Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2"

Transcript

1 Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, Crema liberali Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 1 Numeri complessi (1/5) Un numero complesso è un numero che può essere scritto nella forma: z = x + jy con x,y R e j = 1. Il numero j viene chiamato unità immaginaria. (In fisica e in matematica solitamente l unità immaginaria è indicata con i, ma in elettronica il simbolo i è usato per l intensità di corrente.) L insieme dei numeri complessi è un campo C in cui valgono tutte le proprietà delle operazioni con i numeri reali. Inoltre:..., j 1 = j, j 0 = 1, j 1 = j, j 2 = 1, j 3 = j, j 4 = 1,... Le potenze del numero j sono cicliche. Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2 1

2 Numeri complessi (2/5) Il coniugato del numero complesso z = x + jy è il numero: z = x jy La somma e il prodotto di due numeri complessi coniugati danno come risultato numeri reali: z + z = (x + jy) + (x jy) = 2x z z = (x + jy) (x jy) = x 2 ( jy) 2 = x 2 + y 2 Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 3 Numeri complessi (3/5) Poiché ogni numero complesso z = x + jy corrisponde ad una coppia di numeri reali (x,y), i numeri complessi possono essere rappresentati su un piano (piano di Argand). y = Im(z) y z x x = Re(z) Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 4 2

3 Numeri complessi (4/5) In modo analogo alla trasformazione da coordinate cartesiane a coordinate polari, si definisce la forma polare di un numero complesso: z = r e jϑ con r = x 2 + y 2 (modulo) e ϑ = arctan y x (fase) y z r θ x Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 5 Numeri complessi (5/5) Nella relazione che esprime la fase ϑ = arctan y x la funzione arcotangente deve essere intesa a quattro quadranti, tenendo conto separatamente dei segni di x e y: π < ϑ π 2 per x 0,y < 0 (III quadrante) π 2 < ϑ 0 per x > 0,y 0 (IV quadrante) 0 < ϑ π 2 π 2 per x 0,y > 0 (I quadrante) < ϑ π per x < 0,y 0 (II quadrante) La definizione corrisponde alla funzione atan2(y,x) del linguaggio C. Ovviamente, arctan 0 0 è indeterminato. Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 6 3

4 Funzioni trigonometriche ed esponenziale Usando i numeri complessi, è possibile scrivere la funzione esponenziale come combinazione delle funzioni seno e coseno, e viceversa: e jϑ = cosϑ + j sinϑ cosϑ = e jϑ + e jϑ 2 sinϑ = e jϑ e jϑ 2 j Nel dominio complesso, la funzione e z è periodica, con periodo j2π. Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 7 La funzione delta di Dirac (1/3) Consideriamo la funzione (reale, di variabile reale): x(t) = 1 T rect t T = { 1T se T 2 t T 2 0 altrove 1/T x -T/2 0 T/2 t L area sottesa dal grafico di x(t) è: x(t) dt = 1 T T = 1 Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 8 4

5 La funzione delta di Dirac (2/3) Per T 0, la funzione x(t) = 1 T rect t T = { 1T se T 2 t T 2 0 altrove tende a coincidere con l asse verticale, mantenendo tuttavia un area unitaria. Definiamo la funzione delta di Dirac δ(t) come il limite della funzione rettangolo per T 0: 1 δ(t) = lim T 0 T rect t T Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 9 La funzione delta di Dirac (3/3) La delta di Dirac δ(t) non è una funzione in senso classico, perché, pur essendo nulla per ogni t 0, il suo integrale è: δ(t) dt = 1 x 1 δ(t) 0 t Dimensionalmente, la funzione delta di Dirac δ(t) è l inverso di un tempo. Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 10 5

6 La funzione gradino di Heaviside (1/2) L integrale tra e t della funzione delta di Dirac è la funzione gradino unitario di Heaviside u(t): { t 0, per t < 0 u(t) = δ(t) dt = 1, per t > 0 x 1 u(t) 0 t Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 11 La funzione gradino di Heaviside (2/2) Viceversa, la delta di Dirac è la derivata del gradino: δ(t) = du(t) dt L introduzione della delta di Dirac permette di esprimere matematicamente anche le derivate di funzioni discontinue. Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 12 6

7 Frequenza di un segnale periodico Un segnale è periodico quando si ripete identicamente dopo un intervallo di tempo T, detto periodo: x(t + T ) = x(t), t L inverso del periodo è la frequenza: f = 1 T Dimensionalmente, la frequenza è l inverso di un tempo e si misura in hertz (Hz). Per un moto rotatorio, la frequenza f è legata alla velocità angolare ω dalla relazione: ω = 2π f. La velocità angolare si misura in radianti al secondo (rad/s). Poiché l angolo giro è pari a 2π rad, risulta: 1 Hz = 1 giro/s = 2π rad/s. Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 13 Segnali periodici e serie di Fourier (1/3) Ogni segnale x(t) periodico con periodo T = 1 f 0 può essere espresso come serie di Fourier: dove x(t) = 1 2 a 0 + k=1 (a k cos2kπ f 0 t + b k sin2kπ f 0 t) a k = 2 T b k = 2 T T 2 T 2 T 2 T 2 x(t)cos2kπ f 0 t dt x(t)sin2kπ f 0 t dt Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 14 7

8 Segnali periodici e serie di Fourier (2/3) Ricordando la relazione tra seno, coseno ed esponenziale, la serie di Fourier può essere scritta in forma complessa: dove x(t) = c k e j2kπ f 0t k= c k = c k = 1 2 (a k jb k ) = 1 T T 2 T 2 x(t) e j2kπ f 0t dt I termini a k,b k e c k sono detti coefficienti di Fourier. Ovviamente, a k,b k R, mentre c k C. Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 15 Segnali periodici e serie di Fourier (3/3) La serie di Fourier permette di esprimere una funzione periodica attraverso un numero discreto di parametri, che sono le ampiezze delle componenti cosinusoidali (a k ) e sinusoidali (b k ) alla frequenza fondamentale ( f 0 ) e alle frequenze multiple (k f 0 ). Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 16 8

9 Esempio: onda triangolare Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 17 Serie di Fourier per l onda triangolare Coefficienti di Fourier b k (parte sinusoidale): I coefficienti tendono rapidamente a zero all aumentare di k di solito bastano pochi coefficienti per avere una buona approssimazione. Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 18 9

10 Onda quadra e effetto Gibbs Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 19 Serie di Fourier per l onda quadra Coefficienti di Fourier b k (parte sinusoidale): Il gradino contiene componenti a TUTTE le frequenze, e i coefficienti tendono a zero lentamente all aumentare di k qualsiasi approssimazione presenta una sovraelongazione nei punti di discontinuità (effetto Gibbs). Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p

11 Trasformata di Fourier (1/5) La serie di Fourier è definita solo per segnali periodici. Tuttavia, la somma di due funzioni periodiche può essere non periodica: ad esempio x(t) = sin2π f 1 t + sin2π 2 f 1 t non è periodica pur essendo una combinazione lineare di funzioni periodiche, una con frequenza fondamentale f 1 e l altra con frequenza fondamentale 2 f 1. Una funzione come x(t), non periodica ma ottenuta come combinazione di due funzioni periodiche, è detta 2-periodica. Quindi non sempre si può scrivere sotto forma di serie di Fourier la funzione ottenuta dalla somma di funzioni esprimibili come serie di Fourier. Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 21 Trasformata di Fourier (2/5) Un segnale non periodico può essere considerato come un segnale periodico avente T, e di f 0 0. Con questo espediente, l analisi di Fourier può essere generalizzata al caso non periodico, sostituendo la sommatoria con l integrale: X( f ) = F (x(t)) = x(t) e j2π ft dt Questa è la definizione della trasformata di Fourier, ed è valida per tutti quei segnali x(t) per cui l integrale al secondo membro esiste. Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p

12 Trasformata di Fourier (3/5) X( f ) = F (x(t)) = x(t) e j2π ft dt x(t) è una funzione del tempo t, X( f ) è una funzione della frequenza f. Indichiamo con F l operatore che trasforma x(t) in X( f ): x(t) F X( f ) Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 23 Trasformata di Fourier (4/5) Dalla funzione X( f ) si ottiene ancora x(t) per mezzo dell antitrasformata di Fourier: x(t) = F 1 (X( f )) = X( f ) e j2π ft d f Trasformata e antitrasformata di Fourier coincidono (tranne che per il segno meno nell esponenziale) e possiamo parlare di coppie di trasformate di Fourier, denotandole nel modo seguente: o, più semplicemente: x(t) F X( f ) F 1 x(t) X( f ) Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p

13 Trasformata di Fourier (5/5) Nota: alcuni testi definiscono la trasformata di Fourier come l operatore che trasforma una funzione del tempo t in una funzione della frequenza angolare (o velocità angolare) ω = 2π f. Con questa definizione, la trasformata è: X(ω) = F (x(t)) = mentre l antitrasformata è: x(t) = F 1 (X(ω)) = 1 2π Nel seguito, useremo sempre X( f ). x(t) e jωt dt X(ω) e jωt dω Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 25 Trasformata di Fourier: proprietà (1/3) Linearità: x 1 (t) + x 2 (t) X 1 ( f ) + X 2 ( f ) kx(t) kx( f ) Cambio di scala: x(kt) 1 ( ) f k X k Traslazione nel tempo: x(t +t 0 ) e j2π ft 0 X( f ) Traslazione in frequenza (o modulazione): e j2π f0t x(t) X( f + f 0 ) Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p

14 Trasformata di Fourier: proprietà (2/3) Moltiplicazione e convoluzione: x 1 (t) x 2 (t) X 1 ( f ) X 2 ( f ) x 1 (t) x 2 (t) X 1 ( f ) X 2 ( f ) L operazione di convoluzione tra due segnali è definita come: x 1 (t) x 2 (t) = x 1 (τ) x 2 (t τ) dτ = x 1 (t τ) x 2 (τ) dτ Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 27 Trasformata di Fourier: proprietà (3/3) Derivazione: Integrazione: x (t) j2π f X( f ) x(t) dt 1 j2π f X( f ) Le due ultime relazioni permettono di trasformare un equazione differenziale o integrale nel dominio del tempo in un equazione algebrica nel dominio della frequenza. La trasformata di Fourier di una funzione reale e pari è reale e pari; la trasformata di Fourier di una funzione reale e dispari è immaginaria e dispari. Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p

Teoria dei Segnali Richiami ai numeri complessi; serie e trasformata di Fourier

Teoria dei Segnali Richiami ai numeri complessi; serie e trasformata di Fourier Teoria dei Segnali Richiami ai numeri complessi; serie e trasformata di Fourier Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria dei Segnali

Dettagli

Teoria dei Segnali. 1 Proprietà della trasformata di Fourier. correlazione tra segnali; autocorrelazione

Teoria dei Segnali. 1 Proprietà della trasformata di Fourier. correlazione tra segnali; autocorrelazione Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it

Dettagli

Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza p. 2

Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza p. 2 Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013

Dettagli

Teoria dei Segnali Richiami di analisi matematica; alcune funzioni notevoli

Teoria dei Segnali Richiami di analisi matematica; alcune funzioni notevoli Teoria dei Segnali Richiami di analisi matematica; alcune funzioni notevoli Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria dei Segnali Richiami

Dettagli

Introduzione ai segnali determinati

Introduzione ai segnali determinati Teoria dei segnali Unità 1 Introduzione ai segnali determinati Introduzione ai segnali determinati Sviluppo in serie di Fourier Trasformata di Fourier 005 Politecnico di Torino 1 Introduzione ai segnali

Dettagli

Reti nel dominio delle frequenze. Lezione 10 2

Reti nel dominio delle frequenze. Lezione 10 2 Lezione 10 1 Reti nel dominio delle frequenze Lezione 10 2 Introduzione Lezione 10 3 Cosa c è nell Unità 3 In questa sezione si affronteranno Introduzione all Unità Trasformate di Laplace Reti nel dominio

Dettagli

Teoria dei Segnali Quantizzazione dei segnali; trasformata zeta

Teoria dei Segnali Quantizzazione dei segnali; trasformata zeta Teoria dei Segnali Quantizzazione dei segnali; trasformata zeta Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria dei Segnali Quantizzazione;

Dettagli

Studio dei segnali nel dominio della frequenza. G. Traversi

Studio dei segnali nel dominio della frequenza. G. Traversi Studio dei segnali nel dominio della frequenza G. Traversi Segnali periodici e serie di Fourier Una funzione periodica f(t) di periodo T (purché integrabile) è esprimibile con una serie del tipo: f (t)

Dettagli

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.

Dettagli

Sviluppo in Serie di Fourier

Sviluppo in Serie di Fourier Capitolo Sviluppo in Serie di Fourier. Proprietà della Serie di Fourier Un segnale reale tempo continuo e periodico di periodo, per il quale sono valide le condizioni di Dirichlet vedi pag. 4 [], può essere

Dettagli

La trasformata di Laplace

La trasformata di Laplace La trasformata di Laplace (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi DIMS Universitá di Trento anno accademico 2005/2006 La trasformata di Laplace 1 / 34 Outline 1 La trasformata di

Dettagli

Trasformate al limite

Trasformate al limite Bozza Data 6/0/007 Trasormate al limite La unzione generalizzata delta di Dirac Funzioni, unzionali e distribuzioni Prima di deinire la delta di Dirac conviene ricordare le seguenti deinizioni: unzione

Dettagli

06. Analisi Armonica. Controlli Automatici. Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti

06. Analisi Armonica. Controlli Automatici. Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti Controlli Automatici 6. Analisi Armonica Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it http://www.arscontrol.org/teaching

Dettagli

Sviluppo in serie di Fourier

Sviluppo in serie di Fourier ... Sviluppo in serie di Fourier Consideriamo una funzione periodica f di periodo T: f(t) = f(t+t) t Qualunque funzione periodica di periodo T può essere rappresentata mediante lo sviluppo in serie di

Dettagli

Funzioni e grafici. prof. Andres Manzini

Funzioni e grafici. prof. Andres Manzini Università degli studi di Modena e Reggio Emilia Dipartimento di Scienze e Metodi dell Ingegneria Corso MOOC Iscriversi a Ingegneria Reggio Emilia Introduzione Definizione Si dice funzione (o applicazione)

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondamenti di segnali Fondamenti e trasmissione TLC Introduzione Se il segnale d ingresso di un sistema Lineare Tempo-Invariante (LTI e un esponenziale

Dettagli

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale TRASFORMATE DI LAPLACE

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale TRASFORMATE DI LAPLACE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale TRASFORMATE DI LAPLACE Ing. Luigi Biagiotti Tel. 051 2093034 / 051 2093068 e-mail: lbiagiotti@deis.unibo.it http://www-lar.deis.unibo.it/~lbiagiotti

Dettagli

7. Forze elastiche. Nella figura 1 il periodo è T = 2s e corrisponde ad un moto unidimensionale limitato tra i valori x = 0 ed x = 1.

7. Forze elastiche. Nella figura 1 il periodo è T = 2s e corrisponde ad un moto unidimensionale limitato tra i valori x = 0 ed x = 1. 1 Moti periodici 7. Forze elastiche Un caso particolare di moto accelerato è un moto periodico. In figura 1 è riportato un esempio di moto periodico unidimensionale. Un moto periodico si ripete identicamente

Dettagli

Prova di AUTOVALUTAZIONE (novembre 2009). nota: l esame ha validità solo se incluso nel piano degli studi per l anno accademico corrente.

Prova di AUTOVALUTAZIONE (novembre 2009). nota: l esame ha validità solo se incluso nel piano degli studi per l anno accademico corrente. UNIVERSITA DEGLI STUDI ROMA TRE CdS in Ingegneria Informatica corso di FONDAMENTI DI TELECOMUNICAZIONI Prova di AUTOVALUTAZIONE (novembre 2009). COMPITO A nota: l esame ha validità solo se incluso nel

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Scuola Politecnica Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2015/2016 M. Tumminello,

Dettagli

Motivazione. Teoria dei Circuiti Prof. Luca Perregrini Sinusoidi e fasori, pag. 1

Motivazione. Teoria dei Circuiti Prof. Luca Perregrini Sinusoidi e fasori, pag. 1 Motivazione La distribuzione dell energia elettrica avviene utilizzando tensioni e correnti che variano con legge sinusoidale. Grazie all analisi di Fourier, qualunque segnale variabile nel tempo può essere

Dettagli

Grande rilevanza hanno in elettronica i segnali sinusoidali. Un. segnale sinusoidale è un segnale che varia nel tempo con una legge

Grande rilevanza hanno in elettronica i segnali sinusoidali. Un. segnale sinusoidale è un segnale che varia nel tempo con una legge I segnali sinusoidali Grande rilevanza hanno in elettronica i segnali sinusoidali. Un segnale sinusoidale è un segnale che varia nel tempo con una legge del seguente tipo u = U sen( ω t+ ϕ ) Figura A andamento

Dettagli

CONTROLLI AUTOMATICI Ingegneria Gestionale ANALISI ARMONICA

CONTROLLI AUTOMATICI Ingegneria Gestionale  ANALISI ARMONICA CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Ing. Federica Grossi Tel. 059 2056333 e-mail: federica.grossi@unimore.it

Dettagli

ANALISI DI FOURIER. Segnali tempo continui:

ANALISI DI FOURIER. Segnali tempo continui: ANALISI DI FOURIER Segnali tempo continui: Segnali aperiodici Introduzione alla Trasformata Continua di - Derivazione intuitiva della TCF a partire dallo Sviluppo in Serie di - Spettro di ampiezza e fase

Dettagli

La Trasformata di Fourier

La Trasformata di Fourier La Trasformata di Fourier Preliminari: Spazi di Hilbert Da Wikipedia In matematica uno spazio di Hilbert è uno spazio vettoriale che generalizza la nozione di spazio euclideo. Gli spazi di Hilbert sono

Dettagli

Scomposizione in fratti semplici

Scomposizione in fratti semplici 0.0.. Scomposizione in fratti semplici La determinazione dell evoluzione libera e dell evoluzione forzata di un sistema lineare stazionario richiedono l antitrasformazione di una funzione razionale fratta

Dettagli

Comunicazione Elettriche L-A Identità ed equazioni

Comunicazione Elettriche L-A Identità ed equazioni Comunicazione Elettriche L-A Identità ed equazioni Gennaio - Marzo 2009 Identità ed equazioni relative alle comunicazioni elettriche tratti dalle lezioni del corso di Comunicazioni Elettriche L-A alla

Dettagli

Diario delle lezioni di Calcolo e Biostatistica (O-Z) - a.a. 2013/14 A. Teta

Diario delle lezioni di Calcolo e Biostatistica (O-Z) - a.a. 2013/14 A. Teta Diario delle lezioni di Calcolo e Biostatistica (O-Z) - a.a. 2013/14 A. Teta 1. (1/10 Lu.) Generalità sugli insiemi, operazioni di unione, intersezione e prodotto cartesiano. Insiemi numerici: naturali,

Dettagli

Esperimenti computazionali con Mathematica: la trasformata di Fourier

Esperimenti computazionali con Mathematica: la trasformata di Fourier Matematica Open Source http://www.extrabyte.info Quaderni di Analisi Matematica 06 Esperimenti computazionali con Mathematica: la trasformata di Fourier Marcello Colozzo 3 0 5 5 0 Ω LA TRASFORMATA DI FOURIER

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Analisi

Dettagli

Introduzione alla δ di Dirac

Introduzione alla δ di Dirac UniPD Facoltà di Ingegneria a.a. 04-05 Insegnamento di SEGNALI E SISTEMI (ALSI - Finesso) Introduzione alla δ di Dirac La δ di Dirac è uno strumento matematico di grande utilità nello studio di segnali

Dettagli

R. Capone Analisi Matematica Integrali multipli

R. Capone Analisi Matematica Integrali multipli Integrali multipli Consideriamo, inizialmente il caso degli integrali doppi. Il concetto di integrale doppio è l estensione della definizione di integrale per una funzione reale di una variabile reale

Dettagli

ELEMENTI DI ANALISI SPETTRALE 1 I DUE DOMINI

ELEMENTI DI ANALISI SPETTRALE 1 I DUE DOMINI Lezioni di Fisica della Terra Solida, Università di Chieti, a.a. 999/. Docente A. De Santis ELEMENTI DI ANALISI SPETTRALE I DUE DOMINI È spesso utile pensare alle unzioni ed alle loro trasormate di Fourier

Dettagli

SECONDO COMPITINO DI SEGNALI E SISTEMI 3 Dicembre 2003

SECONDO COMPITINO DI SEGNALI E SISTEMI 3 Dicembre 2003 SECONDO COMPIINO DI SEGNALI E SISEMI 3 Dicembre 003 Esercizio. Si consideri il modello ingresso/uscita a tempo discreto e causale descritto dalla seguente equazione alle differenze: vk) con a parametro

Dettagli

I Segnali nella comunicazione

I Segnali nella comunicazione I Segnali nella comunicazione Nella lingua italiana il termine segnale indica una convenzione, la cui unzione è quella di comunicare qualcosa ( segnale di Partenza, segnale di aiuto, segnale stradale ecc.).

Dettagli

Cinematica e Controllo di un robot mobile

Cinematica e Controllo di un robot mobile Cinematica e Controllo di un robot mobile ARSLAB - Autonomous and Robotic Systems Laboratory Dipartimento di Matematica e Informatica - Università di Catania, Italy santoro@dmi.unict.it Programmazione

Dettagli

LA TRASFORMATA DI FOURIER: PROPRIETA ED ESEMPI

LA TRASFORMATA DI FOURIER: PROPRIETA ED ESEMPI LA TRASFORMATA DI FOURIER: PROPRIETA ED ESEMPI Fondamenti di segnali Fondamenti e trasmissione TLC Proprieta della () LINEARITA : la della combinazione lineare (somma pesata) di due segnali e uguale alla

Dettagli

I Numeri complessi - Motivazioni

I Numeri complessi - Motivazioni I Numeri complessi - Motivazioni In Telecomunicazioni Elettronica Informatica Teoria dei segnali... si studiano i segnali, cioè delle grandezze fisiche dipendenti dal tempo, matematicamente esprimibili

Dettagli

ANTITRASFORMATA DI LAPLACE MODI DI UN SISTEMA

ANTITRASFORMATA DI LAPLACE MODI DI UN SISTEMA CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANTITRASFORMATA DI LAPLACE MODI DI UN SISTEMA Ing. Federica Grossi Tel.

Dettagli

Programma di Matematica Liceo Scientifico A. Romita Classe: 4G a.s.:2015 / 2016

Programma di Matematica Liceo Scientifico A. Romita Classe: 4G a.s.:2015 / 2016 Programma di Matematica Liceo Scientifico A. Romita Classe: 4G a.s.:2015 / 2016 Le funzioni goniometriche La misura degli angoli Gli angoli e la loro ampiezza La misura in gradi La misura i radianti Dai

Dettagli

Classi: 4A inf Sirio Disciplina: MATEMATICA Ore settimanali previste: 3

Classi: 4A inf Sirio Disciplina: MATEMATICA Ore settimanali previste: 3 Classi: 4A inf Sirio Disciplina: MATEMATICA Ore settimanali previste: 3 Titolo unità didattiche in cui è diviso Titolo Modulo il modulo Prerequisiti per l'accesso al modulo 1: Calcolo numerico e letterale,

Dettagli

Introduciamo il sistema di riferimento indicato in figura b) con F 1 = ( f, 0) ed F 2 = (f, 0). Se P = (x, y) la condizione (1) fornisce

Introduciamo il sistema di riferimento indicato in figura b) con F 1 = ( f, 0) ed F 2 = (f, 0). Se P = (x, y) la condizione (1) fornisce 1 L ellisse 1.1 Definizione Consideriamo due punti F 1 ed F 2 e sia 2f la loro distanza. L ellisse è il luogo dei punti P tali che la somma delle distanze PF 1 e PF 2 da F 1 ed F 2 è costante. Se indichiamo

Dettagli

CONTROLLI AUTOMATICI Ingegneria Meccatronica

CONTROLLI AUTOMATICI Ingegneria Meccatronica ) CONTROLLI AUTOMATICI Ingegneria Meccatronica ANALISI ARMONICA Prof. Cesare Fantuzzi Ing. Cristian Secchi e-mail: cesare.fantuzzi@unimore.it, cristian.secchi@unimore.it http://www.automazione.ingre.unimore.it

Dettagli

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica. CONTROLLI AUTOMATICI Ingegneria Meccatronica

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica. CONTROLLI AUTOMATICI Ingegneria Meccatronica CONTROLLI AUTOMATICI Ingegneria Meccatronica http://www.automazione.ingre.unimore.it/pages/corsi/automazione%2industriale.htm ANALISI ARMONICA Analisi armonica di sistemi dinamici Analisi nel dominio del

Dettagli

Applicazioni delle leggi della meccanica: moto armnico

Applicazioni delle leggi della meccanica: moto armnico Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di

Dettagli

L ANALISI ARMONICA DI UN SEGNALE PERIODICO

L ANALISI ARMONICA DI UN SEGNALE PERIODICO L ANALISI ARMONICA DI UN SEGNALE PERIODICO Il segnale elettrico è una grandezza fisica (in genere una tensione) che varia in funzione del tempo e che trasmette un'informazione. Quasi tutti i segnali che

Dettagli

Esercizi svolti. 1 Numeri complessi. 1.1 Forma cartesiana. Esercizio 1.1 Dato il numero complesso. z = 4 3 4i,

Esercizi svolti. 1 Numeri complessi. 1.1 Forma cartesiana. Esercizio 1.1 Dato il numero complesso. z = 4 3 4i, Numeri complessi Esercizi svolti 1 Numeri complessi 1.1 Forma cartesiana Esercizio 1.1 Dato il numero complesso z = 4 3 4i, a) determinare la parte reale x di z: x = Re z, b) determinare la parte immaginaria

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica STRUMENTI MATEMATICI PER L ANALISI DEI SISTEMI DISCRETI Ing. Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

Elettronica II Modello per piccoli segnali del diodo a giunzione p. 2

Elettronica II Modello per piccoli segnali del diodo a giunzione p. 2 Elettronica II Modello per piccoli segnali del diodo a giunzione Valentino Liberali ipartimento di Tecnologie dell Informazione Università di Milano, 2603 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

Audio Digitale. Cenni sulle onde. Multimedia 1

Audio Digitale. Cenni sulle onde. Multimedia 1 Audio Digitale Cenni sulle onde 1 Suono e Audio Il suono è un insieme di onde meccaniche longitudinali. L oggetto che origina il suono produce una vibrazione che si propaga attraverso un mezzo modificando

Dettagli

ANALISI DI FOURIER. Segnali a tempo continuo:

ANALISI DI FOURIER. Segnali a tempo continuo: ANALISI DI OURIER Segnali a tempo continuo: Segnali aperiodici Segnali periodici Introduzione alla Trasformata Continua di ourier - Derivazione intuitiva della TC a partire dallo Sviluppo in Serie di ourier

Dettagli

Gianfranco Cariolaro, Gianfranco Pierobon, Giancarlo Calvagno Segnali e sistemi Indice analitico

Gianfranco Cariolaro, Gianfranco Pierobon, Giancarlo Calvagno Segnali e sistemi Indice analitico Gianfranco Cariolaro, Gianfranco Pierobon, Giancarlo Calvagno Segnali e sistemi Indice analitico Copyright The McGraw-Hill Companies srl A aliasing, 443 fenomeno dell, 424f AMI, codificatore, 315 analiticità

Dettagli

Risposta temporale: esempi

Risposta temporale: esempi ...4 Risposta temporale: esempi Esempio. Calcolare la risposta al gradino unitario del seguente sistema: x(t) = u(t) s + 5 (s + )(s + ) y(t) Il calcolo della trasformata del segnale di uscita è immediato:

Dettagli

Funzioni Complesse di variabile complessa

Funzioni Complesse di variabile complessa Funzioni Complesse di variabile complessa Docente:Alessandra Cutrì Richiami sui numeri complessi Indichiamo con C il campo dei Numeri complessi z = x + iy C, ses x, y R i := 1 (Rappresentazione cartesiana

Dettagli

Onde. Antonio Pierro. Per consigli, suggerimenti, eventuali errori o altro potete scrivere una a antonio.pierro[at]gmail.com

Onde. Antonio Pierro. Per consigli, suggerimenti, eventuali errori o altro potete scrivere una  a antonio.pierro[at]gmail.com Onde Video Introduzione Onde trasversali e onde longitudinali. Lunghezza d'onda e frequenza. Interferenza fra onde. Battimenti. Moto armonico smorzato e forzato Antonio Pierro Per consigli, suggerimenti,

Dettagli

Dispense del corso di Elettronica L Prof. Guido Masetti

Dispense del corso di Elettronica L Prof. Guido Masetti Dispense del corso di Elettronica L Prof. Guido Masetti Teoria dei Segnali e Sistemi Sommario Architettura dei sistemi per l'elaborazione dell'informazione Informazione e segnali Teoria dei segnali Analisi

Dettagli

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto SBarbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie Cap 2 Cinematica del punto 21 - Posizione, velocitá e accelerazione di una particella La posizione di una particella puó essere definita, ad

Dettagli

ELEMENTI SCIENTIFICI ED ELETTRONICI APPLICATI AI SISTEMI DI TELECOMUNICAZIONI

ELEMENTI SCIENTIFICI ED ELETTRONICI APPLICATI AI SISTEMI DI TELECOMUNICAZIONI ELEMENTI SCIENTIFICI ED ELETTRONICI APPLICATI AI SISTEMI DI TELECOMUNICAZIONI prerequisiti e strumenti matematici e fisici per l elettronica delle telecomunicazioni Ing. Nicola Cappuccio 2014 U.F.5 ELEMENTI

Dettagli

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,

Dettagli

RICHIAMI MATEMATICI. x( t)

RICHIAMI MATEMATICI. x( t) 0.0. 0.1 1 RICHIAMI MATEMATICI Funzioni reali del tempo: (t) : t (t) (t) ( t) Funzioni reali dell ingresso: y() t t y( ) y() : y() Numeri complessi. Un numero complesso è una coppia ordinata di numeri

Dettagli

Cinematica del punto materiale

Cinematica del punto materiale Cinematica del punto materiale Punto materiale Velocità e accelerazione Moto rettilineo uniforme Moto naturalmente accelerato Moto parabolico Moto armonico Antonio Pierro Per consigli, suggerimenti, eventuali

Dettagli

Problemi di base di Elaborazione Numerica dei Segnali

Problemi di base di Elaborazione Numerica dei Segnali Universita' di Roma TRE Corso di laurea in Ingegneria Elettronica Corso di laurea in Ingegneria Informatica Universita' di Roma "La Sapienza" Corso di laurea in Ingegneria delle Telecomunicazioni Problemi

Dettagli

Meccanica quantistica (5)

Meccanica quantistica (5) Meccanica quantistica (5) 0/7/14 1-MQ-5.doc 0 Oscillatore armonico Se una massa è sottoposta ad una forza di richiamo proporzionale allo spostamento da un posizione di equilibrio F = kx il potenziale (

Dettagli

Indice slides. 1 Oscillatore semplice 5. 2 Equazione caratteristica 6. 3 Radici complesse 7. 4 Integrale generale 8. 5 Forza Peso 9.

Indice slides. 1 Oscillatore semplice 5. 2 Equazione caratteristica 6. 3 Radici complesse 7. 4 Integrale generale 8. 5 Forza Peso 9. Moto di Oscillatori Pietro Pantano Dipartimento di Matematica Università della Calabria Slides 1 di 27 Slides 2 di 27 1 Oscillatore semplice 5 2 Equazione caratteristica 6 3 Radici complesse 7 4 Integrale

Dettagli

Derivate. Rette per uno e per due punti. Rette per uno e per due punti

Derivate. Rette per uno e per due punti. Rette per uno e per due punti Introduzione Rette per uno e per due punti Rette per uno e per due punti Rette secanti e tangenti Derivata d una funzione in un punto successive Derivabilità a destra e a sinistra Rette per uno e per due

Dettagli

Serie di Fourier di segnali PWM

Serie di Fourier di segnali PWM Serie di Fourier di segnali PWM Ivan Furlan 1 14 settembre 2013 1 I. Furlan riceve il BSc in elettronica nel 2000 presso la SUPSI, ed il MSc in meccatronica nel 2009 presso il Politecnico di orino. Attualmente

Dettagli

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame COGNOME NOME Matr. A Analisi Matematica (Corso di Laurea in Informatica e Bioinformatica) Firma dello studente Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni

Dettagli

La serie di Fourier. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro

La serie di Fourier. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro La serie di Fourier Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici Gianni Borghesan e Giovanni Marro Indice Introduzione. Notazione............................. Analisi spettrale

Dettagli

Indice breve. Funzioni di una variabile. Funzioni di più variabili e funzioni vettoriali. Equazioni differenziali. Funzioni olomorfe e trasformate

Indice breve. Funzioni di una variabile. Funzioni di più variabili e funzioni vettoriali. Equazioni differenziali. Funzioni olomorfe e trasformate Indice breve I PARTE I Elementi di base Capitolo 1 Introduzione 1 Capitolo 2 Funzioni 34 PARTE II Funzioni di una variabile Capitolo 3 Introduzione alle proprietà locali e al concetto di limite 73 Capitolo

Dettagli

I numeri complessi. Andrea Corli 31 agosto Motivazione 1. 2 Definizioni 1. 3 Forma trigonometrica di un numero complesso 3

I numeri complessi. Andrea Corli 31 agosto Motivazione 1. 2 Definizioni 1. 3 Forma trigonometrica di un numero complesso 3 I numeri complessi Andrea Corli 3 agosto 009 Indice Motivazione Definizioni 3 Forma trigonometrica di un numero complesso 3 4 Radici di un numero complesso 4 5 Equazioni di secondo grado e il teorema fondamentale

Dettagli

SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo.

SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo. SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html Banda passante e sviluppo in serie di Fourier Ing. Luigi Biagiotti e-mail:

Dettagli

Pulse Amplitude Modulation (PAM) 2 Scelta delle risposte impulsive dei filtri in trasmissione e ricezione

Pulse Amplitude Modulation (PAM) 2 Scelta delle risposte impulsive dei filtri in trasmissione e ricezione Pulse Amplitude Modulation (PAM 1 Definizione La trasmissione di una sequenza di numeri {a k } mediante un onda PAM consiste nel generare, a partire dalla sequenza {a k } il segnale a tempo continuo u(t

Dettagli

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

Equazioni differenziali ordinarie (ODE) lineari del secondo ordine a coefficienti costanti

Equazioni differenziali ordinarie (ODE) lineari del secondo ordine a coefficienti costanti Equazioni differenziali ordinarie (ODE) lineari del secondo ordine a coefficienti costanti Fulvio Bisi Corso di Analisi Matematica A (ca) Università di Pavia Facoltà di Ingegneria 1 ODE lineari del secondo

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI Fondamenti di Segnali e Trasmissione Risposta in requenza e banda passante La risposta in requenza di un sistema LTI e la trasormata di Fourier

Dettagli

PROGRAMMA DI MATEMATICA

PROGRAMMA DI MATEMATICA Classe 2^ sez. A 1. Ripasso Operazioni tra polinomi, prodotti notevoli, equazioni di primo grado intere e frazionarie. Problemi risolvibili con le equazioni di primo grado. 2. Sistemi Sistemi di equazioni

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

In realtà i segnali con i quali dobbiamo confrontarci più frequentemente sono limitati nel tempo

In realtà i segnali con i quali dobbiamo confrontarci più frequentemente sono limitati nel tempo Segnali trattati sino ad ora: continui, durata infinita,.. Su essi sono stati sviluppati strumenti per analizzare output di circuiti e caratteristiche del segnale: Risposta all impulso, prodotto di convoluzione,

Dettagli

Trasformata e Antitrasformata di Laplace

Trasformata e Antitrasformata di Laplace March 8, 26 Trasformata e Antitrasformata di Laplace Orlando Ragnisco Dipartimento di Fisica, Università di Roma TRE Via della Vasca Navale 84, I-146-Roma, Italy 1 Trasformata di Laplace: definizione e

Dettagli

Diario del corso di Analisi Matematica 1 (a.a. 2016/17)

Diario del corso di Analisi Matematica 1 (a.a. 2016/17) Diario del corso di Analisi Matematica 1 (a.a. 2016/17) 16 settembre 2016 (2 ore) Presentazione del corso. Numeri naturali, interi, razionali, reali. 2 non è razionale. Come si risolve 2 + 1 = 0? 19 settembre

Dettagli

La trasformata Z. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi. DIMS Università di Trento. anno accademico 2008/2009

La trasformata Z. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi. DIMS Università di Trento. anno accademico 2008/2009 La trasformata Z (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi DIMS Università di Trento anno accademico 2008/2009 La trasformata Z 1 / 33 Outline 1 La trasformata Z 2 Trasformazioni di

Dettagli

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio Liceo Classico D. Alighieri A.S. 0-3 y Data la funzione: Studio di Funzione tracciatene il grafico nel piano cartesiano. Prof. A. Pisani Esempio ) Tipo e grado della funzione La funzione è analitica, data

Dettagli

Esercizi sulle trasformate di Fourier

Esercizi sulle trasformate di Fourier Esercizi sulle trasformate di Fourier Corso di Fisica Matematica, a.a. 3-4 Dipartimento di Matematica, Università di Milano 8 Novembre 3 Questi esercizi richiederanno il calcolo di integrali a volte non

Dettagli

4 Analisi nel dominio del tempo delle rappresentazioni in

4 Analisi nel dominio del tempo delle rappresentazioni in Indice del libro Alessandro Giua, Carla Seatzu Analisi dei sistemi dinamici, Springer-Verlag Italia, II edizione, 2009 Pagina web: http://www.diee.unica.it/giua/asd/ Prefazione.....................................................

Dettagli

MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO. Sistema lineare stazionario a tempo continuo in equazioni di stato. = Cx(t) + Du(t) x(0) = x 0

MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO. Sistema lineare stazionario a tempo continuo in equazioni di stato. = Cx(t) + Du(t) x(0) = x 0 MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO Sistema lineare stazionario a tempo continuo in equazioni di stato ẋ(t) y(t) = Ax(t) + Bu(t) = Cx(t) + Du(t) x() = x Risposta completa (risposta libera e

Dettagli

Richiami sui numeri complessi

Richiami sui numeri complessi UniPD CdL in Ingegneria Informatica (a.a. 05-06) Insegnamento di SEGNALI E SISTEMI (Finesso, Pavon, Pinzoni) Richiami sui numeri complessi Il corso di Segnali e Sistemi e quello di Elettrotecnica presuppongono

Dettagli

ANALISI ARMONICA FUNZIONE DI RISPOSTA ARMONICA

ANALISI ARMONICA FUNZIONE DI RISPOSTA ARMONICA ANALISI ARMONICA I procedimenti per la soluzione delle equazioni differenziali lineari e tempoinvarianti, basati in particolare sulla trasformazione di Laplace, hanno come obiettivo la deduzione della

Dettagli

Esercizi su: insiemi, intervalli, intorni. 4. Per ognuna delle successive coppie A e B di sottoinsiemi di Z determinare A B, A B, a) A C d) C (A B)

Esercizi su: insiemi, intervalli, intorni. 4. Per ognuna delle successive coppie A e B di sottoinsiemi di Z determinare A B, A B, a) A C d) C (A B) Esercizi su: insiemi, intervalli, intorni. Per ognuna delle successive coppie A e B di sottoinsiemi di N determinare A B, A B, A c e B c. a) A = { N + = 0}, B = { N = 6}, b) A = { N < 5}, B = { N < },

Dettagli

Geometria analitica del piano pag 32 Adolfo Scimone

Geometria analitica del piano pag 32 Adolfo Scimone Geometria analitica del piano pag 32 Adolfo Scimone CAMBIAMENTI DI SISTEMA DI RIFERIMENTO Consideriamo il piano cartesiano R 2 con un sistema di riferimento (O,U). Se introduciamo in R 2 un secondo sistema

Dettagli

PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale.

PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. PROGRAMMA Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. Gli insiemi numerici oggetto del corso: numeri naturali, interi relativi, razionali. Operazioni sui numeri

Dettagli

NUMERI COMPLESSI Esercizi svolti. d) (1 i) 3. b) (1 + i)(1 i)(1 + 3 i) c) 1 i 1

NUMERI COMPLESSI Esercizi svolti. d) (1 i) 3. b) (1 + i)(1 i)(1 + 3 i) c) 1 i 1 Calcolare le seguenti potenze di i: NUMERI COMPLESSI Esercizi svolti a) i b) i 7 c) i d) i e) i f) i 9 Semplificare le seguenti espressioni: a) i) i i) b) + i) i) + ) 0 i c) i) i) i) d) i) Verificare che

Dettagli

Corso di Laurea Specialistica in Ingegneria Meccanica e Ingegneria Energetica Progetto numerico al calcolatore

Corso di Laurea Specialistica in Ingegneria Meccanica e Ingegneria Energetica Progetto numerico al calcolatore Corso di Laurea Specialistica in Ingegneria Meccanica e Ingegneria Energetica Progetto numerico al calcolatore Soluzione di un sistema non lineare con la Regula Falsi generalizzata per la determinazione

Dettagli

0.1 Numeri complessi C

0.1 Numeri complessi C 0.1. NUMERI COMPLESSI C 1 0.1 Numeri complessi C Abbiamo visto sopra come l introduzione dei numeri irrazionali può essere motivata dalla necessità di trovare soluzione all equazione x = 0 che non ha soluzioni

Dettagli

L esigenza di introdurre i numeri complessi è dovuta al fatto che diverse operazioni sui numeri reali R non sempre sono possibili.

L esigenza di introdurre i numeri complessi è dovuta al fatto che diverse operazioni sui numeri reali R non sempre sono possibili. 1 I Numeri Complessi L esigenza di introdurre i numeri complessi è dovuta al fatto che diverse operazioni sui numeri reali R non sempre sono possibili. x 2 + 1 = 0? log( 10)? log 2 3? 1? Allo scopo di

Dettagli

08. Analisi armonica. Controlli Automatici

08. Analisi armonica. Controlli Automatici 8. Analisi armonica Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Alessio Levratti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it http://www.arscontrol.org/teaching

Dettagli

Prova del 6 Marzo, Traccia della soluzione. Problema n. 1. BDA = α 2. sin α α = 1 e che analogamente si dimostra l altro limite notevole tan α

Prova del 6 Marzo, Traccia della soluzione. Problema n. 1. BDA = α 2. sin α α = 1 e che analogamente si dimostra l altro limite notevole tan α IIASS International Institute for Advanced Scientific Studies Eduardo R. Caianiello Circolo di Matematica e Fisica Dipartimento di Fisica E.R. Caianiello Università di Salerno Premio Eduardo R. Caianiello

Dettagli

Corso di Laurea in LOGOPEDIA FISICA ACUSTICA ONDE (ARMONICHE)

Corso di Laurea in LOGOPEDIA FISICA ACUSTICA ONDE (ARMONICHE) Corso di Laurea in LOGOPEDIA FISICA ACUSTICA ONDE (ARMONICHE) Fabio Romanelli Department of Mathematics & Geosciences University of Trieste Email: romanel@units.it Le onde ci sono familiari - onde marine,

Dettagli

Lo studio dell evoluzione libera nei sistemi dinamici

Lo studio dell evoluzione libera nei sistemi dinamici Lo studio dell evoluzione libera nei sistemi dinamici December, Un sistema lineare, dinamico, a dimensione finita e continuo (ovvero in cui il tempo t appartiene all insieme dei reali) può essere descritto

Dettagli