano un sistema di funzioni ortogonali nell intervallo (, π (o in qualunque altro intervallo di ampiezza π. Infatti: sin(mx sin(nxdx = πδ mn (m cos(mx cos(nxdx = πδ mn (m = πδ mn (m = sin(mx cos(nxdx =. (3.68 Data una f(x sommabile nell intervallo (, π, anziché la serie (3.38 proviamo a scrivere f(x = A + [A n cos(nx + B n sin(nx]. (3.69 Se la (3.69 è vera, i coefficienti A n e B n si ottengono moltiplicando la (3.69 rispettivamente per cos(mx e sin(mx, integrando su x fra e π e sfruttando le relazioni di ortogonalità (3.68, nell ipotesi che la serie converga a f(x e si possa integrare termine a termine. Si ricava così, per n = 1,,..., A n = 1 π B n = 1 π Il coefficiente A si ricava integrando la (3.69 tra e π: cos(nxf(xdx (3.7 sin(nxf(xdx. (3.71 A = 1 π f(xdx. Le relazioni (3.7 valgono quindi per tutti gli n =, 1,,..., mentre le (3.71 valgono per n = 1,,... Per la convergenza puntuale della serie (3.69 valgono esattamente gli stessi teoremi dimostrati per la serie (3.38, cioè se in un punto x interno all intervallo (, π la funzione f(x è di classe C 1, cioè continua assieme 9

9 alla sua derivata prima, allora la (3.69 è vera nel senso della convergenza puntuale. Se invece nel punto x la f(x ha una discontinuità di prima specie, ma è di classe C 1 sia in un intorno sinistro che in un intorno destro di x, vale allora: A + [A n cos(nx + B n sin(nx ] = f(x + + f(x. (3.7 dove f(x + e f(x sono rispettivamente i limiti destro e sinistro di f(x nel punto x. Se il punto x cade in uno degli estremi dell intervallo di definizione continua a valere quanto abbiamo detto per i punti interni purché la funzione sia continuata periodicamente su tutto l asse reale secondo la f(x + π = f(x. L equazione di Parseval, in termini dei coefficienti A n e B n, assume la forma seguente: f(x dx = π A + π ( An + B n. Se la funzione f(x è pari (f( x = f(x, i coefficienti B n sono nulli e la (3.69 si riduce a una serie di coseni: f(x = A + A n cos(nx. Se la funzione f(x è dispari (f( x = f(x, i coefficienti A n sono nulli e la (3.69 si riduce a una serie di seni: f(x = B n sin(nx. Esempio Sviluppiamo in serie di Fourier la funzione a gradino: ɛ(x = { 1 π < x < +1 x π. Poiché la funzione è dispari, lo sviluppo in serie di Fourier conterrà solo seni (A n =. I coefficienti B n sono: 93

10 Pertanto B n = 1 π = 1 π = π { sin(nxɛ(xdx sin(nxdx + } sin(nxdx sin(nxdx = nπ [ cos(nx]π { n pari n dispari. = nπ [1 ( 1n ] = 4 nπ ɛ(x = 4 π sin x + 4 3π sin(3x + 4 sin(5x π = 4 sin[(n + 1x]. π n + 1 n= Graficamente, le successive approssimazioni sono: Notare che nell origine Figura 3.: e nei punti ±π la somma della serie vale zero, in accordo con la (3.7. Per n, si verifica il cosiddetto fenomeno di Gibbs, tipico delle serie di Fourier di funzioni discontinue: in prossimità di una discontinuità di prima specie, la ridotta ennesima della serie di Fourier presenta un picco, tanto più stretto quanto maggiore è n, di altezza pari a circa il 9% del salto. Questo esempio mostra che la serie di Fourier non converge uniformemente alla funzione f(x nei punti in cui essa ha una discontinuità di I specie. Scriviamo adesso esplicitamente la generalizzazione delle eq.(3.69,(3.7 e (3.71 al caso di funzioni periodiche con periodo π. In questo caso si pone t = π x. Se x varia nell intervallo (, π, la variabile t varierà nell intervallo ( /, /. La serie di Fourier (3.69 diventa così: con f(t = A + [ A n cos ( ( ] πnt πnt + B n sin 94,

11 A n = 1 π B n = 1 π cos(nxf(t(xdx = sin(nxf(t(xdx = / / / / ( πnt cos ( πnt sin f(tdt f(tdt Altri esempi Esempio 1 Lo sviluppo in serie di Fourier della funzione f(x = sin x π < x < π contiene solo coseni, perché f(x è pari: I coefficienti di Fourier sono: f(x = A + A n cos(nx. A n = 1 π = 1 π = π Se n = 1 Quindi sin x cos(nxdx = π [sin(n + 1x sin(n 1x] dx = 1 π 1 + cos nπ n 1 A 1 = π se n 1. sin x cos xdx = π sin x cos(nxdx [ 1 cos(n + 1π sin x n + 1 π =. + ] cos(n 1π 1 n 1 f(x = π 1 + ( 1 n cos nx = π n= n 1 π 4 cos kx π k=1 (k 1 = π 4 ( cos x cos 4x cos 6x π Esempio 95

12 f(x = x π < x < π da cui A = π A n = π f(x = π 4 π xdx = π x cos nxdx = πn = πn [1 ( 1n ] k= Esempio 3 (x sin nx π sin nxdx cos(k + 1x = π (k ( cos 3x cos 5x cos x π 9 5 f(x = x < x < π Quindi A = 1 π A n = 1 π B n = 1 π π π π f(x = π xdx = π x cos nx = 1 ( πn x sin nx = 1 πn sin nx n x sin nx π π ( x cos nx π + π sin nxdx = cos nxdx = n. ( sin x sin 3x = π sin x Si consiglia agli studenti di disegnare i grafici delle f(x dei tre esempi proposti. 96

Analisi Matematica 3/Analisi 4 - SOLUZIONI (20/01/2016)

Analisi Matematica 3/Analisi 4 - SOLUZIONI (20/01/2016) Corso di Laurea in Matematica Docente: Claudia Anedda Analisi Matematica 3/Analisi 4 - SOLUZIONI (//6) ) i) Dopo averla classificata, risolvere l equazione differenziale tẋ x = t cos(t), t >. ii) Scrivere

Dettagli

Serie di Fourier Richiami di teoria. Funzioni periodiche. Ci poniamo il problema dello sviluppo in serie di Fourier per funzioni f 1 : R R

Serie di Fourier Richiami di teoria. Funzioni periodiche. Ci poniamo il problema dello sviluppo in serie di Fourier per funzioni f 1 : R R Serie di Fourier Richiami di teoria Funzioni periodiche Ci poniamo il problema dello sviluppo in serie di Fourier per funzioni f 1 : R R 2π-periodiche. Esempio 1. Consideriamo il prolungamento 2π-periodico

Dettagli

Limitiamoci dapprima a considerare una funzione f di periodo 2π. Cercheremo di approssimarla con polinomi trigonometrici di ordine n della forma

Limitiamoci dapprima a considerare una funzione f di periodo 2π. Cercheremo di approssimarla con polinomi trigonometrici di ordine n della forma Serie di Fourier L idea che sta alla base degli sviluppi in serie di Fourier è quella di approssimare, in qualche senso, le funzioni (integrabili periodiche per mezzo di funzioni più regolari e/o più facilmente

Dettagli

Serie trigonometriche e di Fourier Ci occuperemo di serie le cui ridotte N-esime sono polinomi trigonometrici di grado (o ordine) N:

Serie trigonometriche e di Fourier Ci occuperemo di serie le cui ridotte N-esime sono polinomi trigonometrici di grado (o ordine) N: Serie trigonometriche e di Fourier Ci occuperemo di serie le cui ridotte N-esime sono polinomi trigonometrici di grado (o ordine) N: S N (x) = N n=0 (a n cos (nx) + b n sin (nx)), a n, b n R (periodiche

Dettagli

2) Scrivere la soluzione generale del seguente sistema di equazioni differenziali lineari del primo ordine. y 1 = 2y 1 5y 3 y 2

2) Scrivere la soluzione generale del seguente sistema di equazioni differenziali lineari del primo ordine. y 1 = 2y 1 5y 3 y 2 Corso di Laurea in Matematica Analisi Matematica 3/Analisi 4 - SOLUZIONI (8/6/5) Docente: Claudia Anedda ) Trovare il limite puntuale della successione di funzioni f k (t) = cos(kt), t R. Stabilire se

Dettagli

Serie di Fourier - Esercizi svolti

Serie di Fourier - Esercizi svolti Serie di Fourier - Esercizi svolti Esercizio 1 È data la funzione f con domf) = R, periodica di periodo, tale che onda quadra) 1 se < x < fx) = se x = e x = 1 se < x < 1) 1 Calcolare i coefficienti di

Dettagli

Serie di Fourier. Hynek Kovarik. Analisi Matematica 2. Università di Brescia

Serie di Fourier. Hynek Kovarik. Analisi Matematica 2. Università di Brescia Serie di Fourier Hynek Kovarik Università di Brescia Analisi Matematica 2 Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 1 / 37 Polinomi trigonometrici Definizione Si dice

Dettagli

5.2 Sistemi ONC in L 2

5.2 Sistemi ONC in L 2 5.2 Sistemi ONC in L 2 Passiamo ora a considerare alcuni esempi di spazi L 2 e di relativi sistemi ONC al loro interno. Le funzioni trigonometriche Il sistema delle funzioni esponenziali { e ikx 2π },

Dettagli

ANALISI DI FOURIER. 2πk. è periodica di periodo T. Più precisamente, essendo. T x + 2π = cos. s(x) = s x + T ) T +α. f(x) dx

ANALISI DI FOURIER. 2πk. è periodica di periodo T. Più precisamente, essendo. T x + 2π = cos. s(x) = s x + T ) T +α. f(x) dx ANALISI DI FOURIER Sia >. Una funzione f, definita per x R, si dice periodica di periodo, se f(x + = f(x, x R. ( Se una funzione è periodica di periodo, essa è anche periodica di periodo, 3,..., k,....

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA II. Prova scritta del 20 gennaio 2014

COMPLEMENTI DI ANALISI MATEMATICA II. Prova scritta del 20 gennaio 2014 Prova scritta del 2 gennaio 214 Studiare la convergenza puntuale e uniforme della serie di potenze n=1 n x 2n 2n + e n. Valutare poi la misurabilità e l integrabilità secondo Lebesgue della funzione somma

Dettagli

5π/2. 3π/2. y = f(x) π π. -5π/2-2π -3π/2 -π -π/2 π/2 π 3π/2 2π 5π/2 3π 7π. -π/2

5π/2. 3π/2. y = f(x) π π. -5π/2-2π -3π/2 -π -π/2 π/2 π 3π/2 2π 5π/2 3π 7π. -π/2 Corso di Laurea in Matematica Analisi 4 - SOLUZIONI /9/8) Docente: Claudia Anedda ) Data la funzione yx) x + π, x, π) prolungarla su tutto R in modo tale che sia una funzione π-periodica pari, disegnare

Dettagli

f(n)r n e inx lim Se f(x) C(T) allora f S (r) f(x) = lim e inx

f(n)r n e inx lim Se f(x) C(T) allora f S (r) f(x) = lim e inx 17.1. Analisi di Fourier III. 17.1.1. Teorema di approssimazione di Weierstrass. Un polinomio trigonometrico è una qualunque funzione della forma n

Dettagli

Convergenza puntuale ed uniforme delle serie di Fourier

Convergenza puntuale ed uniforme delle serie di Fourier Convergenza puntuale ed uniforme delle serie di Fourier 8 aprile 009 In questi appunti prendiamo in considerazione funzioni di variabile reale che possono assumere però valori complessi. Una funzione F

Dettagli

Serie di Fourier. Tra queste funzioni definiamo un prodotto scalare nel seguente modo: date f, g V poniamo f (x) g (x) dx. f (x) [g (x) + h (x)] dx

Serie di Fourier. Tra queste funzioni definiamo un prodotto scalare nel seguente modo: date f, g V poniamo f (x) g (x) dx. f (x) [g (x) + h (x)] dx Serie di Fourier Indichiamo con V l insieme delle funzioni f : R R che siano periodiche di periodo π, si abbia cioè f ( + π) = f (), e che risultino integrabili nell intervallo [, π]. Tra queste funzioni

Dettagli

Spazi di Hilbert: Proiezioni e Serie di Fourier

Spazi di Hilbert: Proiezioni e Serie di Fourier Spazi di Hilbert: Proiezioni e Serie di Fourier Docente:Alessandra Cutrì Spazi di Hilbert Uno spazio vettoriale dotato di prodotto scalare che è completo rispetto alla norma indotta dal prodotto scalare

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA II. Prova scritta del 20 gennaio 2014

COMPLEMENTI DI ANALISI MATEMATICA II. Prova scritta del 20 gennaio 2014 Prova scritta del 20 gennaio 2014 Studiare la convergenza puntuale e uniforme della serie di potenze n x 2n 2n + e n. Valutare poi la misurabilità e l integrabilità secondo Lebesgue della funzione somma

Dettagli

Analisi Matematica II 6 aprile sin[π(x 2 + y 2 /5)] x 2 + y2

Analisi Matematica II 6 aprile sin[π(x 2 + y 2 /5)] x 2 + y2 Analisi Matematica II 6 aprile 07 Cognome: Nome: Matricola:. (0 punti) Si consideri la seguente corrispondenza tra R ed R f(x, y) = Determinare l insieme di definizione A R di f e sin[π(x + y /5)] x +

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA DI BASE. Prova scritta del 26 gennaio 2005

COMPLEMENTI DI ANALISI MATEMATICA DI BASE. Prova scritta del 26 gennaio 2005 Prova scritta del 26 gennaio 2005 Esercizio 1. Posto B = x R 2 : x 2 2}, sia f n } una successione di funzioni (misurabili e) integrabili in B tali che f n f q.o. in B e, per ogni n N, f n (x) 2 x 3 per

Dettagli

Serie di Fourier. 1. Introduzione Le funzioni somme di funzioni trigonometriche

Serie di Fourier. 1. Introduzione Le funzioni somme di funzioni trigonometriche Serie di Fourier. Introduzione Le funzioni somme di funzioni trigonometriche, sin(x), cos(x), sin(2x), cos(2x),...ecc. P (x) = 2 a + a cos(x) + b sin(x) +... + b n sin(x) si dicono polinomi trigonometrici:

Dettagli

Serie di Fourier. prof. Sergio Zoccante 27 gennaio 2011

Serie di Fourier. prof. Sergio Zoccante 27 gennaio 2011 Serie di Fourier prof. Sergio Zoccante 27 gennaio 2011 1 Le serie di Fourier Gli sviluppi in serie di Taylor hanno applicazioni numerosissime. Tuttavia, le condizioni alle quali una funzione deve soddisfare

Dettagli

E, la successione di numeri {f n (x 0. n f n(x) (15.1)

E, la successione di numeri {f n (x 0. n f n(x) (15.1) Capitolo 15 15.1 Successioni e serie di funzioni Sia {f n } una successione di funzioni, tutte definite in un certo insieme E dello spazio R n ; si dice che essa è convergente nell insieme E se, comunque

Dettagli

ANALISI MATEMATICA I, Compito scritto del 5/07/2016 Corso di Laurea in Matematica. COGNOME e NOME... MATR T

ANALISI MATEMATICA I, Compito scritto del 5/07/2016 Corso di Laurea in Matematica. COGNOME e NOME... MATR T ANALISI MATEMATICA I, Compito scritto del 5/7/6 Corso di Laurea in Matematica COGNOME e NOME... MATR... 3 4 T Nelle risposte devono essere riportati anche i conti principali e le motivazioni principali.

Dettagli

Serie di Fourier. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi. DIMS Università di Trento. anno accademico 2008/2009

Serie di Fourier. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi. DIMS Università di Trento. anno accademico 2008/2009 Serie di Fourier (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi DIMS Università di Trento anno accademico 8/9 Serie di Fourier 1 / 48 Jean Baptiste Joseph Fourier (1768 183) Serie di Fourier

Dettagli

Serie di Fourier in forma complessa

Serie di Fourier in forma complessa M.Guida, S.Rolando, 14 1 Serie di Fourier in forma complessa Per scrivere la serie di Fourier di una funzione f R, si utilizza spesso una notazione equivalente, ma più compatta e maneggevole, che fa intervenire

Dettagli

Note sulle serie di Fourier

Note sulle serie di Fourier Note sulle serie di Fourier Rodica oader, a.a. 3/4 versione provvisoria (aggiornata al 3//7 Convergenza uniforme Data una funzione f : R R, periodica di periodo >, supponiamo di poter definire i coefficienti

Dettagli

Complementi di Analisi Matematica. Foglio di esercizi n.8 3/5/2019

Complementi di Analisi Matematica. Foglio di esercizi n.8 3/5/2019 Complementi di Analisi Matematica Foglio di esercizi n8 3/5/2019 Esercizi su successioni e serie di funzioni Esercizio 1 Definita g k (x) = e kx2, provare che g k : R R converge puntualmente alla funzione

Dettagli

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013 Prova scritta del 24 gennaio 2013 Esercizio 1. Sia Ω R 3 un insieme misurabile secondo Lebesgue e di misura finita. Sia {f n } n N una successione di funzioni f n : Ω R misurabili e tali che 1) f n (x)

Dettagli

Analisi Matematica 3 (Fisica) Prova scritta del 17 febbraio 2012 Un breve svolgimento delle versioni A

Analisi Matematica 3 (Fisica) Prova scritta del 17 febbraio 2012 Un breve svolgimento delle versioni A Analisi Matematica 3 (Fisica) Prova scritta del 7 febbraio Un breve svolgimento delle versioni A Vi sarò grato per la segnalazione di eventuali errori. Esercizio. (a) Dimostrare che l equazione () (3 +

Dettagli

D Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica)

D Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) COGNOME NOME Matr. D Firma dello studente Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

Esercitazione sulle serie di Fourier

Esercitazione sulle serie di Fourier Esercitazione sulle serie di Fourier 3 novembre. Calcolo dei coefficienti di Fourier e di somme di serie speciali Esercizio. Si consideri il segnale u : R R, -periodico, definito nell intervallo, π, da

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 30 Gennaio 2018 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

Modelli e Metodi Matematici della Fisica. Esonero 3

Modelli e Metodi Matematici della Fisica. Esonero 3 Modelli e Metodi Matematici della Fisica. Esonero 3 Cesi/Presilla A.A. 5 Nome Cognome penalità problema voto 1 3 5 7 8 penalità ritardo totale coeff. voto in trentesimi (1) (8 pt). Sia T l operatore su

Dettagli

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,

Dettagli

Teorema Ogni funzione monotona e limitata nell intervallo [a, b] é integrabile

Teorema Ogni funzione monotona e limitata nell intervallo [a, b] é integrabile ALCUNI COMPLEMENTI TEORICI Tra le classi di funzioni integrabili secondo Riemann, oltre alle funzioni continue (Paragrafo 66 del libro di testo), ci sono le funzioni monotone (limitate): Teorema Ogni funzione

Dettagli

= 0 Ciascuna frazione tende ad x x 4 2 cos x lim x = il secondo addendo del numeratore è una funzione x (cos sin x 3 1) cos(x π 2 )

= 0 Ciascuna frazione tende ad x x 4 2 cos x lim x = il secondo addendo del numeratore è una funzione x (cos sin x 3 1) cos(x π 2 ) + sen x Es. lim x = il numeratore tende ad un numero positivo, il x 4 denominatore tende a zero. x 4 lim x = il denominatore ha grado maggiore del numeratore. x 8 + x sen x lim x +( + x) sen x = lim x

Dettagli

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni Soluzioni dello scritto di Analisi Matematica II - /7/9 C.L. in Matematica e Matematica per le Applicazioni Proff. K. Payne, C. Tarsi, M. Calanchi Esercizio. a La funzione f è limitata e essendo lim fx

Dettagli

1) D0MINIO FUNZIONE. Determinare il dominio della funzione f (x) = 4 x 2 4x + 3 x 2 6x + 8 Deve essere. x 2 6x + 5 (x 1) (x 5)

1) D0MINIO FUNZIONE. Determinare il dominio della funzione f (x) = 4 x 2 4x + 3 x 2 6x + 8 Deve essere. x 2 6x + 5 (x 1) (x 5) ) DMINIO FUNZIONE Determinare il dominio della funzione f (x) = x x + x x + 8 x x + (x ) (x ) Deve essere = quindi x (, ] (, ] (, + ). x x + 8 (x ) (x ) Determinare il dominio della funzione f (x) = x

Dettagli

1 n 1. n + 1. n=1 N+1. n=1. n=1 N N + 1.

1 n 1. n + 1. n=1 N+1. n=1. n=1 N N + 1. 44 Roberto Tauraso - Analisi 2 e quindi la somma parziale s N è uguale a N N s N n(n + ( n n + n N n n N+ n n N +. n2 N n N n n + dove nell ultimo passaggio si sono annullati tutti i termini opposti tranne

Dettagli

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013 Prova scritta del 24 gennaio 2013 Esercizio 1. Sia Ω R 3 un insieme misurabile secondo Lebesgue e di misura finita. Sia {f n } n N una successione di funzioni f n : Ω R misurabili e tali che 1) f n (x)

Dettagli

3. Serie di Fourier Esercizi

3. Serie di Fourier Esercizi 3. Serie di Fourier Esercizi http://eulero.ing.unibo.it/~barozzi/mi2/pdf/mi2-cap.3-ese.pdf 3.. Polinomi di Fourier 3.2. Serie di Fourier: convergenza puntuale 3.2-. Si dimostri che la serie (v. esempio

Dettagli

Corso di Laurea in Matematica I prova intermedia di Analisi Matematica 3

Corso di Laurea in Matematica I prova intermedia di Analisi Matematica 3 Corso di Laurea in Matematica I prova intermedia di Analisi Matematica 3 12 novembre 2015 1. Sia f : [0, 2π[ R una funzione decrescente e regolare (C 1 a tratti), prolungata poi per periodicità su tutto

Dettagli

INTRODUZIONE ALLE SERIE DI FOURIER REALI E COMPLESSE

INTRODUZIONE ALLE SERIE DI FOURIER REALI E COMPLESSE INTRODUZIONE ALLE SERIE DI FOURIER REALI E COMPLESSE 1. Nozioni geometriche e definizioni di base Prendiamo in esame funzioni periodiche a valori reali e complesse, quindi funzioni f : R R, o f : R C tali

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 27 giugno 2017 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

Esercizi svolti su serie di Fourier

Esercizi svolti su serie di Fourier Esercizi svolti su serie di Fourier Esercizio. (Onda quadra. Determinare i coefficienti di Fourier della funzione x [, f(x = x [, prolungata a una funzione -periodica su R (d ora in poi denoteremo con

Dettagli

PROVE SCRITTE DI ANALISI MATEMATICA II (V.O.), ANNO 2002

PROVE SCRITTE DI ANALISI MATEMATICA II (V.O.), ANNO 2002 PROVE SCRITTE DI ANALISI MATEMATICA II (V.O.), ANNO 22 Prova scritta del 1/1/22 Si esamini la serie di funzioni: 1 log x (e n + n), definita per x IR. Si determini l insieme S in cui tale serie converge,

Dettagli

Appunti di ANALISI MATEMATICA II Corso di Laurea Triennale in Matematica

Appunti di ANALISI MATEMATICA II Corso di Laurea Triennale in Matematica Appunti di ANALISI MATEMATICA II Corso di Laurea Triennale in Matematica Umberto Massari Anno accademico 3-4 SUCCESSIONI E SERIE DI FUNZIONI. Successioni di funzioni: convergenza puntuale ed uniforme Sia

Dettagli

PROVE SCRITTE DI ANALISI MATEMATICA I(N.O.), ANNO 2002/03

PROVE SCRITTE DI ANALISI MATEMATICA I(N.O.), ANNO 2002/03 PROVE SCRITTE DI ANALISI MATEMATICA I(N.O.), ANNO / Prova scritta del 6// Denotato con a il numero delle lettere del nome, si consideri la serie nx + cos nx a nx, per x IR, e si determini per quali valori

Dettagli

Serie e Trasformata di Fourier

Serie e Trasformata di Fourier Serie e Trasformata di Fourier Corso di Analisi Funzionale Prof. Paolo Nistri Cancelli, D Angelo, Giannetti Polinomio di Fourier Si consideri la successione costituita dalle restrizioni delle funzioni

Dettagli

Quesito 1 (1/0/-0.25 punti)

Quesito 1 (1/0/-0.25 punti) NOME COGNOME Politecnico di Milano Analisi Matematica 1 Anno Accademico 017-018 Prof. Ettore Lanzarone Appello febbraio 018 Parte A: punteggio 6/30; soglia minima per passare la prova /30 ogni risposta

Dettagli

Modelli e Metodi Matematici della Fisica. S1/AC

Modelli e Metodi Matematici della Fisica. S1/AC Modelli e Metodi Matematici della Fisica. S/AC Filippo Cesi 2 Nome Cognome Devo verbalizzare questo esame come (fare una croce): 2 CFU (AA 2-) 6 CFU (solo anal. funzionale) 6 CFU (solo anal. complessa)

Dettagli

PROVE SCRITTE DI ANALISI MATEMATICA I, ANNO 2015/16

PROVE SCRITTE DI ANALISI MATEMATICA I, ANNO 2015/16 PROVE SCRITTE DI ANALISI MATEMATICA I, ANNO 5/6 Prova scritta del //6 Si studi, al variare di x, il comportamento della serie n= n Ax n Ax, dove A denota il numero delle lettere del nome. Si studi la funzione

Dettagli

Analisi Matematica 1 Foglio 1 Lunedì 3 ottobre. f(x) = log x 2 6x + 5.

Analisi Matematica 1 Foglio 1 Lunedì 3 ottobre. f(x) = log x 2 6x + 5. Analisi Matematica Foglio Lunedì 3 ottobre Esercizio. Trovare il dominio naturale della funzione f data da ( ) f(x) = log x 2 6x + 5. Esercizio 2. Dire quali tra le seguenti funzioni sono iniettive :.

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria Formule di Taylor Ottobre 2012

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria Formule di Taylor Ottobre 2012 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it Formule di Taylor Ottobre 2012 Indice 1 Formule di Taylor 1 1.1 Il polinomio di Taylor...............................

Dettagli

ANALISI MATEMATICA L-C, B-S

ANALISI MATEMATICA L-C, B-S ANALISI MAEMAICA L-C, B-S 25-6 SERIE DI FOURIER MASSIMO CICOGNANI Per la pubblicazione in rete di queste dispense si deve ringraziare Marco Frison che le ha trascritte interamente in Latex 1 Lo spazio

Dettagli

Capitolo 1 ANALISI COMPLESSA

Capitolo 1 ANALISI COMPLESSA Capitolo ANALISI COMPLESSA .6 Calcolo di integrali definiti mediante il teorema dei residui Il teorema dei residui (.33) è di grande utilità perché permette non solo di calcolare integrali naturalmente

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2013/2014 M. Tumminello, V. Lacagnina e

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1 Analisi Matematica I per Ingegneria Gestionale, a.a. 206-7 Scritto del secondo appello, febbraio 207 Testi Prima parte, gruppo.. Trovare le [0, π] che risolvono la disequazione sin(2) 2. 2. Dire se esistono

Dettagli

Integrali (M.S. Bernabei & H. Thaler)

Integrali (M.S. Bernabei & H. Thaler) Integrali (M.S. Bernabei & H. Thaler) Integrali. Motivazione Che cos é un integrale? Sia f 0 e limitata b a f ( x) dx area f ( x, y) dxdy volume Definizione di integrale: b a dove f ( x) dx lim n n k b

Dettagli

Analisi e Geometria 1 - Seconda Prova - 2 Febbraio 2016 Terza parte (Compito A)

Analisi e Geometria 1 - Seconda Prova - 2 Febbraio 2016 Terza parte (Compito A) Politecnico di Milano, Scuola di Ingegneria Industriale e dell Informazione Analisi e Geometria 1 - Seconda Prova - 2 Febbraio 216 Terza parte (Compito A) Sia data, per ogni valore del parametro reale

Dettagli

n! n n. n=1 an = L [0, + ] Se L = 1 il criterio non dà una risposta e la serie potrebbe sia convergere che divergere. 2 n2. n 1

n! n n. n=1 an = L [0, + ] Se L = 1 il criterio non dà una risposta e la serie potrebbe sia convergere che divergere. 2 n2. n 1 46 Roberto Tauraso - Analisi 2 Esempio 3.6 Determinare il carattere della serie Applichiamo il criterio del rapporto: n n. a n+ a n (n +! nn (n + nn (n + n+ (n + n n n+ (n + ( n + n e. n Dato che e

Dettagli

ANALISI MATEMATICA 1 ESERCIZI ASSEGNATI IN AULA O A CASA Corso di Laurea in Matematica aa 2003/04 01/03/04

ANALISI MATEMATICA 1 ESERCIZI ASSEGNATI IN AULA O A CASA Corso di Laurea in Matematica aa 2003/04 01/03/04 ANALISI MATEMATICA ESERCIZI ASSEGNATI IN AULA O A CASA Corso di Laurea in Matematica aa 2003/04 0/03/04 Esercizio. Calcolare la somma della serie ( 2 k ). 3 k 2 k Esercizio 2. Scrivere sotto forma di frazione

Dettagli

15 LIMITI DI FUNZIONI

15 LIMITI DI FUNZIONI 5 LIMITI DI FUNZIONI Estendiamo la nozione di ite a funzioni reali di variabile reale. Definizione (caratterizzazione per successioni) Si ha f(x) = L (x 0, L R) se e solo se per ogni successione a n x

Dettagli

Analisi Matematica 3, a.a Scritto del quinto appello, 11 settembre 2019 Testi 1

Analisi Matematica 3, a.a Scritto del quinto appello, 11 settembre 2019 Testi 1 Scritto del quinto appello, 11 settembre 019 Testi 1 1. a) Dato u L 1 R), sia vx) := u x); esprimere ˆv in termini di û. b) Caratterizzare le funzioni u L 1 R) tali che û è una funzione dispari a valori

Dettagli

è un segnale periodico di periodo T0 1 equazioni di analisi e di sintesi stabiliscono

è un segnale periodico di periodo T0 1 equazioni di analisi e di sintesi stabiliscono PROPRIEA ELEMENARI Se x( t) è un segnale periodico di periodo 0 di classe C 1 -tratti e normalizzato, le equazioni di analisi e di sintesi stabiliscono una corrispondenza fra x( t) e la sequenza dei suoi

Dettagli

3. (Punti 8) Si consideri l integrale improprio. x n dx, n N.

3. (Punti 8) Si consideri l integrale improprio. x n dx, n N. Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA Prova scritta del 4 febbraio 27 Fila. Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 9) Data l

Dettagli

13 LIMITI DI FUNZIONI

13 LIMITI DI FUNZIONI 3 LIMITI DI FUNZIONI Estendiamo la nozione di ite a funzioni reali di variabile reale. Definizione caratterizzazione per successioni) Si ha fx) = L x 0, L R) se e solo se per ogni successione a n x 0 con

Dettagli

Analisi 4 - SOLUZIONI (15/07/2015)

Analisi 4 - SOLUZIONI (15/07/2015) Corso di Laurea in Matematica Analisi 4 - SOLUZIONI (5/7/5) Docente: Claudia Anedda ) Calcolare l area della superficie totale della regione di spazio limitata, interna al paraboloide di equazione x +y

Dettagli

f n (x) 3 1. x Essendo g(x) = 3 1

f n (x) 3 1. x Essendo g(x) = 3 1 Secondo esonero di Analisi eale 6//9 a.a. 8-9 ) Studiare la convergenza in L p ((, )), p +, della successione di funzioni cos(nx) e nx f n (x) = 3. x Si vede facilmente che la successione f n converge

Dettagli

Soluzioni terzo compitino analisi matematica

Soluzioni terzo compitino analisi matematica Soluzioni terzo compitino analisi matematica 23 marzo 208 Esercizio. Calcolare, se esiste, Dimostrazione. Sia cos x F x = x+sin x x sin x x+sin x x sin x cos t ln + tdt. cos t ln + tdt, notiamo subito

Dettagli

z i z + 1 z + 1 3, da cui, ponendo come al solito z 2i z 2i 1, da cui si ricava x y. ln(7) + i(π + 2kπ). sin z = 3.

z i z + 1 z + 1 3, da cui, ponendo come al solito z 2i z 2i 1, da cui si ricava x y. ln(7) + i(π + 2kπ). sin z = 3. METODI MATEMATICI per l INGEGNERIA PRIMA PROVA IN ITINERE del 9 novembre ) Determinare l insieme di convergenza della serie n 3 n ( ) n z i z + precisando se è aperto o chiuso. ( ) z i Soluzione. Ponendo

Dettagli

Metodi Matematici per l Ingegneria (Prof. Ugo Gianazza) Esercizi in preparazione alla I prova in itinere

Metodi Matematici per l Ingegneria (Prof. Ugo Gianazza) Esercizi in preparazione alla I prova in itinere Metodi Matematici per l Ingegneria Prof. Ugo Gianazza Esercizi in preparazione alla I prova in itinere Dott. Antonio Marigonda Pavia, 9 Novembre 7 Integrali di funzioni trigonometriche Esercizio.. Calcolare

Dettagli

Modelli e Metodi Matematici della Fisica. S1/AC

Modelli e Metodi Matematici della Fisica. S1/AC Modelli e Metodi Matematici della Fisica. S1/AC Cesi A.A. 9 1 Nome Cognome 6 CFU (AA 9-1) 8 CFU 4 CFU (solo analisi complessa) 4 + 6 CFU altro: problema voto 1 4 6 7 8 9 Test totale coeff. voto in trentesimi

Dettagli

Prova scritta di Analisi Matematica T-1, 19/12/2017. MATRICOLA:...NOME e COGNOME:...

Prova scritta di Analisi Matematica T-1, 19/12/2017. MATRICOLA:...NOME e COGNOME:... Prova scritta di Analisi Matematica T-1, 19/12/2017 MATRICOLA:...NOME e COGNOME:............................................. Ingegneria chimica e biochimica Ingegneria elettronica e telecomunicazioni

Dettagli

Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema PIPPO COGNOME: NOME: MATR.: 1) 7; C: x sin(x) dx è A: π ; B:2 ; C: 0 ; D: π/2; E: N.A.

Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema PIPPO COGNOME: NOME: MATR.: 1) 7; C: x sin(x) dx è A: π ; B:2 ; C: 0 ; D: π/2; E: N.A. Prima prova in Itinere Ist. Mat., Prima parte, Tema PIPPO 4 aprile 7 COGNOME: NOME: MATR.: ) Una primitiva di x 5 e x3 è A: e x3 (x 3 ); B: e x3 (x 5 ) 7; C: ex3 (x 3 + ) D: ex3 (x 3 ) + 7; E: N.A. ) Il

Dettagli

Analisi Reale e Complessa - a.a. 2008/2009

Analisi Reale e Complessa - a.a. 2008/2009 Terzo appello Esercizio Analisi Reale e Complessa - a.a. 8/9 Sia (a) Si provi che f L (R); f(x) eix x i. (b) Si calcoli con metodi di variabile complessa la trasformata di Fourier di f. (a) Si osservi

Dettagli

Studio Qualitativo di Funzione

Studio Qualitativo di Funzione Studio Qualitativo di Funzione Reperire un certo numero di informazioni per descrivere a livello qualitativo l andamento del grafico di una funzione f 1. campo di esistenza (cioè, l insieme di definizione)

Dettagli

[a n cos(nx) + b n sin(nx)] (35) n=1

[a n cos(nx) + b n sin(nx)] (35) n=1 5 Serie di Fourier Sia f : R R una funzione periodica di periodo π, cioè f(x + π) = f(x) x R. Vogliamo rappresentare la funzione f tramite funzioni trigonometriche elementari aventi la stessa proprietà

Dettagli

Esercizi di riepilogo 2: soluzioni ( Verifica di analisi funzionale e serie di Fourier)

Esercizi di riepilogo 2: soluzioni ( Verifica di analisi funzionale e serie di Fourier) Esercizi di riepilogo 2: soluzioni ( Verifica di analisi funzionale e serie di Fourier) Spazi Vettoriali e Funzionali 1. Risposte: (a) Spazio vettoriale complesso. (b) Spazio vettoriale reale. (c) Non

Dettagli

SUCCESSIONI E SERIE NUMERICHE E DI FUNZIONI

SUCCESSIONI E SERIE NUMERICHE E DI FUNZIONI SERIE NUMERICHE Si consideri una successione di elementi. Si definisce serie associata ad la somma Per ogni indice della successione, si definisce successione delle somme parziali associata a la somma

Dettagli

Esercitazione di riepilogo su serie di funzioni, e in particolare serie di Fourier

Esercitazione di riepilogo su serie di funzioni, e in particolare serie di Fourier Esercitazione di riepilogo su serie di funzioni, e in particolare serie di Fourier Serie di funzioni e convergenza totale Tenere presente: De nizione di convergenza puntuale e convergenza totale per una

Dettagli

Analisi Matematica 1 Appello straordinario

Analisi Matematica 1 Appello straordinario marzo 09 Testo A. Sia ν : N N una funzione strettamente crescente. Allora sicuramente a n N, νn) n b n N: νn) > n. Sia a n ) n N successione tale che n N: ε > 0 n > n, a n a < ε. Allora sicuramente a a

Dettagli

Esercizi sulla trasformata di Fourier di distribuzioni raccolti dai temi d esame

Esercizi sulla trasformata di Fourier di distribuzioni raccolti dai temi d esame Esercizi sulla trasformata di Fourier di distribuzioni raccolti dai temi d esame Esercizio Sia T > 0 e f : R R la funzione reale T -periodica la cui restrizione all intervallo [0, T ] vale f(t) := t(t

Dettagli

ANALISI UNO (A.A. 2008/2009, Docente: S. Finzi Vita) Programma svolto settimanalmente

ANALISI UNO (A.A. 2008/2009, Docente: S. Finzi Vita) Programma svolto settimanalmente ANALISI UNO (A.A. 2008/2009, Docente: S. Finzi Vita) Programma svolto settimanalmente 2-6 Marzo (8 ore) Gli assiomi dei numeri reali. Osservazioni sull assioma di continuità: altre formulazioni e loro

Dettagli

Successioni e serie di funzioni

Successioni e serie di funzioni Capitolo 2 Successioni e serie di funzioni In questo capitolo studiamo le successioni e le serie di funzioni. quindi particolari metodi per approssimare una data funzione Studiamo CAPITOLO 2. SUCCESSIONI

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Secondo compitino e primo appello, 12 gennaio 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Secondo compitino e primo appello, 12 gennaio 2017 Testi 1 Secondo compitino e primo appello, gennaio 7 Testi Prima parte, gruppo.. Determinare l insieme di definizione della funzione arcsin(e ).. Determinare lo sviluppo di Taylor di ordine 4 (in ) della funzione

Dettagli

5.3 La δ di Dirac e cenni alle distribuzioni

5.3 La δ di Dirac e cenni alle distribuzioni 5.3 La δ di Dirac e cenni alle distribuzioni Le funzioni e iλx, con λ R, sono autofunzioni non quadrato sommabili dell operatore autoaggiunto id/ e costituiscono una base generalizzata in L 2 (R nel senso

Dettagli

Esonero AM220, 2019, con Soluzioni

Esonero AM220, 2019, con Soluzioni Esonero AM22, 29, con oluzioni Ogni risposta va accuratamente motivata. Non si possono usare: libri, appunti, congegni elettronici, etc.. ia := { (x, y, z) R 3, tali che x 2 + y 2 4, z = x 2 + y 2 }. ia

Dettagli

Sviluppo in Serie di Fourier

Sviluppo in Serie di Fourier Capitolo Sviluppo in Serie di Fourier. Proprietà della Serie di Fourier Un segnale reale tempo continuo e periodico di periodo, per il quale sono valide le condizioni di Dirichlet vedi pag. 4 [], può essere

Dettagli

La serie di Fourier. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro

La serie di Fourier. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro La serie di Fourier Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici Gianni Borghesan e Giovanni Marro Indice Introduzione. Notazione............................. Analisi spettrale

Dettagli

L ANALISI ARMONICA DI UN SEGNALE PERIODICO

L ANALISI ARMONICA DI UN SEGNALE PERIODICO L ANALISI ARMONICA DI UN SEGNALE PERIODICO Il segnale elettrico è una grandezza fisica (in genere una tensione) che varia in funzione del tempo e che trasmette un'informazione. Quasi tutti i segnali che

Dettagli

f(x) := lim f n (x) Se introduciamo la norma uniforme di una funzione f (sull insieme A) mediante := sup f(x)

f(x) := lim f n (x) Se introduciamo la norma uniforme di una funzione f (sull insieme A) mediante := sup f(x) Capitolo 2 Successioni e serie di funzioni 2. Convergenza puntuale e orme Supponiamo che sia un sottoinsieme di R N e supponiamo che per ogni intero n sia data una funzione f n : R M. Diremo in questo

Dettagli

ANALISI MATEMATICA 1. (Ingegneria Industriale, corsi A e B) Esempi di prove scritte

ANALISI MATEMATICA 1. (Ingegneria Industriale, corsi A e B) Esempi di prove scritte ANALISI MATEMATICA 1 (Ingegneria Industriale, corsi A e B) Esempi di prove scritte Rispondere ai quesiti a risposta multipla Qi, risolvere gli esercizi Ei, enunciare le definizioni Di e svolgere le dimostrazioni

Dettagli

Studio qualitativo del grafico di una funzione

Studio qualitativo del grafico di una funzione Studio qualitativo del grafico di una funzione Obiettivo: ottenere informazioni per descrivere qualitativamente l andamento del grafico di una funzione f campo di esistenza (cioè, l insieme di definizione)

Dettagli

CALCOLO DEI COEFFICIENTI DI FOURIER CON SOLI SENI O COSENI nell intervallo [-π ; π ]

CALCOLO DEI COEFFICIENTI DI FOURIER CON SOLI SENI O COSENI nell intervallo [-π ; π ] CALCOLO DEI COEFFICIENTI DI FOURIER CON SOLI SENI O COSENI nell intervallo [-π ; π ] La costruzione di una qualunque oscillazione complessa a partire dalla sovrapposizione di oscillazioni armoniche semplici

Dettagli

Metodi I Secondo appello

Metodi I Secondo appello Metodi I Secondo appello Chi recupera la prima prova fa la parte A in due ore. Chi recupera la seconda prova fa la parte B in due ore. Chi fa l appello per intero fa A., B., le prime tre domande di A.2

Dettagli

Esame di Fisica Matematica 2, a.a (8/7/2014)

Esame di Fisica Matematica 2, a.a (8/7/2014) Esame di Fisica Matematica 2, a.a. 23-24 (8/7/24) Tempo a disposizione: DUE ORE. Svolgere tutti gli esercizi, che hanno lo stesso nel determinare il voto finale. Scrivere chiaramente e a stampatello nome,

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea (quadriennale) in Fisica a.a. 2002/03

TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea (quadriennale) in Fisica a.a. 2002/03 I seguenti quesiti ed il relativo svolgimento sono coperti dal diritto d autore, pertanto essi non possono essere sfruttati a fini commerciali o di pubblicazione editoriale senza autorizzazione esplicita

Dettagli

Compito di Analisi Matematica, Seconda parte, COGNOME: NOME: MATR.:

Compito di Analisi Matematica, Seconda parte, COGNOME: NOME: MATR.: Compito di Analisi Matematica, Seconda parte, gennaio 9 Tema X COGNOME: NOME: MATR.: Esercizio. ( Determinare al variare di β R la soluzione di y (x + y (x + y(x = e x + x tale che y( = β = y (. ( Al variare

Dettagli