SEGNALI E SISTEMI Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a ) Homework assignment #2 Testo e Soluzione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "SEGNALI E SISTEMI Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a ) Homework assignment #2 Testo e Soluzione"

Transcript

1 SEGNALI E SISTEMI Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a ) Homework assignment # Testo e Soluzione Esercizio Si consideri l equazione differenziale ordinaria, lineare a coefficienti costanti y (3) (t) y () (t) = x(t), t R. a. Calcolare la soluzione y(t), se x(t) 0 e y(0) =, y () (0) =, y () (0) = 0. b. Determinare la risposta impulsiva causale h(t) associata all equazione. Svolgimento. a. È richiesto il calcolo della risposta libera y l(t), soluzione dell equazione differenziale omogenea a k y (k) (t) = y (3) (t) y () (t) = 0, t R, con condizioni iniziali y (k) (t 0 ) = y 0k, k = 0,..., n, cioè y(0) = y 00 =, y () (0) = y 0 =, y () (0) = y 0 = 0, con n = 3 e t 0 = 0. L equazione caratteristica si scrive per ispezione dei coefficienti a k e risulta a k s k = s 3 s = 0, con radici semplici p 0 = 0, p, = ±. I modi sono quindi ϕ 0 (t) = e p 0t, ϕ (t) = e p t = e t e ϕ (t) = e p t = e t. Di essi è combinazione lineare la soluzione y l (t) = α + βe t + γe t, con coefficienti α, β e γ che si trovano imponendo le condizioni prescritte in t = t 0 = 0. Calcoliamo dunque: y(t) = α + βe t + γe t, y(0) = α + β + γ =, y () (t) = βe t γe t, y () (0) = β γ =, y () (t) = βe t + γe t, y () (0) = β + γ = 0. Si ricavano α =, β =, γ =, da cui la soluzione y l (t) = e t + e t, t R. b. Sappiamo che all equazione differenziale non omogenea è associata una (unica!) risposta impulsiva causale h(t), soluzione dell equazione m a k h (k) (t) = h (3) (t) h () (t) = δ(t) = b k δ (k) (t), t R, con il vincolo h(t) = 0 per t < 0. Abbiamo per altro osservato a lezione che, per t > 0, h(t) risolve l equazione differenziale omogenea ed è quindi combinazione lineare dei modi. Inoltre, essendo n = 3 > 0 = m, non ci sono componenti impulsive in t = 0 e quindi h(t) = n d k ϕ k (t) u(t) = d 0 + d e t + d e t u(t), t R, dove i coefficienti d k si trovano per bilanciamento degli impulsi. Calcoliamo dunque: h () (t) = d e t d e t u(t) + d 0 + d + d δ(t), h () (t) = d e t + d e t u(t) + d d δ(t) + d 0 + d + d δ () (t), h (3) (t) = d e t d e t u(t) + d + d δ(t) + d d δ () (t) + d 0 + d + d δ () (t),

2 dove abbiamo usato l accortezza di sostituire termini del tipo f(t) δ(t) con f(0) δ(t) prima delle derivazioni successive, per non dover manipolare termini del tipo f(t) δ () (t). Ora, eguagliando i due membri dell equazione, h (3) (t) h () (t) = d 0 δ(t) + d d δ () (t) + d 0 + d + d δ () (t) = δ(t), otteniamo le n = 3 equazioni lineari nei coefficienti incogniti da cui d 0 =, d = d =, e quindi d 0 =, d d = 0, d 0 + d + d = 0, h(t) = + (et + e t ) u(t) = sinh t u(t), t R. Esercizio Calcolare la trasformata di Fourier dei segnali a tempo continuo: a. x (t) = cos 3t + δ(t 3) + δ(t + 3); b. x (t) = rect( t ) u(t ). Svolgimento. a. Dalle tabelle e/o dagli esempi svolti in classe, ricordando la formula di Eulero per il coseno, si ottiene direttamente X (j) = π δ( 3) + π δ( + 3) + e j3 + e j3 = π δ( 3) + δ( + 3) + cos 3. b. Definiamo x 3 (t) = rect( t ), x (t) = u(t ) e calcoliamo le trasformate X 3 (j) = sen, X (j) = e j j + πδ(), per la seconda delle quali abbiamo usato la proprietà di traslazione temporale. Ora, dal teorema di convoluzione e dalle proprietà della delta segue X (j) = X 3 (j)x (j) = sen = sen cos j sen j = 8 sinc π e j j + πδ() + π δ() + π δ() + j sinc π. Esercizio 3 Determinare i segnali a tempo continuo che corrispondono alle seguenti trasformate:, se 0 < <, a. X (j) =, se < <, 0, altrimenti; ( ) k ( b. X (j) = δ k π ).

3 Svolgimento. a. Scrivendo X (j) = rect 3 rect e applicando la proprietà di traslazione in frequenza, otteniamo x (t) = (e jt e j3t ) F rect (t) = je jt sen t sen t = je jt sen t. b. Si riconosce in X (j) la trasformata di un segnale periodico di pulsazione 0 = π e ( ) k periodo T = π 0 = 8, con coefficienti di Fourier {a k = π, k Z} l. Pertanto x (t) è un segnale di potenza finita, rappresentabile (in media quadratica) mediante la serie di Fourier x (t) = π ( ) k e jk π t, t R. D altra parte, il segnale x (t), reale e pari come la sua trasformata, si può rappresentare anche con la serie reale di soli coseni x (t) = ( k ( + π ) e jk π t + e jk π t) = π + ( ) k cos k π t, t R. π k= Si noti che la potenza P (x ) si può calcolare, grazie al teorema di Parseval, come P (x ) = T T x (t) dt = a k = k= ( ) k π = π ( ) k = 5 π. Esercizio Si consideri l equazione alle differenze, lineare a coefficienti costanti y(n) y(n 3) = x(n ), n Z. a. Trovare l insieme Y 0 delle soluzioni reali dell equazione omogenea associata. b. Calcolare la risposta in frequenza associata all equazione. Svolgimento. a. L equazione caratteristica si scrive per ispezione dei coefficienti a k dell equazione N omogenea a k y(n k) = y(n) y(n 3) = 0, n Z, e risulta z N N a k z k = z 3 ( z 3 ) = z 3 = 0, con radici semplici le N = 3 radici dell unità: λ k = e jk π 3, k = 0,,. I modi (complessi) sono quindi le sequenze periodiche ϕ 0 (n) = λ n 0, ϕ (n) = λ n = e j π 3 n e ϕ (n) = λ n = e j π 3 n = ϕ (n). Pertanto, le soluzioni reali dell equazione omogenea sono le combinazioni lineari y 0 (n) = c 0 + c e j π 3 n + c e j π 3 n, n Z, con c 0 R e c = c. In alternativa, si possono considerare i modi reali ψ 0 (n) = ϕ 0 (n), ψ (n) = Re ϕ (n) = cos π 3 n e ψ (n) = Im ϕ (n) = sen π 3 n, di cui gli elementi dell insieme Y 0 sono combinazioni lineari a coefficienti reali: y 0 Y 0 y 0 (n) = α + β cos π n + γ sen π n, n Z, 3 3 con α = c 0, β = Re c e γ = Im c.

4 È opportuno notare che le sequenze {ϕ k (n), k = 0,, } costituiscono una base per lo spazio vettoriale (complesso) dei segnali periodici di periodo N = 3, dato che l equazione omogenea y(n) y(n N) = 0, n Z, esprime proprio la condizione di N-periodicità a tempo discreto. Analogamente, {ψ k (n), k = 0,, } è una base per lo spazio vettoriale (reale) dei segnali periodici reali dello stesso periodo. b. È stato mostrato a lezione che la risposta in frequenza associata all equazione alle N M differenze a k y(n k) = b k x(n k), n Z, si scrive per ispezione dei coefficienti come H(e jθ ) = k b k e jkθ jkθ. Perciò, nel nostro caso, k a k e H(e jθ ) = e jθ e j3θ. Si noti però che la risposta in frequenza è definita per tutti i valori di θ, ad esclusione di quelli corrispondenti ai poli della funzione razionale H(z) sulla circonferenza di raggio unitario T := {z : z = }, cioè T = {z : z = e jθ }. Per noi, dunque, θ k π, k Z. In effetti, questa 3 H(e jθ ) non è la risposta in frequenza di un sistema LTI e BIBO-stabile. Esercizio 5 a. Per determinare il segnale a tempo discreto y = h x, dove h(n) = x(n) = n u(n): calcolare H(e jθ ) = X(e jθ ), trovare Y (e jθ ) e antitrasformare. b. Calcolare il segnale a tempo discreto di cui X(e jθ ) = 3 3e jθ sen θ è la trasformata. Svolgimento. a. Sommando, otteniamo e, peril teorema di convoluzione, H(e jθ ) = X(e jθ ) = n e jθn = n=0 e jθ Y (e jθ ) = H(e jθ )X(e jθ ) = ( e jθ ). Dalle tabelle o applicando le proprietà di derivazione in frequenza e traslazione nel tempo, ricaviamo infine y(n) = (n + ) n u(n), n Z. b. Scrivendo X(e jθ ) = = e jθ 3 e jθ e jθ e jθ j e jθ 3 e jθ + ej8θ + e j8θ, dalle tabelle e dalla proprietà di traslazione nel tempo, otteniamo ( ) n x(n) = u(n ) + δ(n + 8) δ(n) + δ(n 8), n Z. 3 Esercizio 6 Un sistema a tempo continuo LTI, di risposta impulsiva h(t) = sen t,

5 è sollecitato dall ingresso x(t) = u(t + ) u(t ). Determinare i periodi di campionamento T che permettono la ricostruzione esatta del segnale di uscita y(t), a partire dai campioni {y(kt ); k Z}, mediante un filtro passa-basso ideale. Svolgimento. La risposta in frequenza del sistema è H(j) = rect 8 = {, se, 0, se >, mentre l ingresso x(t) = u(t + ) u(t ) = rect t X(j) = sen. ha trasformata Per il teorema di convoluzione, la trasformata dell uscita y(t) = h(t) x(t) è quindi { sen, se, Y (j) = H(j)X(j) = 0, se >. In particolare, Y (j) risulta nulla per >, cioè y(t) è un segnale a banda rigorosamente limitata con pulsazione di banda M = πb =. Per il teorema del campionamento, dai campioni {y(kt ); k Z} è dunque possibile ricostruire il segnale y(t) mediante un filtro passabasso ideale, se e solo se la pulsazione s > M = 8, cioè il periodo di campionamento T = π s < π M = π.

SEGNALI E SISTEMI (a.a ) Proff. L. Finesso, M. Pavon e S. Pinzoni Prova scritta 15 dicembre 2003 Testo e Soluzione

SEGNALI E SISTEMI (a.a ) Proff. L. Finesso, M. Pavon e S. Pinzoni Prova scritta 15 dicembre 2003 Testo e Soluzione Esercizio 1 [punti 4] SEGNALI E SISTEMI (a.a. 003-004) Proff. L. Finesso, M. Pavon e S. Pinzoni Prova scritta 15 dicembre 003 Testo e Soluzione Per ciascuno dei seguenti segnali dire se è periodico e,

Dettagli

SEGNALI E SISTEMI Proff. N. Benvenuto, C. Dalla Man e M. Pavon (a.a ) IIIo Appello 24 agosto 2015 SOLUZIONI

SEGNALI E SISTEMI Proff. N. Benvenuto, C. Dalla Man e M. Pavon (a.a ) IIIo Appello 24 agosto 2015 SOLUZIONI SEGNALI E SISTEMI Proff. N. Benvenuto, C. Dalla Man e M. Pavon a.a. 04-05) IIIo Appello 4 agosto 05 SOLUZIONI Esercizio [punti 4]. Discutere le proprietà di: a) causalità, b) linearità, c) tempo-invarianza,

Dettagli

Elaborazione di segnali e immagini: modulo segnali

Elaborazione di segnali e immagini: modulo segnali Elaborazione di segnali e immagini: modulo segnali 30 gennaio 014 Esame parziale con soluzioni Esercizio 1 Dato un sistema LTI descritto dalla seguente equazione alle differenze: v(k) + v(k 1) 10v(k )

Dettagli

Circuiti a tempo discreto Raffaele Parisi

Circuiti a tempo discreto Raffaele Parisi Università di Roma La Sapienza Laurea specialistica in Ingegneria Elettronica Circuiti a tempo discreto Raffaele Parisi : Risposta in frequenza dei circuiti TD Rappresentazione nel dominio della frequenza,

Dettagli

Laboratorio II, modulo

Laboratorio II, modulo Laboratorio II, modulo 2 206-207 Banda di un segnale e filtri (cfr. http://wpage.unina.it/verdoliv/tds/appunti/appunti_03.pdf e http://wpage.unina.it/verdoliv/tds/appunti/appunti_04.pdf e http://wpage.unina.it/verdoliv/tds/appunti/appunti_05.pdf

Dettagli

Formule di Teoria dei Segnali

Formule di Teoria dei Segnali Formule di trigonometria Formule di eoria dei Segnali L.Verdoliva cos(α + β = cos α cos β sin α sin β sin(α + β = sin α cos β + sin β cos α cos α = + cos α sin α = cos α sin α = sin α cos α cos α = cos

Dettagli

Segnali e trasformate

Segnali e trasformate Segnali e trasformate - Corso di Laurea in Ingegneria Meccanica Segnali e trasformate DEIS-Università di Bologna Tel. 5 2932 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi Segnali e trasformate

Dettagli

COMPITO DI SEGNALI E SISTEMI 15 febbraio 2010

COMPITO DI SEGNALI E SISTEMI 15 febbraio 2010 COMPITO DI SEGNALI E SISTEMI 5 febbraio 00 Teoria. Con riferimento ad un sistema lineare a tempo di screto descritto da un equazione alle differenze del tipo n m a i yk i = b i uk i i=0 i=0. Si ricavi,

Dettagli

Corso di Fondamenti di Telecomunicazioni Esercizi Teoria dei segnali Prof. Giovanni Schembra

Corso di Fondamenti di Telecomunicazioni Esercizi Teoria dei segnali Prof. Giovanni Schembra Corso di Fondamenti di Telecomunicazioni Esercizi Teoria dei segnali Prof. Giovanni Schembra Sommario CARATTERISTICHE DEI SEGNALI DETERMINATI.... ESERCIZIO.... ESERCIZIO... 5.3 ESERCIZIO 3 CONVOLUZIONE...

Dettagli

Prova scritta di Teoria dei Segnali: nuovo ordinamento

Prova scritta di Teoria dei Segnali: nuovo ordinamento Prova scritta di Teoria dei Segnali: nuovo ordinamento 1. Dati i segnali x(t) = rect[(t-2)/2] e y(t) = 2rect[(t+3)/2], si calcoli il prodotto di convoluzione tra x(t) e y(t), 2. Si calcoli la trasformata

Dettagli

Segnali e trasformate

Segnali e trasformate Segnali e trasformate - 1 Corso di Laurea in Ingegneria dell Automazione Segnali e trasformate DEIS-Università di Bologna Tel. 051 2093020 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi

Dettagli

Laboratorio II, modulo

Laboratorio II, modulo Laboratorio II, modulo 2 205-206 Banda di un segnale, filtri e cavi coassiali (cfr. http://wpage.unina.it/verdoliv/tds/appunti/appunti_03.pdf e http://wpage.unina.it/verdoliv/tds/appunti/appunti_04.pdf

Dettagli

Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione

Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione p. 1 Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione

Dettagli

Filtraggio Digitale. Alfredo Pironti. Ottobre Alfredo Pironti Univ. di Napoli Federico II Corso Ansaldo Breda 1 / 20

Filtraggio Digitale. Alfredo Pironti. Ottobre Alfredo Pironti Univ. di Napoli Federico II Corso Ansaldo Breda 1 / 20 Filtraggio Digitale Alfredo Pironti Ottobre 2012 Alfredo Pironti Univ. di Napoli Federico II Corso Ansaldo Breda 1 / 20 Filtri Analogici (1) Un filtro analogico è un sistema lineare tempo-invariante (LTI)

Dettagli

Esercizi sulla convoluzione e la trasformata di Laplace di distribuzioni raccolti dai temi d esame

Esercizi sulla convoluzione e la trasformata di Laplace di distribuzioni raccolti dai temi d esame Esercizi sulla convoluzione e la trasformata di Laplace di distribuzioni raccolti dai temi d esame Esercizio 1 Sia U(p) la funzione, definita in un sottoinsieme di C, U(p) := log p2 + a 2 p 2, dove si

Dettagli

SECONDO COMPITINO DI SEGNALI E SISTEMI 3 Dicembre 2003

SECONDO COMPITINO DI SEGNALI E SISTEMI 3 Dicembre 2003 SECONDO COMPIINO DI SEGNALI E SISEMI 3 Dicembre 003 Esercizio. Si consideri il modello ingresso/uscita a tempo discreto e causale descritto dalla seguente equazione alle differenze: vk) con a parametro

Dettagli

Esercizio 1 (12 punti) Si consideri il segnale s(t) in figura e se ne calcoli la Trasformata Continua di Fourier. A vale 2 V e T è paria a 1 s.

Esercizio 1 (12 punti) Si consideri il segnale s(t) in figura e se ne calcoli la Trasformata Continua di Fourier. A vale 2 V e T è paria a 1 s. ASB 17/01/12 (270) Esercizio 1 (12 punti) Si consideri il segnale s(t) in figura e se ne calcoli la Trasformata Continua di Fourier. A vale 2 V e T è paria a 1 s. A 0 T 2T 3T t - A Si consideri il segnale

Dettagli

Comunicazione Elettriche L-A Identità ed equazioni

Comunicazione Elettriche L-A Identità ed equazioni Comunicazione Elettriche L-A Identità ed equazioni Gennaio - Marzo 2009 Identità ed equazioni relative alle comunicazioni elettriche tratti dalle lezioni del corso di Comunicazioni Elettriche L-A alla

Dettagli

COMPITO DI SEGNALI E SISTEMI 11 gennaio 2007

COMPITO DI SEGNALI E SISTEMI 11 gennaio 2007 COMPITO DI SEGNALI E SISTEMI 11 gennaio 007 Teoria 1. [5 punti] Con riferimento ad sistema lineare descritto da una equazione differenziale (lineare a coefficienti costanti) di ordine n, si ricavi esplicitamente,

Dettagli

Corso di Controllo DigitaleAntitrasformate Zeta e calcolo della risposta p.1/32

Corso di Controllo DigitaleAntitrasformate Zeta e calcolo della risposta p.1/32 Corso di Controllo Digitale Antitrasformate Zeta e calcolo della risposta Università degli Studi della Calabria Corso di Laurea in Ingegneria Elettronica. Ing. Domenico Famularo Istituto per la Sistemistica

Dettagli

che coinciderà con la (2) se g[n] = g (n ), condizione verificata dal teorema di Poisson.

che coinciderà con la (2) se g[n] = g (n ), condizione verificata dal teorema di Poisson. La simulazione di sistemi analogici LTI per via digitale si è resa necessaria in quanto permette non solo la perfetta riproducibilità del fenomeno da studiare in situazioni ambientali anche molto diverse,

Dettagli

Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2

Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2 Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it

Dettagli

Elementi di Analisi dei Sistemi Soluzione esercizi prima prova intermedia

Elementi di Analisi dei Sistemi Soluzione esercizi prima prova intermedia Elementi di Analisi dei Sistemi Soluzione esercizi prima prova intermedia Gianluca Mereu, Alessandro Giua {gianluca.mereu,giua}@diee.unica.it 07/04/207 Soluzione Esercizio. Si risponda in modo chiaro ed

Dettagli

( e j2π ft 0.9 j) ( e j2π ft j)

( e j2π ft 0.9 j) ( e j2π ft j) Esercitazione Filtri IIR Es. 1. Si consideri il filtro dato dalla seguente equazione alle differenze y[n]+0.81y[n-2]=x[n]-x[n-2] - Determinare la funzione di trasferimento del filtro Eseguendo la Trasformata

Dettagli

In questa Appendice sono riportate schematicamente le proprietà più importanti della trasformata di

In questa Appendice sono riportate schematicamente le proprietà più importanti della trasformata di Appendice F Proprietà della trasformata di Fourier In questa Appendice sono riportate schematicamente le proprietà più importanti della trasformata di Fourier per segnali TC e TD. Inoltre, sono riportate

Dettagli

Prof. Carlo Rossi DEIS - Università di Bologna Tel:

Prof. Carlo Rossi DEIS - Università di Bologna Tel: Prof. Carlo Rossi DEIS - Università di Bologna Tel: 051 2093020 email: carlo.rossi@unibo.it Sistemi Tempo-Discreti In questi sistemi i segnali hanno come base l insieme dei numeri interi: sono sequenze

Dettagli

Corso di Controllo Digitale Equazioni alle Differenze e Z-trasformate a

Corso di Controllo Digitale Equazioni alle Differenze e Z-trasformate a Corso di Controllo Digitale Equazioni alle Differenze e Z-trasformate a Università degli Studi della Calabria Corso di Laurea in Ingegneria Elettronica. Ing. Domenico Famularo a Proprietà Letteraria Riservata

Dettagli

Elaborazione di segnali e immagini: modulo segnali

Elaborazione di segnali e immagini: modulo segnali Elaborazione di segnali e immagini: modulo segnali Luglio 2014 Esercizio 1 Si determini la risposta totale nel dominio complesso e si studi la stabilita asintotica e BIBO del sistema descritto dalla seguente

Dettagli

Teoria dei Segnali. 1 Proprietà della trasformata di Fourier. correlazione tra segnali; autocorrelazione

Teoria dei Segnali. 1 Proprietà della trasformata di Fourier. correlazione tra segnali; autocorrelazione Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it

Dettagli

Teoria dei Segnali Discrete Fourier Transform (DFT) e Fast Fourier Transform (FFT); filtri tempo-continui

Teoria dei Segnali Discrete Fourier Transform (DFT) e Fast Fourier Transform (FFT); filtri tempo-continui Teoria dei Segnali Discrete Fourier Transform (DFT) e Fast Fourier Transform (FFT); filtri tempo-continui Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it

Dettagli

Prova di AUTOVALUTAZIONE (novembre 2009). nota: l esame ha validità solo se incluso nel piano degli studi per l anno accademico corrente.

Prova di AUTOVALUTAZIONE (novembre 2009). nota: l esame ha validità solo se incluso nel piano degli studi per l anno accademico corrente. UNIVERSITA DEGLI STUDI ROMA TRE CdS in Ingegneria Informatica corso di FONDAMENTI DI TELECOMUNICAZIONI Prova di AUTOVALUTAZIONE (novembre 2009). COMPITO A nota: l esame ha validità solo se incluso nel

Dettagli

Analisi 4 - SOLUZIONI (compito del 29/09/2011)

Analisi 4 - SOLUZIONI (compito del 29/09/2011) Corso di laurea in Matematica Analisi 4 - SOLUZIONI compito del 9/09/0 Docente: Claudia Anedda Calcolare, tramite uno sviluppo in serie noto, la radice quinta di e la radice cubica di 9 Utilizzando la

Dettagli

Capitolo 4. Campionamento e ricostruzione

Capitolo 4. Campionamento e ricostruzione Capitolo 4 Campionamento e ricostruzione Sommario. In questo capitolo vengono richiamati brevemente i risultati fondamentali (teorema di Shannon e sue conseguenze) sul campionamento e la ricostruzione

Dettagli

Compito di Analisi Matematica III. Compito A

Compito di Analisi Matematica III. Compito A c.d.l. Ingegneria elettronica e c.d.l. Ingegneria Informatica (M Z) 7 gennaio 2008. Determinare i residui nei punti singolari e nel punto all infinito della funzione z 2 sen z + 2. Determinare la trasformata

Dettagli

determinare una soluzione y(t) dell equazione completa e, quindi dedurne tutte le y(t) soluzioni dell equazione.

determinare una soluzione y(t) dell equazione completa e, quindi dedurne tutte le y(t) soluzioni dell equazione. ANALISI VETTORIALE Soluzione esercizi 4 febbraio 2011 10.1. Esercizio. Assegnata l equazione lineare omogenea di primo ordine y + a y = 0 determinare le soluzioni di tale equazione in corrispondenza ai

Dettagli

Controlli Automatici I

Controlli Automatici I Ingegneria Elettrica Politecnico di Torino Luca Carlone Controlli Automatici I LEZIONE II Sommario LEZIONE II Trasformata di Laplace Proprietà e trasformate notevoli Funzioni di trasferimento Scomposizione

Dettagli

Fondamenti di Analisi Matematica 2 - a.a. 2016/2017 Primo appello

Fondamenti di Analisi Matematica 2 - a.a. 2016/2017 Primo appello Fondamenti di Analisi Matematica 2 - a.a. 216/217 Primo appello Esercizi senza svolgimento - Tema 1 Ω = { x, y, z) R 3 : 4x 2 + y 2 + z 2 1, z }. x = ρ/2) sen ϕ cos ϑ, 1. y = ρ sen ϕ sen ϑ, ρ [, 1], ϕ

Dettagli

Campionamento. Campionamento: problema

Campionamento. Campionamento: problema Posizione del problema uniforme Ricostruzione Teorema del campionamento Significato della formula di ricostruzione Sistema di conversione A/D sample & hold quantizzazione Sistema di conversione D/A : problema

Dettagli

Teoria dei Segnali Quantizzazione dei segnali; trasformata zeta

Teoria dei Segnali Quantizzazione dei segnali; trasformata zeta Teoria dei Segnali Quantizzazione dei segnali; trasformata zeta Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria dei Segnali Quantizzazione;

Dettagli

Circuiti per la multimedialità

Circuiti per la multimedialità Università di Roma La Sapienza Laurea in Ingegneria delle Comunicazioni Circuiti per la multimedialità Raffaele Parisi Capitolo 2. Sintesi di circuiti a tempo discreto a partire da circuiti analogici.

Dettagli

è un segnale periodico di periodo T0 1 equazioni di analisi e di sintesi stabiliscono

è un segnale periodico di periodo T0 1 equazioni di analisi e di sintesi stabiliscono PROPRIEA ELEMENARI Se x( t) è un segnale periodico di periodo 0 di classe C 1 -tratti e normalizzato, le equazioni di analisi e di sintesi stabiliscono una corrispondenza fra x( t) e la sequenza dei suoi

Dettagli

Elaborazione numerica dei segnali: si occupa della

Elaborazione numerica dei segnali: si occupa della Introduzione al corso Elaborazione numerica dei segnali: si occupa della Rappresentazione dei segnali con sequenze di numeri e simboli Elaborazione delle sequenze per stimare i parametri caratteristici

Dettagli

Equazioni differenziali del 2 ordine Prof. Ettore Limoli. Sommario. Equazione differenziale omogenea a coefficienti costanti

Equazioni differenziali del 2 ordine Prof. Ettore Limoli. Sommario. Equazione differenziale omogenea a coefficienti costanti Equazioni differenziali del 2 ordine Prof. Ettore Limoli Sommario Equazione differenziale omogenea a coefficienti costanti... 1 Equazione omogenea di esempio... 2 Equazione differenziale non omogenea a

Dettagli

Metodi di progetto per filtri IIR: soluzione dei problemi proposti

Metodi di progetto per filtri IIR: soluzione dei problemi proposti 7 Metodi di progetto per filtri IIR: soluzione dei problemi proposti P-7.: Usando il metodo dell invarianza all impulso, la funzione di trasferimento del filtro analogico viene trasformata in una funzione

Dettagli

La trasformata di Laplace

La trasformata di Laplace La trasformata di Laplace (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi DIMS Universitá di Trento anno accademico 2005/2006 La trasformata di Laplace 1 / 34 Outline 1 La trasformata di

Dettagli

Introduzione ai segnali determinati

Introduzione ai segnali determinati Teoria dei segnali Unità 1 Introduzione ai segnali determinati Introduzione ai segnali determinati Sviluppo in serie di Fourier Trasformata di Fourier 005 Politecnico di Torino 1 Introduzione ai segnali

Dettagli

( ) ( ) = ( )* ( ) Z f X f Y f. sin 2 f. 0 altrove. Esempio di Modulazione

( ) ( ) = ( )* ( ) Z f X f Y f. sin 2 f. 0 altrove. Esempio di Modulazione Esempio di Modulazione z ( t) = x( t) y ( t) dove x( t ) e y () t ammetto trasformata di Fourier X ( f ) e Y ( f ) Per z ( t ) si ha (convoluzione degli spettri): Ad esempio se: ( ) = sin( 2π f t) x t

Dettagli

ESERCIZI DI TEORIA DEI SEGNALI

ESERCIZI DI TEORIA DEI SEGNALI ESERCIZI DI EORIA DEI SEGNALI EX. 1 Si determini lo sviluppo in serie di Fourier del segnale cos[ m(t)] dove m(t) = m(t) = m(t k ) [ π 2 2π ] ( ) t t rect. EX. 2 Si siderino due segnali x 1 (t) e x 2 (t)

Dettagli

Fondamenti di Elaborazione Numerica dei Segnali Anno Accademico Primo Appello 26/2/2015

Fondamenti di Elaborazione Numerica dei Segnali Anno Accademico Primo Appello 26/2/2015 Fondamenti di Elaborazione Numerica dei Segnali Anno Accademico 204-205 Primo Appello 26/2/205 Quesiti relativi alla prima parte del corso (tempo max. 90 min). Calcolare: la trasformata z di x(n) = ( )

Dettagli

Matematica - Prova d esame (25/06/2004)

Matematica - Prova d esame (25/06/2004) Matematica - Prova d esame (/6/4) Università di Verona - Laurea in Biotecnologie AI - A.A. /4. (a) Disegnare sul piano di Gauss i numeri z = i e w = i, e scriverne la forma trigonometrica. Calcolare z

Dettagli

, 3x y = a 2 = b 2 + c 2 2bc cos α.

, 3x y = a 2 = b 2 + c 2 2bc cos α. Esercizi. Soluzioni. (.A ) Siano x = e y =. 2 (i) Calcolare e disegnare i vettori x, 2x, x, 0x. (ii) Calcolare e disegnare i vettori x + y, x y, y e x y. (iii) Calcolare x, y, x + y e x y. Sol. 2 0 (i)

Dettagli

01CXGBN Trasmissione numerica

01CXGBN Trasmissione numerica 0CXGBN rasmissione numerica parte 3: Spazio dei segnali, rappresentazione vettoriale Lo spazio dei segnali Introduciamo una rappresentazione vettoriale dei segnali della costellazione M Serve a semplificare

Dettagli

CORSO DI LAUREA in Fisica, aa 2017/18 (canale Pb-Z)

CORSO DI LAUREA in Fisica, aa 2017/18 (canale Pb-Z) CORSO DI LAUREA in Fisica, aa 2017/18 (canale Pb-Z) Equazioni lineari del II ordine a coefficienti costanti: questo è un richiamo dei risultati con altri esempi svolti. Il testo di riferimento è Bramanti

Dettagli

Istituzioni di Matematica II 5 Luglio 2010

Istituzioni di Matematica II 5 Luglio 2010 Istituzioni di Matematica II 5 Luglio 010 1. Classificare, al variare del parametro α R, la forma quadratica (1 + α )x + 4xy + αy.. i) Si determinino tutti i punti critici della seguente funzione f(x,

Dettagli

Segnali e Sistemi (Ingegneria Informatica)

Segnali e Sistemi (Ingegneria Informatica) Segnali e Sistemi (Ingegneria Informatica) Lezione 4 last update Oct 22, 2004 c 2004 Finesso, Pavon, Pinzoni 1 GRADINO UNITARIO A TEMPO CONTINUO Èilsegnale u(t) = 1 se t 0, 0 se t

Dettagli

Elenco dei simboli 9. Prefazione 10

Elenco dei simboli 9. Prefazione 10 Indice Elenco dei simboli 9 Prefazione 10 1 Analisi nel dominio del tempo 11 1.1 Segnali tempo discreto... 11 1.1.1 Segnali notevoli tempo discreto... 13 1.1.2 Alcuni criteri di classificazione di segnali

Dettagli

ANALISI MATEMATICA III (ELM+TEM) A.A e 10 marzo 2010

ANALISI MATEMATICA III (ELM+TEM) A.A e 10 marzo 2010 ANALISI MATEMATICA III (ELM+TEM) A.A. 2009-2010 8 e 10 marzo 2010 March 10, 2010 1 Trasformata di Fourier: il caso razionale Nel caso in cui f sia una funzione razionale, la sua trasformata di Fourier

Dettagli

COMUNICAZIONI ELETTRICHE

COMUNICAZIONI ELETTRICHE COMUNICAZIONI ELERICHE Diploma Universitario Ingegneria Elettronica - Ingegneria Inormatica ESERCIZIO : Si consideri il sistema mostrato in igura. Il iltro ha risposta in requenza H() = j segn (), dove

Dettagli

Equazioni differenziali del secondo ordine a coefficienti costanti Un equazioni differenziale del secondo ordine a coefficienti costanti è del tipo

Equazioni differenziali del secondo ordine a coefficienti costanti Un equazioni differenziale del secondo ordine a coefficienti costanti è del tipo 9 Lezione Equazioni differenziali del secondo ordine a coefficienti costanti Def. (C) Un equazioni differenziale del secondo ordine a coefficienti costanti è del tipo u + au + bu = f(t), dove a e b sono

Dettagli

Segnali e Sistemi (Ingegneria Informatica)

Segnali e Sistemi (Ingegneria Informatica) Segnali e Sistemi (Ingegneria Informatica) Lezione 3 last update Oct 17, 2004 c 2004 Finesso, Pavon, Pinzoni 1 SIMMETRIE DEI SEGNALI - Simmetria pari (Definizioni analoghe nel caso discreto) Segnale pari

Dettagli

Rappresentazione dei segnali con sequenze di numeri e simboli

Rappresentazione dei segnali con sequenze di numeri e simboli Elaborazione numerica dei segnali Digital Signal Processing 1 Rappresentazione dei segnali con sequenze di numeri e simboli Elaborazione delle sequenze per stimare i parametri caratteristici di un segnale;

Dettagli

Reti nel dominio delle frequenze. Lezione 10 2

Reti nel dominio delle frequenze. Lezione 10 2 Lezione 10 1 Reti nel dominio delle frequenze Lezione 10 2 Introduzione Lezione 10 3 Cosa c è nell Unità 3 In questa sezione si affronteranno Introduzione all Unità Trasformate di Laplace Reti nel dominio

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica STRUMENTI MATEMATICI PER L ANALISI DEI SISTEMI DISCRETI Ing. Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

MASB AA10/11 21/01/11 test #1 1

MASB AA10/11 21/01/11 test #1 1 MASB 20/06/11 AA20102011test #1. Esercizio 1. Illustrare lo schema generale di un apparecchiatura per l acquisizione di segnali spontanei, descrivendo brevemente i diversi componenti. Fornire una descrizione

Dettagli

Analisi di sistemi lineari e stazionari: la trasformata di Laplace

Analisi di sistemi lineari e stazionari: la trasformata di Laplace Analisi di sistemi lineari e stazionari Analisi di sistemi lineari e stazionari: la trasformata di Laplace I modelli lineari e stazionari presentano proprietà estremamente interessanti e si dispone di

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi con soluzione

EQUAZIONI DIFFERENZIALI Esercizi con soluzione EQUAZIONI DIFFERENZIALI Esercizi con soluzione 1. Calcolare l integrale generale delle seguenti equazioni differenziali lineari del primo ordine: (a) y 2y = 1 (b) y + y = e x (c) y 2y = x 2 + x (d) 3y

Dettagli

Scomposizione in fratti semplici

Scomposizione in fratti semplici 0.0.. Scomposizione in fratti semplici La determinazione dell evoluzione libera e dell evoluzione forzata di un sistema lineare stazionario richiedono l antitrasformazione di una funzione razionale fratta

Dettagli

Circuiti a tempo discreto Raffaele Parisi

Circuiti a tempo discreto Raffaele Parisi Università di Roma La Sapienza Laurea specialistica in Ingegneria Elettronica Circuiti a tempo discreto Raffaele Parisi Capitolo 7: Circuiti TD-LTI nel dominio delle trasformate Rappresentazioni nel dominio

Dettagli

In realtà i segnali con i quali dobbiamo confrontarci più frequentemente sono limitati nel tempo

In realtà i segnali con i quali dobbiamo confrontarci più frequentemente sono limitati nel tempo Segnali trattati sino ad ora: continui, durata infinita,.. Su essi sono stati sviluppati strumenti per analizzare output di circuiti e caratteristiche del segnale: Risposta all impulso, prodotto di convoluzione,

Dettagli

e jk( 10 t), t 2 R, è : a) periodico, e se sì identificare il suo periodo fondamentale; b) reale; c) pari o dispari. n 1 X k n x(k) i + x(n +2),

e jk( 10 t), t 2 R, è : a) periodico, e se sì identificare il suo periodo fondamentale; b) reale; c) pari o dispari. n 1 X k n x(k) i + x(n +2), SEGNALI E SISTEMI Pro. A. Beghi, N. Benvenuto e M. Pavon (a.a. 2011-2012) Prima prova di accertamento 27 aprile 2012. Attenzione: u(t) = 1l(t) Ogni a ermazione va giustificata con un minimo di ragionamento

Dettagli

Analisi di segnali variabili nel tempo: la trasformata di Fourier

Analisi di segnali variabili nel tempo: la trasformata di Fourier Analisi di segnali variabili nel tempo: la trasformata di Fourier Aniello (a.k.a. Daniele) Mennella Università degli Studi di Milano Dipartimento di Fisica 13 ottobre 2015 Laboratorio di strumentazione

Dettagli

Cognome Nome: Matricola: Corso di Laurea: Fondamenti di Controlli Automatici - A.A. 2011/12 20 settembre Domande Teoriche

Cognome Nome: Matricola: Corso di Laurea: Fondamenti di Controlli Automatici - A.A. 2011/12 20 settembre Domande Teoriche Fondamenti di Controlli Automatici - A.A. / settembre - Domande Teoriche Cognome Nome: Matricola: Corso di Laurea: Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni

Dettagli

Cognome: Nome: Matricola: a. Si enunci e dimostri il teorema della media integrale per funzioni continue. (5 punti)

Cognome: Nome: Matricola: a. Si enunci e dimostri il teorema della media integrale per funzioni continue. (5 punti) Analisi e Geometria Seconda Prova 3 gennaio 207 Docente: Politecnico di Milano Scuola di Ingegneria Industriale e dell Informazione Cognome: Nome: Matricola: a. Si enunci e dimostri il teorema della media

Dettagli

STRUMENTI MATEMATICI PER L ANALISI DEI SISTEMI DISCRETI

STRUMENTI MATEMATICI PER L ANALISI DEI SISTEMI DISCRETI INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica STRUMENTI MATEMATICI PER L ANALISI L DEI SISTEMI DISCRETI Ing. Cristian Secchi Tel. 0522 522235 e-mail:

Dettagli

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema

Dettagli

Risolvere i problemi di Cauchy o trovare l integrale generale delle seguenti equazioni differenziali del II ordine lineari a coefficienti costanti:

Risolvere i problemi di Cauchy o trovare l integrale generale delle seguenti equazioni differenziali del II ordine lineari a coefficienti costanti: Risolvere i problemi di Cauchy o trovare l integrale generale delle seguenti equazioni differenziali del II ordine lineari a coefficienti costanti: 1. y 5y + 6y = 0 y(0) = 0 y (0) = 1 2. y 6y + 9y = 0

Dettagli

SEGNALI A TEMPO DISCRETO. Impulso e altri segnali canonici discreti. Trasformata Zeta. Sviluppo di Fourier discreto. Trasformata di Fourier discreta

SEGNALI A TEMPO DISCRETO. Impulso e altri segnali canonici discreti. Trasformata Zeta. Sviluppo di Fourier discreto. Trasformata di Fourier discreta SEGNALI A TEMPO DISCRETO Impulso e altri segnali canonici discreti Trasformata Zeta Sviluppo di Fourier discreto Trasformata di Fourier discreta Illustrazioni dal Testo di Riferimento per gentile concessione

Dettagli

Teoria dei Segnali IIa Prova Intracorso Prof. Francesco A. N. Palmieri giovedi 22 novembre 2018

Teoria dei Segnali IIa Prova Intracorso Prof. Francesco A. N. Palmieri giovedi 22 novembre 2018 UNIVERSITA DEGLI STUDI DELLA CAMPANIA Luigi Vanvitelli SCUOLA POLITECNICA E DELLE SCIENZE DI BASE Dipartimento di Ingegneria Industriale e dell Informazione Corso di Laurea in Ingegneria Elettronia e Informatica

Dettagli

6 dbm, mentre il secondo ha una potenza di 3 dbm. Quale sarà la

6 dbm, mentre il secondo ha una potenza di 3 dbm. Quale sarà la DECIBEL, FILTRAGGIO, PROCESSI Esercizio 9 (sui decibel) Un segnale con potenza media di 0 dbm viene amplificato attraverso un dispositivo elettronico la cui H(f) è costante per ogni frequenza e pari a

Dettagli

Laboratorio II, modulo Segnali a tempo discreto (cfr.

Laboratorio II, modulo Segnali a tempo discreto (cfr. Laboratorio II, modulo 2 2012017 Segnali a tempo discreto (cfr. http://wpage.unina.it/verdoliv/tds/appunti/appunti_04.pdf e http://wpage.unina.it/verdoliv/tds/appunti/appunti_0.pdf Luise, Vitetta, D Amico

Dettagli

ISTITUZIONI DI ANALISI SUPERIORE B Prova scritta del 17/3/2003

ISTITUZIONI DI ANALISI SUPERIORE B Prova scritta del 17/3/2003 ISTITUZIONI DI ANALISI SUPEIOE B Prova scritta del 7/3/3 Sia f : C la funzione così definita: { se t

Dettagli

Risposta all impulso

Risposta all impulso ...3 Risposta all impulso Sistemi lineari tempo invarianti: x(t) Sistema y(t) n a lineare i D i y(t) = i= m b i D i x(t) i= La funzione di trasferimento G(s) è definita a condizioni iniziali nulle: X(s)

Dettagli

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari Sistemi differenziali : esercizi svolti 1 Sistemi lineari Stabilità nei sistemi lineari 14 1 Sistemi differenziali : esercizi svolti 1 Sistemi lineari Gli esercizi contrassegnati con il simbolo * presentano

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

Comunicazioni Elettriche anno accademico Esercitazione 1

Comunicazioni Elettriche anno accademico Esercitazione 1 Comunicazioni Elettriche anno accademico 003-004 Esercitazione Esercizio Un processo aleatorio a tempo discreto X(n) è definito nel seguente modo: Viene lanciata una moneta. Se il risultato è testa X(n)=

Dettagli

Sistemi monodimensionale a tempo discreto

Sistemi monodimensionale a tempo discreto Sistemi monodimensionale a tempo discreto Un sistema monodimensionale a tempo discreto è un dispositivo, un apparato, un programma per calcolatore che elabora una sequenza d ingresso e genera una sequenza

Dettagli

Strumenti matematici per l analisi dei sistemi tempo discreto LT-Cap. 2

Strumenti matematici per l analisi dei sistemi tempo discreto LT-Cap. 2 Controllo Digitale a.a. 2007-2008 Strumenti matematici per l analisi dei sistemi tempo discreto LT-Cap. 2 Ing. Federica Pascucci Equazioni alle differenze (ricorsive) f legame tra le sequenze {e k } ed

Dettagli

L equazione di Schrödinger

L equazione di Schrödinger 1 Forma dell equazione L equazione di Schrödinger Postulato - ψ r, t 0 ) definisce completamente lo stato dinamico del sistema al tempo t 0. L equazione che regola l evoluzione di ψ r, t) deve essere:

Dettagli

Teoria dei segnali terza edizione

Teoria dei segnali terza edizione Capitolo 9 Segnali aleatori a tempo continuo e a tempo discreto SOLUZIONI DEGLI ESERCIZI Soluzione dell esercizio 9.3 Si osservi innanzitutto che, essendo il processo () t Gaussiano, anche il processo

Dettagli

CAMPIONAMENTO E RICOSTRUZIONE. Y(f) Y(f-15) Y(f+15) f[hz] Yc(f) Y(f) Y(f-17.5) Y(f+17.5) Yc(f) Esercizio 1

CAMPIONAMENTO E RICOSTRUZIONE. Y(f) Y(f-15) Y(f+15) f[hz] Yc(f) Y(f) Y(f-17.5) Y(f+17.5) Yc(f) Esercizio 1 CAMPIONAMENTO E RICOSTRUZIONE Esercizio 1 Dato il segnale y(t), con trasformata di Fourier Y(f) rappresentata in figura, rappresentare lo spettro del segnale ottenuto campionando idealmente y(t) con a)

Dettagli

Matematica - Prova d esame (09/09/2004)

Matematica - Prova d esame (09/09/2004) Matematica - Prova d esame (9/9/) Università di Verona - Laurea in Biotecnologie AI - A.A. /. Disegnare sul piano di Gauss i numeri z = i, w = i e z iw. Scrivere la forma trigonometrica di w e calcolare

Dettagli

Teoria dei Segnali. Tema d'esame. Soluzione compito di Teoria dei Segnali

Teoria dei Segnali. Tema d'esame. Soluzione compito di Teoria dei Segnali Soluzione compito di 3/03/00 A cura di Francesco Alesiani Esercizio Si consideri un sistema di comunicazione che può essere modellizzato come la cascata di due canali simmetrici indipendenti con probabilità

Dettagli

Analisi Matematica 3/Analisi 4 - SOLUZIONI (20/01/2016)

Analisi Matematica 3/Analisi 4 - SOLUZIONI (20/01/2016) Corso di Laurea in Matematica Docente: Claudia Anedda Analisi Matematica 3/Analisi 4 - SOLUZIONI (//6) ) i) Dopo averla classificata, risolvere l equazione differenziale tẋ x = t cos(t), t >. ii) Scrivere

Dettagli

Gianfranco Cariolaro, Gianfranco Pierobon, Giancarlo Calvagno Segnali e sistemi Indice analitico

Gianfranco Cariolaro, Gianfranco Pierobon, Giancarlo Calvagno Segnali e sistemi Indice analitico Gianfranco Cariolaro, Gianfranco Pierobon, Giancarlo Calvagno Segnali e sistemi Indice analitico Copyright The McGraw-Hill Companies srl A aliasing, 443 fenomeno dell, 424f AMI, codificatore, 315 analiticità

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Altro.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Altro. Controlli Automatici A 22 Giugno 11 - Esercizi Si risolvano i seguenti esercizi. Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Altro. a.1) Calcolare la trasformata di Laplace X(s) dei seguenti segnali

Dettagli

Teoria dei Segnali Richiami di analisi matematica; alcune funzioni notevoli

Teoria dei Segnali Richiami di analisi matematica; alcune funzioni notevoli Teoria dei Segnali Richiami di analisi matematica; alcune funzioni notevoli Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria dei Segnali Richiami

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Altro.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Altro. Controlli Automatici - Prima parte 18 Aprile 216 - Esercizi Si risolvano i seguenti esercizi. Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Altro. a.1) Calcolare la trasformata di Laplace X(s) dei seguenti

Dettagli

Dispense del corso di Analisi II

Dispense del corso di Analisi II Dispense del corso di Analisi II versione preliminare Paolo Tilli Dipartimento di Matematica Politecnico di Torino email: paolo.tilli@polito.it 8 gennaio 5 Capitolo 6 La trasformata di Fourier 6. Introduzione

Dettagli

1. Martedì 1/10/2013, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità

1. Martedì 1/10/2013, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità Registro delle lezioni di MATEMATICA APPLICATA Corsi di Laurea in Biomedica 6 CFU - A.A. 2013/2014 docente: Dott.ssa Luisa Fermo ultimo aggiornamento: 18 dicembre 2013 1. Martedì 1/10/2013, 12 14. ore:

Dettagli