è un segnale periodico di periodo T0 1 equazioni di analisi e di sintesi stabiliscono

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "è un segnale periodico di periodo T0 1 equazioni di analisi e di sintesi stabiliscono"

Transcript

1 PROPRIEA ELEMENARI Se x( t) è un segnale periodico di periodo 0 di classe C 1 -tratti e normalizzato, le equazioni di analisi e di sintesi stabiliscono una corrispondenza fra x( t) e la sequenza dei suoi coefficienti di Fourier. ale corrispondenza è espressa nel seguito mediante la scrittura: x t X k X k

2 1. Linearità. Se x t e x t sono entrambi periodici di () periodo e x t X e x t X k 2 k allora per ogni AB, vale: Ax t + Bx t AX + BX k k

3 2. raslazione (nel tempo). Se x() t è periodico di periodo 0 con x t k allora per ogni t0 il segnale x( t t ) 0 è ancora periodico di periodo e vale : X 0 j2kπf00 t x t t0 e X k

4 Poiché : j 2 k π f 00 e t X = X possiamo dedurre che: k ( j2kπf ) 00 t k k arg Xe = argx 2kπ ft+ 2mπ Una traslazione nei tempi di x( t) non modifica l'ampiezza delle armoniche che lo rappresentano ma ne produce uno sfasamento k 0 0 = argx 2π kf t m k 0 0 km,

5 3. Cambiamento di scala. Se x() t è periodico di periodo 0 con x t X k allora per ogni α 0 il segnale x( αt) è periodico di periodo α e vale : 0 / x αt X k

6 ovvero, se allora: x t () = k = Xe j k f t 2 π o 0 k= Un cambiamento di scala nei tempi non modifica l'ampiezza né la fase delle armoniche mentre ne modifica la frequenza k x α t = Xe k j2kπ α f t

7 Un risultato importante è: eorema (di Parseval). Sia x() t segnale periodico di periodo 0. Se x() t è -tratti e allora: 1 o C k o o /2 /2 Da esso si ottengono: x t 2 2 x() t dt = X k= X k

8 1. enendo conto che, se x t è un segnale C-tratti x 1 o o o /2 /2 () periodico di periodo P x t dt = indica la potenza di x( t), l uguaglianza precedente ha la seguente interessante interpretazione: 2 0

9 Se x() t allora la k-esima armonica della serie: j2kπfot xk t = Xke è anche essa un segnale di periodo 0 la cui potenza è: o /2 o /2 2 j2kπfot P x t dt X e dt k o () = = = x k k o /2 o /2 o / = X dt = o o /2 k k= Xe o k X j k f t 2 π o o k 2 o = X k 2

10 Dunque l uguaglianza del eorema di Parseval 1 o o o /2 /2 2 2 x() t dt = X k= k può essere anche scritta: P x x k k= Ovvero: la potenza del segnale x( t) è uguale alla somma delle potenze delle armoniche che lo compongono = P

11 2. Lemma di Riemann-Lebesgue x t Poiché è C-tratti l integrale 1 o o o /2 /2 x t () 2 dt è convergente. Il eorema di Parseval assicura dunque che la serie k= X k 2 è anch essa convergente.

12 Per tale motivo, la condizione necessaria di convergenza implica che: X k 2 0 k ± ovvero: 2 2 α +β 0 k k k ± e quindi, 1 o /2 () ( k f t) α k = π 0 k ± o o /2 /2 1 o xt dt cos 2 0 () ( k f t) β k = π 0 k ± o o /2 xt dt sin 2 0

13 RASFORMAA DI FOURIER Permette di analizzare in frequenza segnali non periodici. Se x() t è un segnale definito su a valori reali o complessi, la trasformata di Fourier di x( t) è definita formalmente da: f X f e x t dt = j 2πf t () per gli per cui tale integrale converge.

14 L integrale j 2πf t e x t dt è detto: () integrale di Fourier relativo a x( t) Se converge, definisce la funzione di variabile reale X ( f ) che assume in genere valori complessi.

15 Se j 2πft X f = e x( t) dt la funzione X ( f ) è detta: rasformata di Fourier di x( t) (o F-trasformata di x t ) e si scrive X f = Fx f = x f ˆ

16 Se e j2πft x t dt () è convergente si dice anche che: x( t) è trasformabile secondo Fourier (oppure che è F-trasformabile) e si scrive x t X f F

17 Esempio 18. Il segnale: t x() t = rect >0 x(t) 1 1/2 -/2 /2 t è F-trasformabile per ogni f. Infatti: e /2 j2πf t j2πft x t dt () = /2 che è convergente per ogni f. e dt

18 Se f 0 : /2 j2πft X f e dt = /2 t= /2 /2 j2πft j2πft e X f = e dt = = j2πf /2 t= /2 jπf jπf 1 e e sin ( πf ) = = = πf 2 j πf = sinc f

19 f = j2π0t Se 0 : /2 X 0 = e dt= = sinc 0 /2 In conclusione possiamo scrivere che: se t x() t = rect allora X f = sinc f per ogni f o anche: t F rect sinc( f)

20 Vale il seguente: eorema (Condizione sufficiente per F-trasformabilità): Sia x() t un segnale assolutamente integrabile in senso generalizzato su. Allora: X ( f ) è definita per ogni X ( f ) è continua su ; f X ( f ) è limitata in (cioè sup X ( f ) cost) f lim X( f ) = 0 (Lemma di Riemann-Lebesgue) f ±

21 Ricordiamo che: x() t segnale definito su è assolutamente integrabile in senso generalizzato su se: si scrive anche: x() t dt è convergente x t dt () <

22 Esempio 18bis. Il segnale: t x() t = rect >0 x(t) 1 1/2 -/2 /2 è assolutamente integrabile in s. g. su essendo t rect dt = t

23 Il eorema assicura quindi che esso è F- trasformabile per ogni f. Non solo: Assicura pure che X ( f ) è continua e limitata in e che lim X f = 0 f ± Infatti la funzione X ( f ) = sinc( f) determinata nell Esempio 18 verifica tutte queste proprietà.

24 Prima di fare qualche altro esempio di calcolo, osserviamo alcune proprietà della trasformata di Fourier. Poiché è anche ( cos 2 sin 2 ) () X ( f ) = ( πft) j ( πf ) x t dt j 2πf t () X f e x t dt =

25 Cosicché ( cos 2 sin 2 ) () X ( f ) = ( πft) j ( πf ) x t dt ( ) Re X f = cos 2πft x t dt ( ) Im X f = sin 2πft x t dt

26 1. Se x() t è F-trasformabile e pari: Im X f sin 2 ft x t dt 0 dunque è reale. ( ) = π = X ( f ) = 2 cos( 2πft) x( t) dt 0

27 2. Se x() t è F-trasformabile e dispari: Re X f cos 2 ft x t dt 0 dunque ( ) = π = X ( f ) = j2 sin( 2πft) x( t) dt è immaginario puro. 0

28 Esempio 19. Il segnale: t x() t = triang > 0 x(t) 1 - t è assolutamente integrabile in s. g. su essendo, per ovvie considerazioni di tipo geometrico, t triang dt = triang dt = t

29 E quindi F-trasformabile per ogni f. Se f = 0 essendo X t = x t dt= () 0 triang dt è X ( 0) =

30 Poiché x( t) è pari, la sua trasformata è reale ed è del tipo: X ( f ) = 2 cos( 2πft) x( t) dt Poiché 0 x( t) = 0 per t > risulta X t x t = 1 per t 0, () = 2 cos 2πft 1 ( f ) 0 t dt

31 Se f 0, integrando per parti: X t = 2 cos 2πft 1 dt = ( f ) 0 t sin ( 2πft) = πf 1 sin ( 2πft) + 2 dt = 2 πf 0 1 = sin ( 2πft) dt πf 0 t= t= 0

32 1 X ( f ) = sin ( 2π ft) dt = πf 0 1 cos( 2πft) = = πf 2πf t= cos( 2πf ) = = πf 2πf 2 1 2sin πf = π f 2 π f t= 1 cos 2 2sin 2 α = α

33 X ( f ) 2 1 2sin ( πf ) = = πf 2 πf sin ( πf ) = = πf 2 f 2 sinc Riassumendo: per ogni f triang t F sinc 2 f > 0

34 Esempio 20. Il segnale: xt = ute t / x(t) 1 > 0 0 t è assolutamente integrabile in s. g. su essendo t/ t () t/ t/ e ute dt = e dt = = 1/ 0 t/ 1 lim = e = t t= 0

35 E quindi F trasformabile per ogni f. Osserviamo che se f = 0, essendo: è () / 0 = = 0 t X x t dt e dt X ( 0) = E poi:

36 j2πft j2 πft t/ X f e x t dt e e dt Poiché = = = () ( 2 1/ ) = e dt = 0 ( 2 1/ ) π + t j π f + t j f e j2π f + 1/ t 0 t= 0 j2 πft t/ t/ e e = e 0 t risulta X ( f ) = 1 1/ + j2πf () t/ F 1 ute 1/ + j2 π f > 0 cioè f

37 Poniamoci ora il problema inverso: dato il segnale x( t) definito in, per cui è possibile scrivere la trasformata di Fourier: X f e x t dt = j 2πf t () f ( per esempio x( t) assolutamente integrabile in senso generalizzato su )

38 Se a partire da tale funzione costruiamo l integrale: X ( f ) = ( Fx)( f ) j 2πf t e X f df tale integrale converge? e se converge, converge a x( t)?

39 In generale, la sola condizione che x( t) sia assolutamente integrabile in s. g. su non è sufficiente a ciò. Esempio 21 Si è visto che, se allora ma, in tal caso, X f = sinc f t x() t = rect j 2πf t e X f df non è neppure convergente.

40 Si ha invece: eorema (di inversione di Dirichlet). Sia x() t segnale assolutamente integrabile in senso generalizzato su. 1 Se x t è C -tratti allora esiste finito e vale: vp.. e X f df j2 ft vp.. π e X( f) df = ( + ) ( + ) xt xt j2πft 2 t

41 Ricordiamo che: per una funzione ϕ( u) definita su si definisce vp.. ϕ u du= lim ϕ u du r r r (valor principale dell integrale). Se: ϕ u du è convergente, allora vp.. ϕ u du= ϕ u du

42 Il eorema dice che, se x() t soddisfa le ipotesi indicate e X ( f ) = ( Fx)( f ) allora x( t ) 0 se t è un punto nel quale 0 x t è continuo; ( + ) ( ) 0 + xt 0 xt j2 ft vp.. π e X( f) df se è un punto nel quale 2 t 0 converge a: x( t) ha una discontinuità di tipo salto.

43 Se dunque x( t) è un segnale assolutamente 1 integrabile in s. g. su, di classe C -tratti e normalizzato, e X f e x t dt j 2πft = è la sua F-trasformata, Allora X ( f ) = ( Fx)( f ) j2 ft vp.. π e X f df xt = ()

44 Esempio 21bis x t t = rect > 0 Si è visto che, se () allora X f = sinc f In questo caso non è convergente. sinc j2πf t e f df

45 t Poiché rect è: assolutamente integrabile in s. g. su è C 1 -tratti è normalizzato il eorema di Dirichlet permette di concludere che per ogni t 2.. j π ft sinc = rect t vp e f df

46 Esempio 22 Si è visto che, se allora t () = triang ( > 0) x t X f = sinc f 2 In questo caso è convergente. sinc j2πf t 2 e f df

47 Infatti: per f 1 si ha: 2 2 sin πf 1 X f = sinc ( f) = πf π f, 1 e 1,+ [ 1,1] X ( f ) é integrabile in perché ivi continua; e dunque, per il criterio del confronto, è assolutamente integrabile in s. g. anche in

48 Ne segue che: X su f è assolutamente integrabile in s. g. Perciò:.. sinc = sinc π j2πf t 2 j2 f t 2 vp e f df e f df

49 Poiché inoltre triang t è: assolutamente integrabile in s. g. su 1 è C -tratti è continuo L assoluta integrabilità di sinc f ed il eorema di Dirichlet permettono di concludere che per ogni t 2 j 2 ft t 2 π e sinc f df = triang

50 ANALISI IN FREQUENZA Se x( t) è un segnale assolutamente integrabile in s. g. su, di classe C 1 -tratti e normalizzato, l espressione integrale che indica la sua trasformata di Fourier = X f e x t dt j 2πf t () f è detta equazione di analisi

51 mentre la sua rappresentazione mediante la formula di inversione () j2πft xt = vp.. e X ( f ) df è detta: equazione di sintesi. (molto spesso nei testi tecnici la scrittura v.p. sparisce )

52 L equazioni di analisi permette di effettuare la cosiddetta analisi in frequenza del segnale. La rappresentazione grafica della funzione a valori complessi X ( f ) avviene per lo più attraverso la rappresentazione delle due funzioni reali f e f : A ϑ A ϑ f = f X f = arg X f f

53 Ricordando che: ( cos 2 sin 2 ) () X ( f ) = ( πft) j ( πf ) x t dt cosicché si verifica facilmente che: Re X f = cos 2πft x t dt ( ) Im X f = sin 2πft x t dt X f = Re X f + jim X f = = Re X f jim X f = X * f

54 Ne segue che: f = f = X * f = f A X A ϑ f = arg f = arg X * f = X = arg X f = f ϑ( ) f Possiamo perciò concludere che: la funzione A( f ) è pari la funzione ϑ( f ) è dispari (e quindi ci basta valutarne i valori solo per f 0)

55 Ovviamente: se X ( f ) è a valori reali (come avviene per esempio se il segnale è pari) oppure se X ( f ) è a valori immaginari (come avviene per esempio se il segnale è dispari) x( t) x( t) si preferisce rappresentare X ( f ) mediante le funzioni Re X f o Im X f (rispettivam.)

Teoria dei Segnali Richiami ai numeri complessi; serie e trasformata di Fourier

Teoria dei Segnali Richiami ai numeri complessi; serie e trasformata di Fourier Teoria dei Segnali Richiami ai numeri complessi; serie e trasformata di Fourier Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria dei Segnali

Dettagli

ANALISI DI FOURIER. 2πk. è periodica di periodo T. Più precisamente, essendo. T x + 2π = cos. s(x) = s x + T ) T +α. f(x) dx

ANALISI DI FOURIER. 2πk. è periodica di periodo T. Più precisamente, essendo. T x + 2π = cos. s(x) = s x + T ) T +α. f(x) dx ANALISI DI FOURIER Sia >. Una funzione f, definita per x R, si dice periodica di periodo, se f(x + = f(x, x R. ( Se una funzione è periodica di periodo, essa è anche periodica di periodo, 3,..., k,....

Dettagli

Teoria dei Segnali. 1 Proprietà della trasformata di Fourier. correlazione tra segnali; autocorrelazione

Teoria dei Segnali. 1 Proprietà della trasformata di Fourier. correlazione tra segnali; autocorrelazione Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it

Dettagli

Jean Baptiste Joseph Fourier ( ) La Trasformata di Fourier. Costruzione della trasformata di Fourier (1/4) Outline. cke i kπt.

Jean Baptiste Joseph Fourier ( ) La Trasformata di Fourier. Costruzione della trasformata di Fourier (1/4) Outline. cke i kπt. Jean Baptiste Joseph Fourier (1768 1830) La Trasformata di Fourier (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi DIMS Università di Trento anno accademico 2007/2008 http://www-groups.dcs.st-and.ac.uk/

Dettagli

Serie di Fourier. Hynek Kovarik. Analisi Matematica 2. Università di Brescia

Serie di Fourier. Hynek Kovarik. Analisi Matematica 2. Università di Brescia Serie di Fourier Hynek Kovarik Università di Brescia Analisi Matematica 2 Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 1 / 37 Polinomi trigonometrici Definizione Si dice

Dettagli

Serie di Fourier Richiami di teoria. Funzioni periodiche. Ci poniamo il problema dello sviluppo in serie di Fourier per funzioni f 1 : R R

Serie di Fourier Richiami di teoria. Funzioni periodiche. Ci poniamo il problema dello sviluppo in serie di Fourier per funzioni f 1 : R R Serie di Fourier Richiami di teoria Funzioni periodiche Ci poniamo il problema dello sviluppo in serie di Fourier per funzioni f 1 : R R 2π-periodiche. Esempio 1. Consideriamo il prolungamento 2π-periodico

Dettagli

Laboratorio II, modulo Segnali periodici (cfr.

Laboratorio II, modulo Segnali periodici (cfr. Laboratorio II, modulo 2 2015-2016 Segnali periodici (cfr. http://wpage.unina.it/verdoliv/tds/appunti/appunti_03.pdf) Alcune definizioni (1) Segnale periodico: x(t) = x(t+t 0 ) per qualunque t Segnale

Dettagli

SEGNALI E SISTEMI Ripasso per Io Compitino

SEGNALI E SISTEMI Ripasso per Io Compitino SEGNALI E SISTEMI Ripasso per Io Compitino Esercizio 1 Si consideri il segnale a tempo continuo x(t) = 2 ( 1) k 1 1 sin(kt), t R. k=1 k a. Trovare il periodo fondamentale T p di x(t) e dire se il segnale

Dettagli

ANALISI DI FOURIER. Segnali tempo continui:

ANALISI DI FOURIER. Segnali tempo continui: ANALISI DI FOURIER Segnali tempo continui: Segnali aperiodici Introduzione alla Trasformata Continua di - Derivazione intuitiva della TCF a partire dallo Sviluppo in Serie di - Spettro di ampiezza e fase

Dettagli

Dispense del corso di Analisi II

Dispense del corso di Analisi II Dispense del corso di Analisi II versione preliminare Paolo Tilli Dipartimento di Matematica Politecnico di Torino email: paolo.tilli@polito.it 8 gennaio 5 Capitolo 6 La trasformata di Fourier 6. Introduzione

Dettagli

Segnali e trasformate

Segnali e trasformate Segnali e trasformate - Corso di Laurea in Ingegneria Meccanica Segnali e trasformate DEIS-Università di Bologna Tel. 5 2932 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi Segnali e trasformate

Dettagli

ANALISI VETTORIALE COMPITO IN CLASSE DEL 8/11/2013

ANALISI VETTORIALE COMPITO IN CLASSE DEL 8/11/2013 ANALISI VETTORIALE COMPITO IN CLASSE DEL 8//3 Premessa (Cfr. gli Appunti di Analisi Vettoriale / del Prof. Troianiello) Nello studio degli integrali impropri il primo approccio all utilizzo del criterio

Dettagli

Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2

Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2 Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it

Dettagli

La trasformata di Laplace

La trasformata di Laplace La trasformata di Laplace (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi DIMS Universitá di Trento anno accademico 2005/2006 La trasformata di Laplace 1 / 34 Outline 1 La trasformata di

Dettagli

Introduzione all Analisi Armonica. y = Dsin 2 ft

Introduzione all Analisi Armonica. y = Dsin 2 ft Introduzione all Analisi Armonica Analisi del suono: Suono Semplice (Diapason) Le molecole dell aria a seguito di una compressione e rarefazione oscillano attorno alla posizione di riposo, con legge: (

Dettagli

Formulario di Teoria dei Segnali 1

Formulario di Teoria dei Segnali 1 Formulario di eoria dei Segnali Parte : Segnali determinati his documentation was prepared with L A EX by Massimo Barbagallo formulario di teoria dei segnali Proprietà dei segnali determinati Energia,

Dettagli

Serie di Fourier - Esercizi svolti

Serie di Fourier - Esercizi svolti Serie di Fourier - Esercizi svolti Esercizio 1 È data la funzione f con domf) = R, periodica di periodo, tale che onda quadra) 1 se < x < fx) = se x = e x = 1 se < x < 1) 1 Calcolare i coefficienti di

Dettagli

La Trasformata di Fourier

La Trasformata di Fourier La Trasformata di Fourier (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi DIMS Università di Trento anno accademico 2007/2008 La Trasformata di Fourier 1 / 43 Jean Baptiste Joseph Fourier

Dettagli

Laboratorio II, modulo

Laboratorio II, modulo Laboratorio II, modulo 2 206-207 Banda di un segnale e filtri (cfr. http://wpage.unina.it/verdoliv/tds/appunti/appunti_03.pdf e http://wpage.unina.it/verdoliv/tds/appunti/appunti_04.pdf e http://wpage.unina.it/verdoliv/tds/appunti/appunti_05.pdf

Dettagli

Formule di Teoria dei Segnali

Formule di Teoria dei Segnali Formule di trigonometria Formule di eoria dei Segnali L.Verdoliva cos(α + β = cos α cos β sin α sin β sin(α + β = sin α cos β + sin β cos α cos α = + cos α sin α = cos α sin α = sin α cos α cos α = cos

Dettagli

Corso di Laurea in Matematica Prova di Analisi in più variabili 2

Corso di Laurea in Matematica Prova di Analisi in più variabili 2 orso di Laurea in Matematica Prova di Analisi in più variabili 1 febbraio 15 1. Sia f : R una funzione π-periodica e tale che f L 1 π, π. Dimostrare la seguente formula fn = 1 [ft ft π ] 4π n e int dt

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Michele Campiti Prove scritte di Analisi Matematica 1 Ingegneria Industriale a.a. 2007 2008 y f 1 g 0 x La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica 1 per Ingegneria

Dettagli

Esponenziale complesso

Esponenziale complesso Esponenziale complesso Paola Rubbioni Analisi Matematica II - CdL in Ingegneria Informatica ed Elettronica a.a. 2016/2017 1 Serie nel campo complesso Per fornire il concetto di serie nel campo complesso

Dettagli

SERIE NUMERICHE FAUSTO FERRARI

SERIE NUMERICHE FAUSTO FERRARI SERIE NUMERICHE FAUSTO FERRARI Materiale propedeutico alle lezioni di Complementi di Analisi Matematica ed Elementi di Calcolo delle probabilità per il corso di Laurea in Ingegneria per la parte di Elementi

Dettagli

SEGNALI E SISTEMI Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a ) Homework assignment #2 Testo e Soluzione

SEGNALI E SISTEMI Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a ) Homework assignment #2 Testo e Soluzione SEGNALI E SISTEMI Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a. 00-005) Homework assignment # Testo e Soluzione Esercizio Si consideri l equazione differenziale ordinaria, lineare a coefficienti costanti

Dettagli

Soluzione esercizi 28 ottobre 2011

Soluzione esercizi 28 ottobre 2011 ANALISI Soluzione esercizi 8 ottobre 0 4.. Esercizio. Siano α e β due numeri reali tali che la loro somma e la loro differenza siano razionali: provare che allora essi sono entrambi razionali. Il teorema

Dettagli

Convergenza puntuale ed uniforme delle serie di Fourier

Convergenza puntuale ed uniforme delle serie di Fourier Convergenza puntuale ed uniforme delle serie di Fourier 8 aprile 009 In questi appunti prendiamo in considerazione funzioni di variabile reale che possono assumere però valori complessi. Una funzione F

Dettagli

Analisi Matematica 3/Analisi 4 - SOLUZIONI (20/01/2016)

Analisi Matematica 3/Analisi 4 - SOLUZIONI (20/01/2016) Corso di Laurea in Matematica Docente: Claudia Anedda Analisi Matematica 3/Analisi 4 - SOLUZIONI (//6) ) i) Dopo averla classificata, risolvere l equazione differenziale tẋ x = t cos(t), t >. ii) Scrivere

Dettagli

Analisi Matematica 3 (Fisica) Prova scritta del 17 febbraio 2012 Un breve svolgimento delle versioni A

Analisi Matematica 3 (Fisica) Prova scritta del 17 febbraio 2012 Un breve svolgimento delle versioni A Analisi Matematica 3 (Fisica) Prova scritta del 7 febbraio Un breve svolgimento delle versioni A Vi sarò grato per la segnalazione di eventuali errori. Esercizio. (a) Dimostrare che l equazione () (3 +

Dettagli

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni Soluzioni dello scritto di Analisi Matematica II - /7/9 C.L. in Matematica e Matematica per le Applicazioni Proff. K. Payne, C. Tarsi, M. Calanchi Esercizio. a La funzione f è limitata e essendo lim fx

Dettagli

( 1 π. (a n cos nt + b n sin nt) t R (3)

( 1 π. (a n cos nt + b n sin nt) t R (3) 7. SERIE TRIGONOMETRICHE E SERIE DI FOURIER Definizione 1. L p (R), p [1, + ), denota la classe di tutte le funzioni f : R C, misurabili secondo Lebesgue, periodiche con periodo per le quali il funzionale

Dettagli

Introduzione ai segnali determinati

Introduzione ai segnali determinati Teoria dei segnali Unità 1 Introduzione ai segnali determinati Introduzione ai segnali determinati Sviluppo in serie di Fourier Trasformata di Fourier 005 Politecnico di Torino 1 Introduzione ai segnali

Dettagli

PROVE SCRITTE DI ANALISI MATEMATICA I(N.O.), ANNO 2002/03

PROVE SCRITTE DI ANALISI MATEMATICA I(N.O.), ANNO 2002/03 PROVE SCRITTE DI ANALISI MATEMATICA I(N.O.), ANNO / Prova scritta del 6// Denotato con a il numero delle lettere del nome, si consideri la serie nx + cos nx a nx, per x IR, e si determini per quali valori

Dettagli

Numeri complessi. Hynek Kovarik. Università di Brescia. Analisi Matematica 1

Numeri complessi. Hynek Kovarik. Università di Brescia. Analisi Matematica 1 Numeri complessi Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) I numeri complessi Analisi Matematica 1 1 / 34 Introduzione L introduzione dei numeri complessi

Dettagli

SEGNALI A TEMPO CONTINUO. Segnali a energia finita. t un segnale a energia finita e a tempo continuo. L energia specifica 2 *

SEGNALI A TEMPO CONTINUO. Segnali a energia finita. t un segnale a energia finita e a tempo continuo. L energia specifica 2 * Capitolo IV CARAERIZZAZIOE EERGEICA DEI SEGALI SEGALI A EMO COIUO Segnali a energia finita IV. Densità spettrale di energia. Sia s() t un segnale a energia finita e a tempo continuo. L energia specifica

Dettagli

Serie trigonometriche e di Fourier Ci occuperemo di serie le cui ridotte N-esime sono polinomi trigonometrici di grado (o ordine) N:

Serie trigonometriche e di Fourier Ci occuperemo di serie le cui ridotte N-esime sono polinomi trigonometrici di grado (o ordine) N: Serie trigonometriche e di Fourier Ci occuperemo di serie le cui ridotte N-esime sono polinomi trigonometrici di grado (o ordine) N: S N (x) = N n=0 (a n cos (nx) + b n sin (nx)), a n, b n R (periodiche

Dettagli

Circuiti a tempo discreto Raffaele Parisi

Circuiti a tempo discreto Raffaele Parisi Università di Roma La Sapienza Laurea specialistica in Ingegneria Elettronica Circuiti a tempo discreto Raffaele Parisi : Risposta in frequenza dei circuiti TD Rappresentazione nel dominio della frequenza,

Dettagli

14. Confronto tra l integrale di Lebesgue e l integrale di Riemann.

14. Confronto tra l integrale di Lebesgue e l integrale di Riemann. 4. Confronto tra l integrale di Lebesgue e l integrale di Riemann. Lo scopo di questo capitolo è quello di mettere a confronto i vari tipi di integrale (di Riemann, generalizzato e improprio) di funzioni

Dettagli

ANALISI MATEMATICA L-C, B-S

ANALISI MATEMATICA L-C, B-S ANALISI MAEMAICA L-C, B-S 25-6 SERIE DI FOURIER MASSIMO CICOGNANI Per la pubblicazione in rete di queste dispense si deve ringraziare Marco Frison che le ha trascritte interamente in Latex 1 Lo spazio

Dettagli

ANALISI C & Complementi di Analisi Matematica di Base. Prova scritta del 23 gennaio 2007

ANALISI C & Complementi di Analisi Matematica di Base. Prova scritta del 23 gennaio 2007 Prova scritta del 23 gennaio 2007 Esercizio 1. Sia f : R R una funzione misurabile e non negativa; si consideri la successione di funzioni f n (x) = max3f(x) 2n, 0}, x R, n N. Provare che se f è integrabile

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 30 Gennaio 2018 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

Analisi Matematica III modulo

Analisi Matematica III modulo Università del Salento Dipartimento di Matematica Ennio de Giorgi Michele Carriero Lucia De Luca Appunti di Analisi Matematica III modulo Corso di Laurea in Matematica Indice Introduzione 1 Capitolo 1.

Dettagli

Serie a termini di segno non costante

Serie a termini di segno non costante Serie a termini di segno non costante Definizione (Convergenza semplice e assoluta) Se una serie converge, cioè la sua somma esiste ed è finita, si dice anche che la serie converge semplicemente: an =

Dettagli

SUCCESSIONI E SERIE NUMERICHE E DI FUNZIONI

SUCCESSIONI E SERIE NUMERICHE E DI FUNZIONI SERIE NUMERICHE Si consideri una successione di elementi. Si definisce serie associata ad la somma Per ogni indice della successione, si definisce successione delle somme parziali associata a la somma

Dettagli

Outline. 1 La trasformata di Laplace. 2 Proprietá della Trasformata. 3 Calcolo di alcune trasformate. 4 Altre proprietá della trasformata di Laplace

Outline. 1 La trasformata di Laplace. 2 Proprietá della Trasformata. 3 Calcolo di alcune trasformate. 4 Altre proprietá della trasformata di Laplace Outline 1 La trasformata di Laplace La trasformata di Laplace (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi DIMS Universitá di rento anno accademico 25/26 2 Proprietá della rasformata

Dettagli

3. Serie di Fourier Esercizi

3. Serie di Fourier Esercizi 3. Serie di Fourier Esercizi http://eulero.ing.unibo.it/~barozzi/mi2/pdf/mi2-cap.3-ese.pdf 3.. Polinomi di Fourier 3.2. Serie di Fourier: convergenza puntuale 3.2-. Si dimostri che la serie (v. esempio

Dettagli

ISTITUZIONI DI ANALISI SUPERIORE B Prova scritta del 17/3/2003

ISTITUZIONI DI ANALISI SUPERIORE B Prova scritta del 17/3/2003 ISTITUZIONI DI ANALISI SUPEIOE B Prova scritta del 7/3/3 Sia f : C la funzione così definita: { se t

Dettagli

Esercitazione di Analisi Matematica I Esercizi e soluzioni 19/04/2013 TOPOLOGIA

Esercitazione di Analisi Matematica I Esercizi e soluzioni 19/04/2013 TOPOLOGIA Esercitazione di Analisi Matematica I Esercizi e soluzioni 9/04/203 TOPOLOGIA Mostrare che uno spazio infinito con la metrica discreta non può essere compatto Soluzione: Per la metrica discreta d : X X

Dettagli

Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione

Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione p. 1 Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione

Dettagli

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013 Prova scritta del 24 gennaio 2013 Esercizio 1. Sia Ω R 3 un insieme misurabile secondo Lebesgue e di misura finita. Sia {f n } n N una successione di funzioni f n : Ω R misurabili e tali che 1) f n (x)

Dettagli

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica II del

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica II del Prova scritta di nalisi Matematica II del 12-06-2001. C1 1) Studiare la convergenza semplice, uniforme e totale della serie di funzioni seguente ( 1) [ n 2 ] n x 1 + n 2 x. n=0 2) Data la funzione (x 2

Dettagli

Note sulle serie di Fourier

Note sulle serie di Fourier Note sulle serie di Fourier Rodica oader, a.a. 3/4 versione provvisoria (aggiornata al 3//7 Convergenza uniforme Data una funzione f : R R, periodica di periodo >, supponiamo di poter definire i coefficienti

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA DI BASE. Prova scritta del 26 gennaio 2005

COMPLEMENTI DI ANALISI MATEMATICA DI BASE. Prova scritta del 26 gennaio 2005 Prova scritta del 26 gennaio 2005 Esercizio 1. Posto B = x R 2 : x 2 2}, sia f n } una successione di funzioni (misurabili e) integrabili in B tali che f n f q.o. in B e, per ogni n N, f n (x) 2 x 3 per

Dettagli

Segnali e Sistemi (Ingegneria Informatica)

Segnali e Sistemi (Ingegneria Informatica) Segnali e Sistemi (Ingegneria Informatica) Lezione 3 last update Oct 17, 2004 c 2004 Finesso, Pavon, Pinzoni 1 SIMMETRIE DEI SEGNALI - Simmetria pari (Definizioni analoghe nel caso discreto) Segnale pari

Dettagli

In questa Appendice sono riportate schematicamente le proprietà più importanti della trasformata di

In questa Appendice sono riportate schematicamente le proprietà più importanti della trasformata di Appendice F Proprietà della trasformata di Fourier In questa Appendice sono riportate schematicamente le proprietà più importanti della trasformata di Fourier per segnali TC e TD. Inoltre, sono riportate

Dettagli

Corso di Laurea in Matematica I prova intermedia di Analisi Matematica 3

Corso di Laurea in Matematica I prova intermedia di Analisi Matematica 3 Corso di Laurea in Matematica I prova intermedia di Analisi Matematica 3 12 novembre 2015 1. Sia f : [0, 2π[ R una funzione decrescente e regolare (C 1 a tratti), prolungata poi per periodicità su tutto

Dettagli

3. (Punti 8) Si consideri l integrale improprio. x n dx, n N.

3. (Punti 8) Si consideri l integrale improprio. x n dx, n N. Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA Prova scritta del 4 febbraio 27 Fila. Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 9) Data l

Dettagli

ANALISI DI FOURIER E APPLICAZIONI

ANALISI DI FOURIER E APPLICAZIONI ANALISI DI FOURIER E APPLICAZIONI Dipartimento di Matematica e Informatica Università di Catania ORIGINE DELLE SERIE DI FOURIER Problema della propagazione del calore in una sbarra. Fourier - 1822 (caso

Dettagli

Quesito 1 (1/0/-0.25 punti)

Quesito 1 (1/0/-0.25 punti) NOME COGNOME Politecnico di Milano Analisi Matematica 1 Anno Accademico 017-018 Prof. Ettore Lanzarone Appello febbraio 018 Parte A: punteggio 6/30; soglia minima per passare la prova /30 ogni risposta

Dettagli

Integrali doppi. Riccarda Rossi. Università di Brescia. Analisi Matematica B

Integrali doppi. Riccarda Rossi. Università di Brescia. Analisi Matematica B Integrali doppi Riccarda Rossi Università di Brescia Analisi Matematica B Riccarda Rossi (Università di Brescia) Integrali doppi Analisi Matematica B 1 / 92 Motivazione per l integrale di Riemann: calcolo

Dettagli

Esercizi di riepilogo 2: soluzioni ( Verifica di analisi funzionale e serie di Fourier)

Esercizi di riepilogo 2: soluzioni ( Verifica di analisi funzionale e serie di Fourier) Esercizi di riepilogo 2: soluzioni ( Verifica di analisi funzionale e serie di Fourier) Spazi Vettoriali e Funzionali 1. Risposte: (a) Spazio vettoriale complesso. (b) Spazio vettoriale reale. (c) Non

Dettagli

Diario del corso di Analisi Matematica 1 (a.a. 2017/18)

Diario del corso di Analisi Matematica 1 (a.a. 2017/18) Diario del corso di Analisi Matematica 1 (a.a. 2017/18) 22 settembre 2017 (2 ore) Presentazione del corso. Numeri naturali, interi, razionali, reali. 2 non è razionale. Come si risolve 2 + 1 = 0? 25 settembre

Dettagli

Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Prova scritta del 10 gennaio 2007

Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Prova scritta del 10 gennaio 2007 Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Prova scritta del 0 gennaio 007 Primo esercizio. È assegnato il numero complesso z = + i. (a) Posto z = + i, determinare la forma trigonometrica

Dettagli

f n (x) 3 1. x Essendo g(x) = 3 1

f n (x) 3 1. x Essendo g(x) = 3 1 Secondo esonero di Analisi eale 6//9 a.a. 8-9 ) Studiare la convergenza in L p ((, )), p +, della successione di funzioni cos(nx) e nx f n (x) = 3. x Si vede facilmente che la successione f n converge

Dettagli

La trasformata di Laplace

La trasformata di Laplace La trasformata di Laplace (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi DIMS Università di Trento anno accademico 2008/2009 (aggiornata al 21/09/2008) La trasformata di Laplace 1 / 31

Dettagli

SERIE NUMERICHE FAUSTO FERRARI

SERIE NUMERICHE FAUSTO FERRARI SERIE NUMERICHE FAUSTO FERRARI Materiale propedeutico alle lezioni di Analisi Matematica per i corsi di Laurea in Ingegneria Energetica e Meccanica N-Z dell Università di Bologna. Anno Accademico 2003/2004.

Dettagli

ANALISI MATEMATICA 3. esercizi assegnati per la prova scritta del 31 gennaio 2011

ANALISI MATEMATICA 3. esercizi assegnati per la prova scritta del 31 gennaio 2011 esercizi assegnati per la prova scritta del 31 gennaio 2011 Esercizio 1. Per x > 0 e n N si ponga f n (x) = ln ( n 5 x ) a) Provare l integrabilità delle funzioni f n in (0, + ). 3 + n 4 x 2. b) Studiare

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I

TEMI D ESAME DI ANALISI MATEMATICA I TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare

Dettagli

ANALISI UNO (A.A. 2008/2009, Docente: S. Finzi Vita) Programma svolto settimanalmente

ANALISI UNO (A.A. 2008/2009, Docente: S. Finzi Vita) Programma svolto settimanalmente ANALISI UNO (A.A. 2008/2009, Docente: S. Finzi Vita) Programma svolto settimanalmente 2-6 Marzo (8 ore) Gli assiomi dei numeri reali. Osservazioni sull assioma di continuità: altre formulazioni e loro

Dettagli

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013 Prova scritta del 24 gennaio 2013 Esercizio 1. Sia Ω R 3 un insieme misurabile secondo Lebesgue e di misura finita. Sia {f n } n N una successione di funzioni f n : Ω R misurabili e tali che 1) f n (x)

Dettagli

y = cos x y = (y ) 2 + c : giustifichino le due affermazioni. y = y y = y 2 y = y(1 y) y = xy Applicazioni Equazioni delle cinetica chimica:

y = cos x y = (y ) 2 + c : giustifichino le due affermazioni. y = y y = y 2 y = y(1 y) y = xy Applicazioni Equazioni delle cinetica chimica: Corso di laurea in Chimica Industriale Matematica II A.A. 2015/2016 Argomenti delle lezioni Giovedí 3 marzo - 2 ore. Richiami sulle equazioni e sui metodi utilizzati nel risolverle. Equazioni differenziali.

Dettagli

Esonero di Analisi Matematica I (A)

Esonero di Analisi Matematica I (A) Esonero di Analisi Matematica I (A) Ingegneria Edile, 19 dicembre 2000 () 1. Studiare il seguente ite: x 0 log 2 (cos x) ( 3 1 x 1 ) e (x3 ) 1. 2. Dire per quali numeri complessi entrambe le radici quadrate

Dettagli

a. Si enunci e dimostri il teorema della media integrale per funzioni continue. (5 punti)

a. Si enunci e dimostri il teorema della media integrale per funzioni continue. (5 punti) COMPITO A a. Si enunci e dimostri il teorema della media integrale per funzioni continue. 5 punti b. Si scriva l equazione di un piano generico, specificando qual la direzione normale ad esso, e si scriva

Dettagli

Introduzione euristica alla δ di Dirac e alle sue collegate.

Introduzione euristica alla δ di Dirac e alle sue collegate. Introduzione euristica alla δ di Dirac e alle sue collegate. L antitrasformata di Fourier Se definiamo la trasformata di Fourier di una funzione assolutamente integrabile sulla retta reale con la formula:

Dettagli

a j n + convergente divergente irregolare.

a j n + convergente divergente irregolare. Serie numeriche Definizione Data una successione reale {a j } + successione delle somme parziali n esime come: n s n a j, jj il cui limite, per n + : jj R, si definisce la s lim s n n + jj a j è detto

Dettagli

CM86sett.tex COMPLEMENTI DI MATEMATICA a.a Laurea magistrale in Ingegneria Elettrotecnica

CM86sett.tex COMPLEMENTI DI MATEMATICA a.a Laurea magistrale in Ingegneria Elettrotecnica CM86sett.tex COMPLEMENTI DI MATEMATICA a.a. 2008-2009 Laurea magistrale in Ingegneria Elettrotecnica Settima settimana 0..2008 - lunedì (2 ore) 0.0. Teorema. (di Picard) - Data una f olomorfa, in un intorno

Dettagli

SEGNALI E SISTEMI (a.a ) Proff. L. Finesso, M. Pavon e S. Pinzoni Prova scritta 15 dicembre 2003 Testo e Soluzione

SEGNALI E SISTEMI (a.a ) Proff. L. Finesso, M. Pavon e S. Pinzoni Prova scritta 15 dicembre 2003 Testo e Soluzione Esercizio 1 [punti 4] SEGNALI E SISTEMI (a.a. 003-004) Proff. L. Finesso, M. Pavon e S. Pinzoni Prova scritta 15 dicembre 003 Testo e Soluzione Per ciascuno dei seguenti segnali dire se è periodico e,

Dettagli

Serie di Fourier. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi. DIMS Università di Trento. anno accademico 2008/2009

Serie di Fourier. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi. DIMS Università di Trento. anno accademico 2008/2009 Serie di Fourier (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi DIMS Università di Trento anno accademico 8/9 Serie di Fourier 1 / 48 Jean Baptiste Joseph Fourier (1768 183) Serie di Fourier

Dettagli

Serie e Trasformata di Fourier

Serie e Trasformata di Fourier Serie e Trasformata di Fourier Corso di Analisi Funzionale Prof. Paolo Nistri Cancelli, D Angelo, Giannetti Polinomio di Fourier Si consideri la successione costituita dalle restrizioni delle funzioni

Dettagli

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame COGNOME NOME Matr. A Analisi Matematica (Corso di Laurea in Informatica e Bioinformatica) Firma dello studente Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni

Dettagli

E, la successione di numeri {f n (x 0. n f n(x) (15.1)

E, la successione di numeri {f n (x 0. n f n(x) (15.1) Capitolo 15 15.1 Successioni e serie di funzioni Sia {f n } una successione di funzioni, tutte definite in un certo insieme E dello spazio R n ; si dice che essa è convergente nell insieme E se, comunque

Dettagli

Introduzione ai numeri complessi. Federico Lastaria. Analisi e Geometria 1. Numeri Complessi 1/16

Introduzione ai numeri complessi. Federico Lastaria. Analisi e Geometria 1. Numeri Complessi 1/16 Introduzione ai numeri complessi Federico Lastaria. Analisi e Geometria 1. Numeri Complessi 1/16 Definizione (Campo complesso C. Prima definizione.) Il campo complesso C è costituito da tutte le espressioni

Dettagli

Corsi di Laurea in Ingegneria Elettronica e Telecomunicazioni.

Corsi di Laurea in Ingegneria Elettronica e Telecomunicazioni. Corsi di Laurea in Ingegneria Elettronica e Telecomunicazioni. Università di Pisa. Prima prova scritta di Analisi Matematica I. Soluzioni. Esercizio. Si consideri la successione c n ) n N definita dalla

Dettagli

Corso di Laurea in Ingegneria Informatica (Laurea on Line)

Corso di Laurea in Ingegneria Informatica (Laurea on Line) Milano 30/11/07 Corso di Laurea in Ingegneria Informatica (Laurea on Line) Corso di Fondamenti di Segnali e Trasmissione Prima prova Intermedia Carissimi studenti, scopo di questa prima prova intermedia

Dettagli

Diario del corso di Analisi Matematica 1 (a.a. 2018/19)

Diario del corso di Analisi Matematica 1 (a.a. 2018/19) Diario del corso di Analisi Matematica 1 (a.a. 2018/19) 17 settembre 2018 (2 ore) [Presentazione del corso di studi, da parte del Direttore di Dipartimento.] 19 settembre 2018 (2 ore) Presentazione del

Dettagli

( ) ( ) = ( )* ( ) Z f X f Y f. sin 2 f. 0 altrove. Esempio di Modulazione

( ) ( ) = ( )* ( ) Z f X f Y f. sin 2 f. 0 altrove. Esempio di Modulazione Esempio di Modulazione z ( t) = x( t) y ( t) dove x( t ) e y () t ammetto trasformata di Fourier X ( f ) e Y ( f ) Per z ( t ) si ha (convoluzione degli spettri): Ad esempio se: ( ) = sin( 2π f t) x t

Dettagli

Ingegneria civile - ambientale - edile

Ingegneria civile - ambientale - edile Ingegneria civile - ambientale - edile Analisi - Prove scritte dal 7 Prova scritta del 9 giugno 7 Esercizio Determinare i numeri complessi z che risolvono l equazione Esercizio (i) Posto a n = n i z z

Dettagli

2) Scrivere la soluzione generale del seguente sistema di equazioni differenziali lineari del primo ordine. y 1 = 2y 1 5y 3 y 2

2) Scrivere la soluzione generale del seguente sistema di equazioni differenziali lineari del primo ordine. y 1 = 2y 1 5y 3 y 2 Corso di Laurea in Matematica Analisi Matematica 3/Analisi 4 - SOLUZIONI (8/6/5) Docente: Claudia Anedda ) Trovare il limite puntuale della successione di funzioni f k (t) = cos(kt), t R. Stabilire se

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2013/2014 M. Tumminello, V. Lacagnina e

Dettagli

Esercizi 8 12 gennaio 2009

Esercizi 8 12 gennaio 2009 Sia α > e Esercizi 8 2 gennaio 29 f(x, y = ( + x 2 + y 2 α. Dimostrare che f appartiene a L p ( 2, con α p >. Osserviamo innanzitutto che, essendo f continua, l integrale di f p su 2 è uguale all integrale

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Terzo Appello 8 Settembre 2014

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Terzo Appello 8 Settembre 2014 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Terzo Appello 8 Settembre 24 Cognome: Nome: Matricola: Compito A Es.: 9 punti Es.2: 8 punti Es.3: 8 punti Es.4: 8 punti Totale. Sia F la

Dettagli

Limitiamoci dapprima a considerare una funzione f di periodo 2π. Cercheremo di approssimarla con polinomi trigonometrici di ordine n della forma

Limitiamoci dapprima a considerare una funzione f di periodo 2π. Cercheremo di approssimarla con polinomi trigonometrici di ordine n della forma Serie di Fourier L idea che sta alla base degli sviluppi in serie di Fourier è quella di approssimare, in qualche senso, le funzioni (integrabili periodiche per mezzo di funzioni più regolari e/o più facilmente

Dettagli

Laboratorio II, modulo

Laboratorio II, modulo Laboratorio II, modulo 2 205-206 Banda di un segnale, filtri e cavi coassiali (cfr. http://wpage.unina.it/verdoliv/tds/appunti/appunti_03.pdf e http://wpage.unina.it/verdoliv/tds/appunti/appunti_04.pdf

Dettagli

Analisi a più variabili: Integrale di Lebesgue

Analisi a più variabili: Integrale di Lebesgue Analisi a più variabili: Integrale di Lebesgue 1 Ripasso delle definizioni di Algebre, σ-algebre, misure additive, misure σ-additive, Proprietà della misura astratta, misura esterna. Definizione (Insieme

Dettagli

UNIVERSITÀ DEGLI STUDI DI PERUGIA Facoltà di Scienze MM. FF. e NN.

UNIVERSITÀ DEGLI STUDI DI PERUGIA Facoltà di Scienze MM. FF. e NN. A.A. 213/214 2 Novembre 213 I esercitazione Esercizio 1. Dato il problema di Cauchy ( e y 2 2 1 ) arctan 3y 5 y = 2 sin (1) 2 x 2, 1 + x 2 y() = 1, (b) provare che la soluzione y di (3) è definita in tutto

Dettagli

Serie di Fourier. Tra queste funzioni definiamo un prodotto scalare nel seguente modo: date f, g V poniamo f (x) g (x) dx. f (x) [g (x) + h (x)] dx

Serie di Fourier. Tra queste funzioni definiamo un prodotto scalare nel seguente modo: date f, g V poniamo f (x) g (x) dx. f (x) [g (x) + h (x)] dx Serie di Fourier Indichiamo con V l insieme delle funzioni f : R R che siano periodiche di periodo π, si abbia cioè f ( + π) = f (), e che risultino integrabili nell intervallo [, π]. Tra queste funzioni

Dettagli

1 La trasformata di Fourier

1 La trasformata di Fourier SEGNALI E SISTEMI (a.a. 2010-2011) Prof. M. Pavon 1 La trasformata di Fourier Indichiamo con L 1 (R) o L 1 (, + ) lo spazio vettoriale normato dei segnali assolutamente integrabili sulla retta cioè { }

Dettagli

Comunicazione Elettriche L-A Identità ed equazioni

Comunicazione Elettriche L-A Identità ed equazioni Comunicazione Elettriche L-A Identità ed equazioni Gennaio - Marzo 2009 Identità ed equazioni relative alle comunicazioni elettriche tratti dalle lezioni del corso di Comunicazioni Elettriche L-A alla

Dettagli

COGNOME... NOME... Matricola... Corso Prof... Esame di ANALISI MATEMATICA II - 27 Gennaio cos x

COGNOME... NOME... Matricola... Corso Prof... Esame di ANALISI MATEMATICA II - 27 Gennaio cos x COGNOME... NOME... Matricola... Corso Prof.... Esame di ANALISI MATEMATICA II - 27 Gennaio 25 A ESERCIZIO. 4 punti) Verificare che la serie 7 2 cos x ) n è convergente per ogni x R, e calcolarne la somma.

Dettagli