Comunicazione Elettriche L-A Identità ed equazioni

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Comunicazione Elettriche L-A Identità ed equazioni"

Transcript

1 Comunicazione Elettriche L-A Identità ed equazioni Gennaio - Marzo 2009 Identità ed equazioni relative alle comunicazioni elettriche tratti dalle lezioni del corso di Comunicazioni Elettriche L-A alla facoltà di Ingegneria Elettronica dell Università di Bologna tenute dal professor G. Pasolini (raccolte da Francesco Conti)

2 Sviluppo in serie di Fourier di un segnale periodico x(t) c n e j2πnf 0t n= c n = 1 x(t)e j2πnf0t dt Frequenza fondamentale di un segnale periodico f 0 = 1 (1) (2) Fasore Sviluppo in serie di Fourier in forma fasoriale A e j2πnf 0t+ϕ], a R + (3) x(t) = n= cn e j2πnf 0 t+argc n ] (4) Valor medio di un segnale periodico c 0 = 1 Proprietà dello sviluppo di Fourier di funzioni reali x(t) dt (5) c n = c n c n = c n (6) arg c n = arg c n Sviluppo in serie di Fourier in soli coseni (funzioni reali) x(t) = A 0 + { n=1 A n cos (2π nf 0 t + ϕ n ) (7) c 0 = A 0 2c n = A n e jϕ n Sviluppo in serie di Fourier in seni e coseni (funzioni reali) x(t) = a a n cos (2π nf 0 t) + n=1 n=1 c 0 = a 0 2 2c n = a n jb n b n sin (2π nf 0 t) (8) 1

3 Funzione sinc a n = 2 x(t) cos(2π nf 0 t) dt b n = 2 x(t) sin(2π nf 0 t) dt sinc(ξ) = sin(πξ) πξ (9) Spettro di un treno di impulsi c n = Ad sinc(nd) (10) 2

4 Energia di un segnale E = rasformata di Fourier di un segnale aperiodico X(f) = x(t) x(t) 2 dt V 2 s ] (11) x(t)e j2πft dt (12) X(f)e j2πft df rasformata di Fourier in forma fasoriale x(t) = X(f) e j 2πft+arg X(f) ] (13) Simmetria hermitiana (funzioni reali) X( f) = X (f) x(f) = X( f) (14) arg X(f) = arg X( f) rasformata di Fourier in forma cosinusoidale (funzioni reali) x(t) = 0 2 X(f) cos ( 2πft + arg X(f) ) df (15) 3

5 eorema di Rayleigh E = X(f) 2 df (16) Modulazione a prodotto S(f) = X(f f 0 ) ejϕ 2 + X(f + f 0) e jϕ 2 (17) Ripetizione periodica di un segnale x(t) x p (t) = k= Coefficienti di Fourier della ripetizione periodica di un segnale x(t) eorema del campionamento nel dominio delle frequenze Funzione di trasferimento di un sistema LI x(t k) (18) c n = f 0 X(nf 0 ) (19) f 0 1 2t m (20) H(f) = A y A x e j(ϕ y ϕ x ) (21) Funzione di trasferimento e F-trasformate H(f) = Y(f) X(f) Uscita di un sistema LI in regime sinusoidale y(t) = V YM cos ( 2πf 0 t + ϕ Y ) V YM = V XM H(f0 ) ϕ y = ϕ X + arg H(f 0 ) (22) (23) Caratteristiche di fase e di ampiezza di un sistema LI in regime sinusoidale Risposta di un sistema LI a un segnale costante H(f) = V YM V XM (24) arg H(f) = ϕ y ϕ x (25) y(t) = AH(0) (26) 4

6 Risposta di un sistema LI a un segnale periodico x(t) = A 0 + n=1 y(t) = A 0 H(0) + A n cos ( 2πnf 0 t + ϕ n ) n=1 A H(nfo n ) ) cos (2πnf 0 t + ϕ n + arg H(nf 0 ) (27) Funzione di trasferimento di un sistema LI espresso da un circuito Frequenza di taglio H(f) = V y V x (28) f t : H(ft ) = 1 2 max H (29) Versione non-distorta di un segnale y(t) = Ax(t t 0 ) (30) Condizioni di non-distorsione H(f) = A (31) arg H(f) = 2πft 0 (32) Funzione di trasferimento di sistemi LI in parallelo Funzione di trasferimento di sistemi LI in serie Funzionale Distribuzione come integrale Delta di Dirac δ(t) Delta di Dirac come limite H(f) = H 1 (f) + H 2 (f) (33) H(f) = H 1 (f)h 2 (f) (34) : x(t) x(t) ] R (35) x(t) ] = f(t)x(t) dt (36) δ(t)x(t) dt = x(0) (37) lim D (t) = δ(t) (38) 0 5

7 Proprietà di traslazione della delta di Dirac δ(t t 0 )x(t) dt = x(t 0 ) (39) Proprietà di simmetria della delta di Dirac δ( t) = δ(t) (40) Proprietà integrale della delta di Dirac t δ(τ) dτ = u(t) (41) Proprietà di convoluzione della delta di Dirac x(t) δ(t) = x(t) (42) F-trasformata della delta di Dirac F δ(t) ] = 1 (43) F-trasformata di una costante F A] = Aδ(f) (44) F-trasformata di un fasore F Ae j2πf0t ] = Aδ(f f 0 ) (45) F-trasformata di un segnale x(t) periodico F x(t) ] = F-trasformata di sign(t) n= c n δ(f nf 0 ) (46) F sign(t) ] = 1 jπf (47) F-trasformata del gradino unitario F u(t) ] = 1 j2πf + 1 δ(f) (48) 2 F-trasformata di t x(τ) dτ ] F x(τ) dτ = X(f) j2πf + X(0)δ(f) 2 Risposta impulsiva di un sistema LI (49) h(t) = δ(t) ] (50) 6

8 Uscita di un sistema LI nota la risposta impulsiva Risposta impulsiva come limite delle risposte agli impulsi Risposta impulsiva come derivata della risposta al gradino y(t) = x(t) h(t) (51) h(t) = lim 0 D (t) ] (52) Risposta impulsiva nei sistemi causali Condizione necessaria e sufficiente per la stabilità i.l.u.l. h(t) = d dt u(t) ] (53) h(t) = 0, se t < 0 (54) Funzione di trasferimento e risposta impulsiva Integratore a finestra mobile Integral-seno Risposta del passa-basso a sign(t) h(t) dt < + (55) H(f) = F h(t) ] (56) h(t) = u(t) u(t ) (57) H(f) = sinc(f)e jπf (58) Si(z) = z 0 sin ξ ξ dξ (59) y(t) = 2 π Si( 2πB/t t 0 ) ) (60) 7

9 Risposta del passa-basso a rect(t) y(t) = 1 π ( Si ( 2πB/t t 0 ) ) Si ( 2πB(t t 0 ) )) (61) Segnale tempo-discreto a frequenza di campionamento f s x n = x(t n ) = x(n) (62) f s = 1 (63) F-trasformata di un segnale tempo-discreto X s (f) = F s {xn } ] = F-antitrasformata per segnali tempo-discreti n= x n e j2πnf (64) x n = Fs 1 Xs (f) ] = 1 X s (f)e j2πnf df (65) f s f s Periodicità della F-trasformata di un segnale tempo-discreto F-trasformata di un segnale tempo-discreto traslato nel tempo X s (f) = X s (f + f s ) (66) F s {xn m } ] = X s (f)e j2πmf (67) 8

10 Convoluzione {x n } {y n } = x k y n k = k= k= x n k y k (68) F s {xn } {y n } ] = X s (f)y s (f) (69) Delta di Dirac discreta {δ n } = { 1, se n = 0 0, se n 0 (70) F s {δn } ] = 1 (71) {x n } {δ n } = {x n } (72) Segnale PAM (Pulse Amplitude Modulation) s(t) = {x n } g(t) = F-trasformata del campionamento di un segnale tempo-continuo X s (f) = f s + k= x n g(t n) (73) X(f + kf s ) (74) Condizione del teorema del campionamento nel dominio del tempo f s 2f m (75) Applicazione del teorema del campionamento nel dominio del tempo x(t) = n= x n g(t n) (76) g(t) = 2Bsinc(2B) dove B f m, f s f m ] Applicazione del teorema del campionamento nel dominio del tempo con B = f s 2 ( ) t n x(t) = x n sinc n= Bit necessari per codificare L intervalli nella conversione A-D (77) m log 2 L (78) Bit-rate in uscita dal convertitore A-D B r = m f s (79) Risposta impulsiva tempo-discreta {h n } = {δ n } ] (80) {y n } = {x n } {h n } (81) 9

11 Funzione di trasferimento tempo-discreta Funzione di trasferimento di un filtro IIR H s (f) = H s (f) = F s {hn } ] (82) N 1 1 Funzione di trasferimento di un filtro FIR H s (f) = k=0 h k e j2πkf (83) M h ke j2πkf k=1 N 1 k=0 Funzione di trasferimento di un filtro puramente ricorrente H s (f) = 1 h k e j2πkf (84) h 0 (85) M h ke j2πkf k=1 10

Formulario di Teoria dei Segnali 1

Formulario di Teoria dei Segnali 1 Formulario di eoria dei Segnali Parte : Segnali determinati his documentation was prepared with L A EX by Massimo Barbagallo formulario di teoria dei segnali Proprietà dei segnali determinati Energia,

Dettagli

Teoria dei Segnali. 1 Proprietà della trasformata di Fourier. correlazione tra segnali; autocorrelazione

Teoria dei Segnali. 1 Proprietà della trasformata di Fourier. correlazione tra segnali; autocorrelazione Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it

Dettagli

Teoria dei Segnali Richiami ai numeri complessi; serie e trasformata di Fourier

Teoria dei Segnali Richiami ai numeri complessi; serie e trasformata di Fourier Teoria dei Segnali Richiami ai numeri complessi; serie e trasformata di Fourier Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria dei Segnali

Dettagli

ANALISI DI FOURIER. Segnali a tempo continuo:

ANALISI DI FOURIER. Segnali a tempo continuo: ANALISI DI OURIER Segnali a tempo continuo: Segnali aperiodici Segnali periodici Introduzione alla Trasformata Continua di ourier - Derivazione intuitiva della TC a partire dallo Sviluppo in Serie di ourier

Dettagli

Prova di AUTOVALUTAZIONE (novembre 2009). nota: l esame ha validità solo se incluso nel piano degli studi per l anno accademico corrente.

Prova di AUTOVALUTAZIONE (novembre 2009). nota: l esame ha validità solo se incluso nel piano degli studi per l anno accademico corrente. UNIVERSITA DEGLI STUDI ROMA TRE CdS in Ingegneria Informatica corso di FONDAMENTI DI TELECOMUNICAZIONI Prova di AUTOVALUTAZIONE (novembre 2009). COMPITO A nota: l esame ha validità solo se incluso nel

Dettagli

Teoria dei Segnali Quantizzazione dei segnali; trasformata zeta

Teoria dei Segnali Quantizzazione dei segnali; trasformata zeta Teoria dei Segnali Quantizzazione dei segnali; trasformata zeta Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria dei Segnali Quantizzazione;

Dettagli

Elaborazione numerica. Teoria dei segnali

Elaborazione numerica. Teoria dei segnali Elaborazione numerica e Teoria dei segnali Raccolta di Esercizi Fiandrino Claudio agosto 00 II Indice I Teoria dei segnali 5 Esercizi di base 7. Esercizio............................. 7. Esercizio.............................

Dettagli

Teoria dei Segnali Richiami di analisi matematica; alcune funzioni notevoli

Teoria dei Segnali Richiami di analisi matematica; alcune funzioni notevoli Teoria dei Segnali Richiami di analisi matematica; alcune funzioni notevoli Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria dei Segnali Richiami

Dettagli

Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2

Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2 Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it

Dettagli

Laboratorio II, modulo

Laboratorio II, modulo Laboratorio II, modulo 2 206-207 Banda di un segnale e filtri (cfr. http://wpage.unina.it/verdoliv/tds/appunti/appunti_03.pdf e http://wpage.unina.it/verdoliv/tds/appunti/appunti_04.pdf e http://wpage.unina.it/verdoliv/tds/appunti/appunti_05.pdf

Dettagli

Studio dei segnali nel dominio della frequenza. G. Traversi

Studio dei segnali nel dominio della frequenza. G. Traversi Studio dei segnali nel dominio della frequenza G. Traversi Segnali periodici e serie di Fourier Una funzione periodica f(t) di periodo T (purché integrabile) è esprimibile con una serie del tipo: f (t)

Dettagli

Dispense del corso di Elettronica L Prof. Guido Masetti

Dispense del corso di Elettronica L Prof. Guido Masetti Dispense del corso di Elettronica L Prof. Guido Masetti Teoria dei Segnali e Sistemi Sommario Architettura dei sistemi per l'elaborazione dell'informazione Informazione e segnali Teoria dei segnali Analisi

Dettagli

+ h(τ) x(t τ)dτ (2.1) Figura 2.1: Sistema lineare

+ h(τ) x(t τ)dτ (2.1) Figura 2.1: Sistema lineare Capitolo Metodo di Volterra.1 Introduzione Per un sistema lineare, come riportato in figura.1, si può sempre definire una risposta impulsiva ht che relaziona, tramite un integrale di convoluzione, il segnale

Dettagli

Corso di Fondamenti di Telecomunicazioni Esercizi Teoria dei segnali Prof. Giovanni Schembra

Corso di Fondamenti di Telecomunicazioni Esercizi Teoria dei segnali Prof. Giovanni Schembra Corso di Fondamenti di Telecomunicazioni Esercizi Teoria dei segnali Prof. Giovanni Schembra Sommario CARATTERISTICHE DEI SEGNALI DETERMINATI.... ESERCIZIO.... ESERCIZIO... 5.3 ESERCIZIO 3 CONVOLUZIONE...

Dettagli

Esercizi svolti di Teoria dei Segnali

Esercizi svolti di Teoria dei Segnali Esercizi svolti di eoria dei Segnali Enrico Magli, Letizia Lo Presti, Gabriella Olmo, Gabriella Povero Versione. Prefazione A partire dall anno accademico 5/6 viene fornita agli studenti dei corsi di eoria

Dettagli

ESERCIZI DI TEORIA DEI SEGNALI

ESERCIZI DI TEORIA DEI SEGNALI ESERCIZI DI EORIA DEI SEGNALI EX. 1 Si determini lo sviluppo in serie di Fourier del segnale cos[ m(t)] dove m(t) = m(t) = m(t k ) [ π 2 2π ] ( ) t t rect. EX. 2 Si siderino due segnali x 1 (t) e x 2 (t)

Dettagli

Introduzione ai segnali determinati

Introduzione ai segnali determinati Teoria dei segnali Unità 1 Introduzione ai segnali determinati Introduzione ai segnali determinati Sviluppo in serie di Fourier Trasformata di Fourier 005 Politecnico di Torino 1 Introduzione ai segnali

Dettagli

Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza p. 2

Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza p. 2 Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013

Dettagli

Introduzione all Analisi Armonica. y = Dsin 2 ft

Introduzione all Analisi Armonica. y = Dsin 2 ft Introduzione all Analisi Armonica Analisi del suono: Suono Semplice (Diapason) Le molecole dell aria a seguito di una compressione e rarefazione oscillano attorno alla posizione di riposo, con legge: (

Dettagli

Gianfranco Cariolaro, Gianfranco Pierobon, Giancarlo Calvagno Segnali e sistemi Indice analitico

Gianfranco Cariolaro, Gianfranco Pierobon, Giancarlo Calvagno Segnali e sistemi Indice analitico Gianfranco Cariolaro, Gianfranco Pierobon, Giancarlo Calvagno Segnali e sistemi Indice analitico Copyright The McGraw-Hill Companies srl A aliasing, 443 fenomeno dell, 424f AMI, codificatore, 315 analiticità

Dettagli

Reti nel dominio delle frequenze. Lezione 10 2

Reti nel dominio delle frequenze. Lezione 10 2 Lezione 10 1 Reti nel dominio delle frequenze Lezione 10 2 Introduzione Lezione 10 3 Cosa c è nell Unità 3 In questa sezione si affronteranno Introduzione all Unità Trasformate di Laplace Reti nel dominio

Dettagli

Elaborazione di Segnali Multimediali

Elaborazione di Segnali Multimediali UNIVERSITA DEGLI STUDI DI CATANIA Facoltà di Ingegneria Corso di Laurea in Ingegneria Telematica Elaborazione di Segnali Multimediali = Elaborazione Numerica dei Segnali + Comunicazioni Multimediali Elaborazione

Dettagli

NUMERI COMPLESSI. = 2 + 5i A3) Calcolare in forma trigonometrica le soluzioni complesse dell equazione iz 4 9 = 0

NUMERI COMPLESSI. = 2 + 5i A3) Calcolare in forma trigonometrica le soluzioni complesse dell equazione iz 4 9 = 0 NUMERI COMPLESSI A) Calcolare in forma cartesiana ( + i) 3 = A) ( + 5i) (3 + 4i) Calcolare in forma cartesiana = + 5i A3) Calcolare in forma trigonometrica le soluzioni complesse dell equazione iz 4 9

Dettagli

In realtà i segnali con i quali dobbiamo confrontarci più frequentemente sono limitati nel tempo

In realtà i segnali con i quali dobbiamo confrontarci più frequentemente sono limitati nel tempo Segnali trattati sino ad ora: continui, durata infinita,.. Su essi sono stati sviluppati strumenti per analizzare output di circuiti e caratteristiche del segnale: Risposta all impulso, prodotto di convoluzione,

Dettagli

Esercizi di teoria dei segnali. Laura Dossi Arnaldo Spalvieri

Esercizi di teoria dei segnali. Laura Dossi Arnaldo Spalvieri Esercizi di teoria dei segnali Laura Dossi Arnaldo Spalvieri Gli autori desiderano ringraziare gli ingg. Fabio Marchisi e Raffaele Canavesi per il preziosissimo contributo alla stesura della dispensa.

Dettagli

ANALISI DI FOURIER. Segnali tempo continui:

ANALISI DI FOURIER. Segnali tempo continui: ANALISI DI FOURIER Segnali tempo continui: Segnali aperiodici Introduzione alla Trasformata Continua di - Derivazione intuitiva della TCF a partire dallo Sviluppo in Serie di - Spettro di ampiezza e fase

Dettagli

Segnali passa-banda ed equivalenti passa-basso

Segnali passa-banda ed equivalenti passa-basso Appendice C Segnali passa-banda ed equivalenti passa-basso C.1 Segnali deterministici Un segnale deterministico u(t) con trasformata di Fourier U(f) è un segnale passa-banda se f 0, W, con 0 < W < f 0,

Dettagli

1.1 Classicazione dei Segnali Segnali periodi e non periodici Un segnale x(t) è denito periodico se esiste una costante T > 0 per cui

1.1 Classicazione dei Segnali Segnali periodi e non periodici Un segnale x(t) è denito periodico se esiste una costante T > 0 per cui 1 Sistemi e Segnali Utilizziamo il termine sistema per descrivere un set di elementi o di blocchi funzionali che vengono connessi insieme in modo tale da poter raggiungere un determinato obbiettivo. Nei

Dettagli

Paolo Gamba, Pietro Savazzi. Esercizi discussi e risolti di Comunicazioni elettriche

Paolo Gamba, Pietro Savazzi. Esercizi discussi e risolti di Comunicazioni elettriche Paolo Gamba, Pietro Savazzi Esercizi discussi e risolti di Comunicazioni elettriche Indice Prefazione vii 1 Problemi sui segnali deterministici e sui sistemi 1 1.1 Soluzione dei problemi.......................

Dettagli

Concetti di base: segnali - Classificazione dei segnali -

Concetti di base: segnali - Classificazione dei segnali - Corso di Tecnologie per le Telecomunicazioni e sviluppo in serie di Fourier 1 - Classificazione dei segnali - Le forme d onda di interesse per le Telecomunicazioni possono essere sia una tensione v(t)

Dettagli

Sviluppo in serie di Fourier

Sviluppo in serie di Fourier Appunti di Teoria dei Segnali a.a. / L.Verdoliva La serie e la trasformata di Fourier sono strumenti matematici estremamente utili nell analisi e nell elaborazione dei segnali mediante sistemi LTI e forniscono

Dettagli

CAMPIONAMENTO E RICOSTRUZIONE. Y(f) Y(f-15) Y(f+15) f[hz] Yc(f) Y(f) Y(f-17.5) Y(f+17.5) Yc(f) Esercizio 1

CAMPIONAMENTO E RICOSTRUZIONE. Y(f) Y(f-15) Y(f+15) f[hz] Yc(f) Y(f) Y(f-17.5) Y(f+17.5) Yc(f) Esercizio 1 CAMPIONAMENTO E RICOSTRUZIONE Esercizio 1 Dato il segnale y(t), con trasformata di Fourier Y(f) rappresentata in figura, rappresentare lo spettro del segnale ottenuto campionando idealmente y(t) con a)

Dettagli

Note sulla serie di Fourier e la trasformata di Fourier

Note sulla serie di Fourier e la trasformata di Fourier Note sulla serie di Fourier e la trasformata di Fourier Queste note, come tutte le figure e le tabelle, sono state tratte dai primi due primi capitoli del libro: J. Kauppinen, J. Partanen, Fourier ransforms

Dettagli

SECONDO COMPITINO DI SEGNALI E SISTEMI 3 Dicembre 2003

SECONDO COMPITINO DI SEGNALI E SISTEMI 3 Dicembre 2003 SECONDO COMPIINO DI SEGNALI E SISEMI 3 Dicembre 003 Esercizio. Si consideri il modello ingresso/uscita a tempo discreto e causale descritto dalla seguente equazione alle differenze: vk) con a parametro

Dettagli

Introduzione alla δ di Dirac

Introduzione alla δ di Dirac UniPD Facoltà di Ingegneria a.a. 04-05 Insegnamento di SEGNALI E SISTEMI (ALSI - Finesso) Introduzione alla δ di Dirac La δ di Dirac è uno strumento matematico di grande utilità nello studio di segnali

Dettagli

Segnali per le Telecomunicazioni. Formulario

Segnali per le Telecomunicazioni. Formulario Politecnico i Milano Segnali per le elecomunicazioni 04 Formulario 8680 Feerico Baini 8765 Stefano Boini Prof. Clauio Prati June 0, 04 Segnali a energia e potenza finita empo continuo Energia (.) E + x(

Dettagli

Formule di telecomunicazioni

Formule di telecomunicazioni Frmule di telecmunicazini PAM descrizine generica di un segnale PAM: N/2 s(t) = n = - N/2 a n g(t nt) a n = sequenza di simbli N + 1 = lunghezza della sequenza di simbli (può essere finita infinita) T

Dettagli

Segnali e Sistemi (Ingegneria Informatica)

Segnali e Sistemi (Ingegneria Informatica) Segnali e Sistemi (Ingegneria Informatica) Lezione 4 last update Oct 22, 2004 c 2004 Finesso, Pavon, Pinzoni 1 GRADINO UNITARIO A TEMPO CONTINUO Èilsegnale u(t) = 1 se t 0, 0 se t

Dettagli

Segnali e Sistemi (Ingegneria Informatica)

Segnali e Sistemi (Ingegneria Informatica) Segnali e Sistemi (Ingegneria Informatica) Lezione 3 last update Oct 17, 2004 c 2004 Finesso, Pavon, Pinzoni 1 SIMMETRIE DEI SEGNALI - Simmetria pari (Definizioni analoghe nel caso discreto) Segnale pari

Dettagli

Campionamento dei Segnali

Campionamento dei Segnali Campionamento dei Segnali I segnali biomedici sono di /po analogico, quindi con/nui in ampiezza e a tempo con/nuo. Mentre i primi stadi dei sistemi di acquisizione devono eseguire operazioni nel dominio

Dettagli

8. Sistemi di Modulazione Numerica in banda-base. Modulo TLC:TRASMISSIONI Modulazione numerica in banda base

8. Sistemi di Modulazione Numerica in banda-base. Modulo TLC:TRASMISSIONI Modulazione numerica in banda base 1 8. Sistemi di Modulazione Numerica in banda-base Modulazione e Demodulazione numerica 2 sequenza numerica segnale analogico...0010111001... modulatore numerico x(t) sequenza numerica...0010011001...

Dettagli

COMPITO DI SEGNALI E SISTEMI 18 Dicembre 2004

COMPITO DI SEGNALI E SISTEMI 18 Dicembre 2004 COMPIO DI SEGNALI E SISEMI 8 Dicembre 4 Esercizio Si consideri il modello di stato a tempo discreto descritto dalle seguenti equazioni: x(k + = Ax(k + Bu(k = x(k + u(k, v(k = Cx(k = [ ] x(k, k Z + i Si

Dettagli

Trasformate al limite

Trasformate al limite Bozza Data 6/0/007 Trasormate al limite La unzione generalizzata delta di Dirac Funzioni, unzionali e distribuzioni Prima di deinire la delta di Dirac conviene ricordare le seguenti deinizioni: unzione

Dettagli

Elaborazione di segnali e immagini: modulo segnali

Elaborazione di segnali e immagini: modulo segnali Elaborazione di segnali e immagini: modulo segnali 30 gennaio 014 Esame parziale con soluzioni Esercizio 1 Dato un sistema LTI descritto dalla seguente equazione alle differenze: v(k) + v(k 1) 10v(k )

Dettagli

La serie di Fourier. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro

La serie di Fourier. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro La serie di Fourier Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici Gianni Borghesan e Giovanni Marro Indice Introduzione. Notazione............................. Analisi spettrale

Dettagli

LA TRASFORMATA DI FOURIER: PROPRIETA ED ESEMPI

LA TRASFORMATA DI FOURIER: PROPRIETA ED ESEMPI LA TRASFORMATA DI FOURIER: PROPRIETA ED ESEMPI Fondamenti di segnali Fondamenti e trasmissione TLC Proprieta della () LINEARITA : la della combinazione lineare (somma pesata) di due segnali e uguale alla

Dettagli

6. Trasmissione Numerica in Banda Base

6. Trasmissione Numerica in Banda Base 1 INFO-COM Dpt. Dipartimento di Scienza e Tecnica dell Informazione e della Comunicazione Università degli Studi di Roma La Sapienza 6. Trasmissione Numerica in Banda Base TELECOMUNICAZIONI per Ingegneria

Dettagli

Tecniche di modulazione

Tecniche di modulazione 38 F ecniche di modulazione In questa unità verranno illustrate le principali tecniche per la trasmissione di segnali analogici o digitali aventi caratteristiche spettrali di tipo passa-basso su canali

Dettagli

PROVA SCRITTA DI TEORIA DEI SEGNALI DEL 13.06.2005. Tempo: 2.5 ore. È consentito l uso di libri ed appunti propri. y 1 (t) + + y(t) H(f) = 1 4

PROVA SCRITTA DI TEORIA DEI SEGNALI DEL 13.06.2005. Tempo: 2.5 ore. È consentito l uso di libri ed appunti propri. y 1 (t) + + y(t) H(f) = 1 4 INFO (DF-M) PROVA SCRITTA DI TEORIA DEI SEGNALI DEL 3.06.005. Tempo:.5 ore. È consentito l uso di libri ed appunti propri. ESERCIZIO (0 punti) x(t) g(x) z(t) H(f) H(f) y (t) + + y (t) y(t) H(f) = 4 ( e

Dettagli

che coinciderà con la (2) se g[n] = g (n ), condizione verificata dal teorema di Poisson.

che coinciderà con la (2) se g[n] = g (n ), condizione verificata dal teorema di Poisson. La simulazione di sistemi analogici LTI per via digitale si è resa necessaria in quanto permette non solo la perfetta riproducibilità del fenomeno da studiare in situazioni ambientali anche molto diverse,

Dettagli

Corso di Laurea Triennale in Fisica. Corso di Tecniche Diagnostiche. Modulo di Imaging

Corso di Laurea Triennale in Fisica. Corso di Tecniche Diagnostiche. Modulo di Imaging Corso di Laurea Triennale in Fisica Corso di Tecniche Diagnostiche Modulo di Imaging Dispense a cura di Laura Angeloni e Gianluca Vinti Docente del corso: Prof. Gianluca Vinti Indice Prefazione 4 1 Analisi

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Università di Napoli Parthenope Facoltà di Ingegneria Corso di rasmissione Numerica docente: Prof. Vito Pascazio 18 a Lezione: 13/1/4 19 a Lezione: 14/1/4 Sommario rasmissione di segnali PM numerici su

Dettagli

Campionamento e quantizzazione

Campionamento e quantizzazione Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Campionamento e quantizzazione A.A. 2008-09 Alberto Perotti DELEN-DAUIN Conversione analogico-digitale L elaborazione

Dettagli

Teoria dei Segnali Densità spettrale di energia e di potenza; campionamento e teorema di Shannon

Teoria dei Segnali Densità spettrale di energia e di potenza; campionamento e teorema di Shannon Teoria dei Segnali Densità spettrale di energia e di potenza; campionamento e teorema di Shannon Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria

Dettagli

Sistemi LTI a Tempo Continuo

Sistemi LTI a Tempo Continuo Capitolo 3 Sistemi LTI a Tempo Continuo 3.1 Proprietà di Linearità e Tempo Invarianza 3.1.1 Linearità Si indichi con T [.] la trasormazione ingresso-uscita, o unzione di traserimento, di un sistema S 1,

Dettagli

Elementi di Teoria dei Segnali

Elementi di Teoria dei Segnali Elementi di Teoria dei Segnali Ing. Michele Scarpiniti michele.scarpiniti@uniroma1.it http://ispac.ing.uniroma1.it/scarpiniti/index.htm Master "Tecniche per la Multimedialità" 1 Il concetto di segnale

Dettagli

2. Analisi in frequenza di segnali

2. Analisi in frequenza di segnali 2.1 Serie di Fourier 2. Analisi in frequenza di segnali Secondo il teorema di Fourier, una funzione periodica y(t) è sviluppabile in una serie costituita da un termine costante A 0 e da una somma di infinite

Dettagli

Segnali Passa-Banda ed Equivalenti Passa-Basso

Segnali Passa-Banda ed Equivalenti Passa-Basso Appendice C Segnali Passa-Banda ed Equivalenti Passa-Basso C.1 Segnali deterministici Un segnale reale deterministico reale u(t) con trasformata di Fourier U(f) è un segnale passa-banda se f 0,W, con 0

Dettagli

Obiettivi del corso. Esempi di sistemi di comunicazione. Classificazione dei segnali

Obiettivi del corso. Esempi di sistemi di comunicazione. Classificazione dei segnali Obiettivi del corso Obiettivi Acquisire i principali strumenti metodologici ed informatici per l analisi e l elaborazione dei segnali di comune impiego nelle applicazioni di telecomunicazioni e più in

Dettagli

Sommario CAPITOLO 1 CAPITOLO 2. iii. Le grandezze elettriche... 1. I componenti circuitali... 29

Sommario CAPITOLO 1 CAPITOLO 2. iii. Le grandezze elettriche... 1. I componenti circuitali... 29 Sommario CAPITOLO 1 Le grandezze elettriche............................... 1 1-1 Progetto proposto Regolatore di flusso............................ 2 1-2 I primordi delle scienze elettriche.................................

Dettagli

Serie di Fourier di segnali PWM

Serie di Fourier di segnali PWM Serie di Fourier di segnali PWM Ivan Furlan 1 14 settembre 2013 1 I. Furlan riceve il BSc in elettronica nel 2000 presso la SUPSI, ed il MSc in meccatronica nel 2009 presso il Politecnico di orino. Attualmente

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche. Modulazione A.A Alberto Perotti

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche. Modulazione A.A Alberto Perotti Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Modulazione A.A. 8-9 Alberto Perotti DELEN-DAUIN Modello di sistema di comunicazione Il modello di sistema di comunicazione

Dettagli

Lezione 2: rappresentazione in frequenza

Lezione 2: rappresentazione in frequenza Segnali a potenza media finita e conversione A/D Lezione : rappresentazione in frequenza Generalità Spettro di potenza e autocorrelazione Proprietà dello spettro di potenza Larghezza di banda Spettri mutui

Dettagli

Unità di misura nell analisi del segnale G. D Elia. Sezione1

Unità di misura nell analisi del segnale G. D Elia. Sezione1 Unità di misura nell analisi del segnale G. D Elia Sezione1 La Serie di Fourier Si consideri una funzione x(t) periodica di periodo T = π/ω. Se sono soddisfatte opportune condizioni (condizioni di Direchlet):

Dettagli

SEGNALI A TEMPO CONTINUO. Impulso e altri segnali canonici. Trasformata di Laplace. Serie di Fourier. Trasformata di Fourier

SEGNALI A TEMPO CONTINUO. Impulso e altri segnali canonici. Trasformata di Laplace. Serie di Fourier. Trasformata di Fourier SEGNALI A TEMPO CONTINUO Impulso e altri segnali canonici Trasformata di Laplace Serie di Fourier Trasformata di Fourier Illustrazioni dal Testo di Riferimento per gentile concessione degli Autori 1 IMPULSO

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 2009-200 p. /32 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma.it Lucidi tratti dal libro C. Bonivento,

Dettagli

Corso di Fondamenti di Segnali e Trasmissione - Appello del 07 Settembre 2005

Corso di Fondamenti di Segnali e Trasmissione - Appello del 07 Settembre 2005 Corso di Fondamenti di Segnali e Trasmissione - Appello del 07 Settembre 2005 Gli esercizi devono essere risolti solo sui fogli dei colori indicati Per esiti e soluzioni si veda il sito web del corso:

Dettagli

La trasformata di Laplace

La trasformata di Laplace La trasformata di Laplace (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi DIMS Universitá di Trento anno accademico 2005/2006 La trasformata di Laplace 1 / 34 Outline 1 La trasformata di

Dettagli

Filtri. Telecomunicazioni per l Aerospazio. P. Lombardo DIET, Univ. di Roma La Sapienza Filtri - 1

Filtri. Telecomunicazioni per l Aerospazio. P. Lombardo DIET, Univ. di Roma La Sapienza Filtri - 1 Filtri P. Lombardo DIET, Univ. di Roma La Sapienza Filtri - 1 L impulso: definizione L impulso (detto anche delta di Dirac) può essere definito (tralasciando il rigore matematico) come un rettangolo di

Dettagli

Compito di Analisi Matematica III. Compito A

Compito di Analisi Matematica III. Compito A c.d.l. Ingegneria elettronica e c.d.l. Ingegneria Informatica (M Z) 7 gennaio 2008. Determinare i residui nei punti singolari e nel punto all infinito della funzione z 2 sen z + 2. Determinare la trasformata

Dettagli

Capitolo 2 Introduzione allo Strato Fisico:Segnali Analogici e numerici

Capitolo 2 Introduzione allo Strato Fisico:Segnali Analogici e numerici Capitolo 2 Introduzione allo Strato Fisico:Segnali Analogici e numerici 1 Segnali Definizioni (1/2) Concettualmente un segnale x(t) rappresenta l andamento nel tempo t di una grandezza fisica x (tensione,

Dettagli

Segnali ad energia ed a potenza finita

Segnali ad energia ed a potenza finita Bozza Data 07/03/008 Segnali ad energia ed a potenza finita Energia e potenza di un segnale Definizioni di energia e potenza Dato un segnale (t), in generale complesso, si definisce potenza istantanea

Dettagli

Revisione dei concetti fondamentali dell analisi in frequenza

Revisione dei concetti fondamentali dell analisi in frequenza Revisione dei concetti fondamentali dell analisi in frequenza rgomenti: trasformazione in frequenza: significato e funzionamento; schemi di rappresentazione; trasformata discreta. 1 Rappresentazione dei

Dettagli

SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo.

SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo. SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html Banda passante e sviluppo in serie di Fourier Ing. Luigi Biagiotti e-mail:

Dettagli

Rappresentazione dei segnali con sequenze di numeri e simboli

Rappresentazione dei segnali con sequenze di numeri e simboli Elaborazione numerica dei segnali Digital Signal Processing 1 Rappresentazione dei segnali con sequenze di numeri e simboli Elaborazione delle sequenze per stimare i parametri caratteristici di un segnale;

Dettagli

Corso di Tecniche di Trasmissione Esercizi sulla teoria dei processi stocastici

Corso di Tecniche di Trasmissione Esercizi sulla teoria dei processi stocastici Corso di Tecniche di Trasmissione Esercizi sulla teoria dei processi stocastici 21 aprile 24 Esercizio 1 Si consideri la variabile aleatoria: s = a x(t)dt, (1) in cui x(t) un processo stocastico stazionario

Dettagli

RICHIAMI SU PROCESSI ALEATORI E DENSITÀ SPETTRALE DI POTENZA

RICHIAMI SU PROCESSI ALEATORI E DENSITÀ SPETTRALE DI POTENZA RICHIAMI SU PROCESSI ALEATORI E DENSITÀ SPETTRALE DI POTENZA Paolo Bestagini Ph.D. Student bestagini@elet.polimi.it http://home.deib.polimi.it/bestagini Sommario 2 Segnali deterministici Continui Discreti

Dettagli

Banda passante e sviluppo in serie di Fourier

Banda passante e sviluppo in serie di Fourier CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/controlliautomatici.html Banda passante e sviluppo in serie di Fourier Ing. e-mail: luigi.biagiotti@unimore.it

Dettagli

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/ Catene di Misura Corso di Misure Elettriche http://sms.unipv.it/misure/ Piero Malcovati Dipartimento di Ingegneria Industriale e dell Informazione Università di Pavia piero.malcovati@unipv.it Piero Malcovati

Dettagli

7.6 Esercizi svolti Trasformata di Fourier

7.6 Esercizi svolti Trasformata di Fourier 78 7 Trasformata di Fourier 7.6 Esercizi svolti Esercizio 7. Determinare la trasformata di Fourier delle seguenti funzioni : a x(t =u(t e t + u(t u(t + ; b x(t =e i3t p (t + ; c x(t =p (t ; ( d x(t =p

Dettagli

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Il teorema di Shannon

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Il teorema di Shannon INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Il teorema di Shannon Prof. Carlo Rossi DEIS - Università di Bologna Tel: 051 2093024 email: crossi@deis.unibo.it Introduzione Il teorema di Shannon, o

Dettagli

CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI

CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI 1 Fondamenti di segnali Fondamenti e trasmissione TLC Segnali in formato numerico Nei moderni sistemi di memorizzazione e trasmissione i segnali in ingresso sono

Dettagli

Analisi dei Sistemi Lineari e Tempo Invarianti nel Dominio del Tempo

Analisi dei Sistemi Lineari e Tempo Invarianti nel Dominio del Tempo 1 Corso di Fondamenti di Automatica A.A. 2016/17 Analisi dei Sistemi Lineari e Tempo Invarianti nel Dominio del Tempo Prof. Carlo Cosentino Dipartimento di Medicina Sperimentale e Clinica Università degli

Dettagli

Azione Filtrante. Prof. Laura Giarré https://giarre.wordpress.com/ca/

Azione Filtrante. Prof. Laura Giarré https://giarre.wordpress.com/ca/ Azione Filtrante Prof. Laura Giarré Laura.Giarre@UNIMORE.IT https://giarre.wordpress.com/ca/ Sviluppo in serie di Fourier Qualunque funzione periodica di periodo T può essere rappresentata mediante sviluppo

Dettagli

Principi di modulazione numerica

Principi di modulazione numerica Capitolo 3 Principi di modulazione numerica Il modulatore deve trasformare il segnale numerico in ingresso (proveniente dal codificatore di canale o dal codificatore di sorgente in assenza di codifica

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche. Analisi dei segnali A.A. 2008-09.

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche. Analisi dei segnali A.A. 2008-09. Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Analisi dei segnali A.A. 2008-09 Alberto Perotti DELEN-DAUIN Segnali continui e discreti Un segnale tempo-continuo è

Dettagli

Audio Digitale. Cenni sulle onde. Multimedia 1

Audio Digitale. Cenni sulle onde. Multimedia 1 Audio Digitale Cenni sulle onde 1 Suono e Audio Il suono è un insieme di onde meccaniche longitudinali. L oggetto che origina il suono produce una vibrazione che si propaga attraverso un mezzo modificando

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondamenti di Controlli Automatici - A.A. 7/8 4 Dicembre 7 - Esercizi Compito A Nr. Nome: Nr. Mat. Firma: a) Determinare la trasformata di Laplace X i (s) dei seguenti segnali temporali x i (t): x (t)

Dettagli

CANALE STAZIONARIO CANALE TEMPO INVARIANTE

CANALE STAZIONARIO CANALE TEMPO INVARIANTE CANALE STAZIONARIO Si parla di un Canale Stazionario quando i fenomeni che avvengono possono essere modellati da processi casuali e le proprietà statistiche di tali processi sono indipendenti dal tempo.

Dettagli

Pulse Amplitude Modulation (PAM) 2 Scelta delle risposte impulsive dei filtri in trasmissione e ricezione

Pulse Amplitude Modulation (PAM) 2 Scelta delle risposte impulsive dei filtri in trasmissione e ricezione Pulse Amplitude Modulation (PAM 1 Definizione La trasmissione di una sequenza di numeri {a k } mediante un onda PAM consiste nel generare, a partire dalla sequenza {a k } il segnale a tempo continuo u(t

Dettagli

Spazio dei segnali, correlazione e spettro

Spazio dei segnali, correlazione e spettro Sapienza Universita di Roma Dispensa per il corso di Segnali Deterministici e Stocastici Corso di Laurea in Ingegneria Clinica Spazio dei segnali, correlazione e spettro Lorenzo Piazzo AA 2016/17 Versione

Dettagli

Controlli Automatici Compito del - Esercizi

Controlli Automatici Compito del - Esercizi Compito del - Esercizi. Data la funzione di trasferimento G(s) = s (s +),sicalcoli a) La risposta impulsiva g(t); b) L equazione differenziale associata al sistema G(s); c) Si commenti la stabilità del

Dettagli

Esercitazione ENS sulle finestre (22 Aprile 2008)

Esercitazione ENS sulle finestre (22 Aprile 2008) Esercitazione ENS sulle finestre ( Aprile 008) D. Donno Esercizio : Separazione di due segnali Si consideri un segnale z(t) somma di due segnali x(t) e y(t) reali e di potenza simile, ciascuno con semi

Dettagli

Caratterizzazione dei segnali aleatori nel dominio della frequenza

Caratterizzazione dei segnali aleatori nel dominio della frequenza Capitolo 5 Caratterizzazione dei segnali aleatori nel dominio della frequenza 5. Introduzione In questo capitolo affrontiamo lo studio dei segnali aleatori nel dominio della frequenza. Prendiamo come esempio

Dettagli

II Lezione: Uso della DFT e FFT

II Lezione: Uso della DFT e FFT II Lezione: Uso della DFT e FFT In questa lezione vengono proposti alcuni semplici esercizi riguardanti l uso della FFT per il calcolo della trasformata di Fourier di segnali a tempo discreto e a tempo

Dettagli

Scopi del corso. lezione 1 2

Scopi del corso. lezione 1 2 lezione 1 1 Scopi del corso Lo studente saprà analizzare circuiti elettrici dinamici per determinare il loro comportamento nel dominio del tempo e per ricavare le proprietà essenziali nel dominio della

Dettagli

Analisi dei segnali nel dominio della frequenza

Analisi dei segnali nel dominio della frequenza Appunti di Teoria dei Segnali a.a. / L.Verdoliva Nel capitolo precedente è stata descritta una rappresentazione dei segnali periodici mediante combinazione lineare di sinusoidi (se i segnali sono reali)

Dettagli

Elaborazione numerica dei segnali

Elaborazione numerica dei segnali POLITECNICO DI TORINO Elaborazione numerica dei segnali Progetto di un filtro FIR Fiandrino Claudio Matricola: 138436 18 giugno 21 Relazione sul progetto di un filtro FIR Descrizione del progetto L obbiettivo

Dettagli

ANALISI NEL DOMINIO DELLA FREQUENZA

ANALISI NEL DOMINIO DELLA FREQUENZA . $ Capitolo 3 ANALISI NEL DOMINIO DELLA FREQUENZA 3.1 FUNZIONE DI TRASFERIMENTO DI UN SISTEMA LTI Il punto di partenza dell analisi nel dominio del tempo è la rappresentazione di segnali (continui o discreti)

Dettagli

Risposta temporale: esempi

Risposta temporale: esempi ...4 Risposta temporale: esempi Esempio. Calcolare la risposta al gradino unitario del seguente sistema: x(t) = u(t) s + 5 (s + )(s + ) y(t) Il calcolo della trasformata del segnale di uscita è immediato:

Dettagli