Serie di Fourier in forma complessa

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Serie di Fourier in forma complessa"

Transcript

1 M.Guida, S.Rolando, 14 1 Serie di Fourier in forma complessa Per scrivere la serie di Fourier di una funzione f R, si utilizza spesso una notazione equivalente, ma più compatta e maneggevole, che fa intervenire i numeri complessi ed in particolare l esponenziale di numeri immaginari puri: e i =cos + i sin per ogni R (questa relazione, spesso presa come definizione, va sotto il nome di formula di Eulero). Ricaviamo tale scrittura equivalente, denotando brevemente = nx. Essendo e i =cos i sin, lefunzionicos e sin possono essere espresse in termini di e i ed e i risolvendo il seguente sistema rispetto a cos e sin : e i =cos + i sin e i =cos i sin = cos = ei + e i, sin = ei e i i = i ei e i, dove si è tenuto conto del fatto che 1 i = i. Sostituendo nella serie di Fourier di f, siottiene f a + (a n cos + b n sin ) =a + = a + an ib n Introducendo le nuove notazioni e i + a n + ib n e i. an e i + e i ib n e i e i c := a, c n := a n ib n e c n := a n + ib n per ogni n 1 (1.4) e ricordando che = nx, risulta allora f c + cn e inx + c n e inx (1.5) (con il solito significato: la serie a m. è la serie di Fourier della funzione a 1 m.). Le ridotte S N della serie (1.5) sono N S N = c + cn e inx + c n e inx N N = c + c n e inx + c n e inx = k=n = c + = N n=n N c n e inx + c n e inx 1 k=n c k e ikx = c + N c n e inx + 1 n=n c n e inx

2 M.Guida, S.Rolando, 14 N e quindi, denotando con c n e inx la serie le cui ridotte sono c n e inx (sinotibenelasimmetria n= con cui sono sommati gli addendi), si ha n=n f c + cn e inx + c n e inx = c n e inx n= (dove l uguaglianza tra serie significa che le due serie hanno le stesse ridotte). Dunque risulta f a + (a n cos + b n sin ) = c n e inx, n= dove la prima serie è detta serie di Fourier di f in forma reale elasecondaserieèdettaserie di Fourier di f in forma complessa. Il legame tra i coecienti a, a n, b n e c k è dato dalle relazioni (1.4), che consentono direttamente il passaggio dalla forma reale alla forma complessa, ma che possono essere esplicitate rispetto ad a, a n, b n e quindi consentono anche il passaggio inverso, dalla forma complessa alla forma reale. Come si è detto, la comodità della forma complessa sta nella sua maneggevolezza, ossia nella semplicità con cui si possono esprimere diverse relazioni che sono importanti nello studio delle serie di Fourier. Ad esempio, si verifica molto facilmente che: icoecienti complessi c n sono dati dall unica formula seguente: c n = 1 f (x) e inx dx, dove, essendo l integrando complesso, l integrale va inteso secondo la seguente definizione: una funzione di variabile reale x a valori complessi (x) = 1 (x)+i (x) ( 1, reali) è detta integrabile su [a, b] se 1, sono integrabili su [a, b]; intalcaso,sipone b a (x) dx := b a 1 (x) dx + i b a (x) dx; tramite i coecienti complessi c n, l identità di Parseval si scrive semplicemente 1 [f (x)] dx = n= dove la serie con indice n Z va intesa nuovamente nel senso già introdotto: è la serie le cui ridotte sono N N c n e quindi la sua somma è c n = lim c n. n=n n= N n=n c n,

3 M.Guida, S.Rolando, 14 3 Motivazione dei coecienti di Fourier Nella Sezione seguente, presentiamo un argomento che motiva le definizioni dei coecienti di Fourier. ale argomento utilizza alcuni risultati di integrazione, noti come relazioni di ortogonalità, chericaviamo preliminarmente nella Sezione 1 e che hanno particolare rilevanza in tutto il contesto delle serie di Fourier (ad esempio intervengono anche nel dimostrare l identità di Parseval). Supporremo sempre che > siaunnumerorealequalsiasieporremo =. Inoltre, per ogni n N, n 1, denoteremo con u n e v n le funzioni definite da 1 Relazioni di ortogonalità Per ogni n, m 1, siha e u n (x) =cos(nx) e v n (x) =sin(nx) per ogni x R. u n (x) u m (x) dx = u n (x) v m (x) dx = (1.1) se n = m v n (x) v m (x) dx = se n = m. (1.11) Il caso n = m della (1.11) è di facile verifica; ad esempio, ricordando l identità cos = 1 (1 + cos ) per ogni R, risulta [u n (x)] dx = cos 1+cos(nx) (nx) dx = dx = 1 dx + 1 cos (nx) dx = + 1 sin (nx) = n + 1 sin (4n) sin = n. Le altre formule seguono dalle cosiddette formule di Werner della trigonometria, ossia: sin cos = cos cos = sin sin = Ad esempio, se n = m risulta sin ( )+sin( + ) cos ( )+cos( + ) cos ( ) cos ( + ) per ogni, R, per ogni, R, per ogni, R. u n (x) v m (x) dx = cos (nx)sin(mx) dx = 1 sin ((m n) x) dx + 1 sin ((n + m) x) dx = 1 cos ((m n) x) 1 cos ((n + m) x) =, (m n) (n + m)

4 M.Guida, S.Rolando, 14 4 mentre se n = m si ha u n (x) v n (x) dx = cos (nx)sin(nx) dx = 1 sin (nx) dx = 1 cos (nx) n =. Ciò prova le formule (1.1). Gli altri casi sono analoghi. Osserviamo anche che u n (x) dx = v n (x) dx =, (1.1) come si verifica immediatamente (ad esempio u n (x) dx = cos (nx) dx = sin(nx) n =). Motivazione dei coecienti di Fourier Consideriamo un polinomio trigonometrico f (x) =a + N (a n u n (x)+b n v n (x)) (1.13) con a,a n,b n R assegnati. Integrando ambo i membri sull intervallo [,] e ricordando le (1.1), risulta N f (x) dx = a dx + a n u n (x) dx + b n v n (x) dx = a dx = a e perciò deve essere a = 1 f (x) dx. (1.14) Fissiamo ora un qualsiasi intero m 1 e moltiplichiamo ambo i membri della (1.13) per u m (x). Otteniamo N f (x) u m (x) =a u m (x)+ (a n u n (x) u m (x)+b n v n (x) u m (x)) e quindi N f (x) u m (x) dx = a u m (x) dx + a n u n (x) u m (x) dx + b n v n (x) u m (x) dx. Per le (1.1), (1.11) e (1.1), tutti gli addendi dell ultima somma sono nulli tranne a n con n = m, percuisiconclude u n (x) u m (x) dx f (x) u m (x) dx = a m u m (x) u m (x) dx = a m ossia a m = f (x) u m (x) dx. (1.15)

5 M.Guida, S.Rolando, 14 5 In maniera del tutto analoga, moltiplicando ambo i membri della (1.13) per v m (x) ed integrando su [,], siottienecheperognim 1 deve essere b m = f (x) v m (x) dx. (1.16) Abbiamo quindi provato che icoecienti di un qualsiasi polinomio trigonometrico f (x) si esprimono in termini di f (x) tramite le formule (1.14), (1.15), (1.16). Quando si vuole arontare il problema di sviluppare in serie trigonometrica una generica f R, cioè trovare una serie trigonometrica a + (a n u n (x)+b n v n (x)) tale che per ogni x in un qualche insieme soddisfacentemente ampio si abbia f (x) =a + (a n u n (x)+b n v n (x)), è dunque naturale prendere la serie i cui coecienti sono definiti in termini di f (x) dalle stesse formule (1.14), (1.15), (1.16).

Serie di Fourier. 1. Introduzione Le funzioni somme di funzioni trigonometriche

Serie di Fourier. 1. Introduzione Le funzioni somme di funzioni trigonometriche Serie di Fourier. Introduzione Le funzioni somme di funzioni trigonometriche, sin(x), cos(x), sin(2x), cos(2x),...ecc. P (x) = 2 a + a cos(x) + b sin(x) +... + b n sin(x) si dicono polinomi trigonometrici:

Dettagli

Convergenza puntuale ed uniforme delle serie di Fourier

Convergenza puntuale ed uniforme delle serie di Fourier Convergenza puntuale ed uniforme delle serie di Fourier 8 aprile 009 In questi appunti prendiamo in considerazione funzioni di variabile reale che possono assumere però valori complessi. Una funzione F

Dettagli

Serie di Fourier Richiami di teoria. Funzioni periodiche. Ci poniamo il problema dello sviluppo in serie di Fourier per funzioni f 1 : R R

Serie di Fourier Richiami di teoria. Funzioni periodiche. Ci poniamo il problema dello sviluppo in serie di Fourier per funzioni f 1 : R R Serie di Fourier Richiami di teoria Funzioni periodiche Ci poniamo il problema dello sviluppo in serie di Fourier per funzioni f 1 : R R 2π-periodiche. Esempio 1. Consideriamo il prolungamento 2π-periodico

Dettagli

Serie di Fourier. Tra queste funzioni definiamo un prodotto scalare nel seguente modo: date f, g V poniamo f (x) g (x) dx. f (x) [g (x) + h (x)] dx

Serie di Fourier. Tra queste funzioni definiamo un prodotto scalare nel seguente modo: date f, g V poniamo f (x) g (x) dx. f (x) [g (x) + h (x)] dx Serie di Fourier Indichiamo con V l insieme delle funzioni f : R R che siano periodiche di periodo π, si abbia cioè f ( + π) = f (), e che risultino integrabili nell intervallo [, π]. Tra queste funzioni

Dettagli

y + P(x) y + Q(x) y = 0 y(x) = c 1y 1(x) + c 2 y 2(x).

y + P(x) y + Q(x) y = 0 y(x) = c 1y 1(x) + c 2 y 2(x). Proposizione 4. Se y 1(x) e y (x) sono soluzioni linearmente indipendenti di y + P(x) y + Q(x) y = 0 ogni altra soluzione della stessa equazione si scrive nella forma per una scelta opportuna delle costanti

Dettagli

Analisi di Fourier e alcune equazioni della fisica matematica 1. TERZA LEZIONE Serie di funzioni Serie di potenze

Analisi di Fourier e alcune equazioni della fisica matematica 1. TERZA LEZIONE Serie di funzioni Serie di potenze Analisi di Fourier e alcune equazioni della fisica matematica 1 TERZA LEZIONE Serie di funzioni Serie di potenze 1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, Via F. Buonarroti 1/C email:

Dettagli

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,

Dettagli

Appendice B ANALISI FUNZIONALE. 1 Spazi di Banach

Appendice B ANALISI FUNZIONALE. 1 Spazi di Banach Appendice B ANALISI FUNZIONALE In questo capitolo si introducono gli spazi di Banach e di Hilbert, gli operatori lineari e loro spettro. Inoltre si discutono gli operatori compatti su uno spazio di Hilbert.

Dettagli

Esercizi per il corso Matematica clea

Esercizi per il corso Matematica clea Esercizi per il corso Matematica clea Daniele Ritelli anno accademico 008/009 Lezione : Numeri naturali e principio di induzione Esercizi svolti. Provare che + + + n. Provare che + + + n n(n + ) n(n +

Dettagli

Limitiamoci dapprima a considerare una funzione f di periodo 2π. Cercheremo di approssimarla con polinomi trigonometrici di ordine n della forma

Limitiamoci dapprima a considerare una funzione f di periodo 2π. Cercheremo di approssimarla con polinomi trigonometrici di ordine n della forma Serie di Fourier L idea che sta alla base degli sviluppi in serie di Fourier è quella di approssimare, in qualche senso, le funzioni (integrabili periodiche per mezzo di funzioni più regolari e/o più facilmente

Dettagli

3.2 Funzioni periodiche e sviluppi in Serie di Fourier

3.2 Funzioni periodiche e sviluppi in Serie di Fourier 3. Funzioni periodiche e sviluppi in Serie di Fourier Una prima classe di funzioni per cui si può effettuare l analisi armonica (3.5 contiene le funzioni periodiche (di periodo, tali cioè che f(t + = f(t,

Dettagli

Esercizi svolti su serie di Fourier

Esercizi svolti su serie di Fourier Esercizi svolti su serie di Fourier Esercizio. (Onda quadra. Determinare i coefficienti di Fourier della funzione x [, f(x = x [, prolungata a una funzione -periodica su R (d ora in poi denoteremo con

Dettagli

Serie di potenze / Esercizi svolti

Serie di potenze / Esercizi svolti Serie di potenze / Esercizi svolti Si consideri la serie di potenze (a) Determinarne il raggio di convergenza n + n x n (b) Determinarne l intervallo I di convergenza puntuale (c) Dire se la serie converge

Dettagli

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013 Prova scritta del 24 gennaio 2013 Esercizio 1. Sia Ω R 3 un insieme misurabile secondo Lebesgue e di misura finita. Sia {f n } n N una successione di funzioni f n : Ω R misurabili e tali che 1) f n (x)

Dettagli

NUMERI COMPLESSI ED EQUAZIONI ALGEBRICHE

NUMERI COMPLESSI ED EQUAZIONI ALGEBRICHE NUMERI COMPLESSI ED EQUAZIONI ALGEBRICHE. Esercizi Esercizio. Scrivere la forma algebrica, la forma trigonometrica e quella esponenziale dei seguenti numeri complessi: z = + i, z = (cos( π ) + i sin(π

Dettagli

Modelli e Metodi Matematici della Fisica. S1/AC

Modelli e Metodi Matematici della Fisica. S1/AC Modelli e Metodi Matematici della Fisica. S/AC Filippo Cesi 2 Nome Cognome Devo verbalizzare questo esame come (fare una croce): 2 CFU (AA 2-) 6 CFU (solo anal. funzionale) 6 CFU (solo anal. complessa)

Dettagli

3. Serie di Fourier Esercizi

3. Serie di Fourier Esercizi 3. Serie di Fourier Esercizi http://eulero.ing.unibo.it/~barozzi/mi2/pdf/mi2-cap.3-ese.pdf 3.. Polinomi di Fourier 3.2. Serie di Fourier: convergenza puntuale 3.2-. Si dimostri che la serie (v. esempio

Dettagli

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE ESERCIZI SVOLTI SUL CALCOLO INTEGRALE * Tratti dagli appunti delle lezioni del corso di Matematica Generale Dipartimento di Economia - Università degli Studi di Foggia Prof. Luca Grilli Dott. Michele Bisceglia

Dettagli

La Trasformata di Fourier

La Trasformata di Fourier La Trasformata di Fourier Preliminari: Spazi di Hilbert Da Wikipedia In matematica uno spazio di Hilbert è uno spazio vettoriale che generalizza la nozione di spazio euclideo. Gli spazi di Hilbert sono

Dettagli

Analisi Matematica 3/Analisi 4 - SOLUZIONI (20/01/2016)

Analisi Matematica 3/Analisi 4 - SOLUZIONI (20/01/2016) Corso di Laurea in Matematica Docente: Claudia Anedda Analisi Matematica 3/Analisi 4 - SOLUZIONI (//6) ) i) Dopo averla classificata, risolvere l equazione differenziale tẋ x = t cos(t), t >. ii) Scrivere

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2013/2014 M. Tumminello, V. Lacagnina e

Dettagli

Matematica con elementi di Informatica

Matematica con elementi di Informatica Teoria dell integrazione Matematica con elementi di Informatica Tiziano Vargiolu Dipartimento di Matematica vargiolu@math.unipd.it Corso di Laurea Magistrale in Chimica e Tecnologie Farmaceutiche. () Teoria

Dettagli

Esercitazione di riepilogo su serie di funzioni, e in particolare serie di Fourier

Esercitazione di riepilogo su serie di funzioni, e in particolare serie di Fourier Esercitazione di riepilogo su serie di funzioni, e in particolare serie di Fourier Serie di funzioni e convergenza totale Tenere presente: De nizione di convergenza puntuale e convergenza totale per una

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 5 febbraio 2018 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 5 febbraio 2018 Testi 1 Analisi Matematica I per Ingegneria Gestionale, a.a. 7-8 Scritto del secondo appello, 5 febbraio 8 Testi Prima parte, gruppo.. Trovare r > e α [ π, π] per cui vale l identità 3 sin 3 cos = r sin( + α)..

Dettagli

Esercizi sulle trasformate di Fourier

Esercizi sulle trasformate di Fourier Esercizi sulle trasformate di Fourier Corso di Fisica Matematica, a.a. 3-4 Dipartimento di Matematica, Università di Milano 8 Novembre 3 Questi esercizi richiederanno il calcolo di integrali a volte non

Dettagli

Insiemi numerici: i numeri complessi

Insiemi numerici: i numeri complessi Insiemi numerici: i numeri complessi Riccarda Rossi Università di Brescia Analisi I Introduzione Storicamente: I si è passati da N a Z perché la sottrazione di due numeri naturali non è operazione interna

Dettagli

EQUAZIONI DIFFERENZIALI

EQUAZIONI DIFFERENZIALI EQUAZIONI DIFFERENZIALI 1 Primo ordine - variabili separabili Sia dato il problema di Cauchy seguente: { y = a(x)b(y) Si proceda come segue y(x 0 ) = y 0 (1) Si calcolino le radici dell equazione b(y)

Dettagli

ANALISI DI FOURIER. 2πk. è periodica di periodo T. Più precisamente, essendo. T x + 2π = cos. s(x) = s x + T ) T +α. f(x) dx

ANALISI DI FOURIER. 2πk. è periodica di periodo T. Più precisamente, essendo. T x + 2π = cos. s(x) = s x + T ) T +α. f(x) dx ANALISI DI FOURIER Sia >. Una funzione f, definita per x R, si dice periodica di periodo, se f(x + = f(x, x R. ( Se una funzione è periodica di periodo, essa è anche periodica di periodo, 3,..., k,....

Dettagli

Equazioni differenziali ordinarie (ODE) lineari del secondo ordine a coefficienti costanti

Equazioni differenziali ordinarie (ODE) lineari del secondo ordine a coefficienti costanti Equazioni differenziali ordinarie (ODE) lineari del secondo ordine a coefficienti costanti Fulvio Bisi Corso di Analisi Matematica A (ca) Università di Pavia Facoltà di Ingegneria 1 ODE lineari del secondo

Dettagli

1 n 1. n + 1. n=1 N+1. n=1. n=1 N N + 1.

1 n 1. n + 1. n=1 N+1. n=1. n=1 N N + 1. 44 Roberto Tauraso - Analisi 2 e quindi la somma parziale s N è uguale a N N s N n(n + ( n n + n N n n N+ n n N +. n2 N n N n n + dove nell ultimo passaggio si sono annullati tutti i termini opposti tranne

Dettagli

è un segnale periodico di periodo T0 1 equazioni di analisi e di sintesi stabiliscono

è un segnale periodico di periodo T0 1 equazioni di analisi e di sintesi stabiliscono PROPRIEA ELEMENARI Se x( t) è un segnale periodico di periodo 0 di classe C 1 -tratti e normalizzato, le equazioni di analisi e di sintesi stabiliscono una corrispondenza fra x( t) e la sequenza dei suoi

Dettagli

7. Equazioni differenziali

7. Equazioni differenziali 18 Sezione 7. Equazioni differenziali 7. Equazioni differenziali [versione: 25/5/2012] Richiamo delle nozioni fondamentali In un equazione differenziale l incognita da determinare è una funzione (e non

Dettagli

ANALISI UNO (A.A. 2008/2009, Docente: S. Finzi Vita) Programma svolto settimanalmente

ANALISI UNO (A.A. 2008/2009, Docente: S. Finzi Vita) Programma svolto settimanalmente ANALISI UNO (A.A. 2008/2009, Docente: S. Finzi Vita) Programma svolto settimanalmente 2-6 Marzo (8 ore) Gli assiomi dei numeri reali. Osservazioni sull assioma di continuità: altre formulazioni e loro

Dettagli

Dispense del corso di Analisi II

Dispense del corso di Analisi II Dispense del corso di Analisi II versione preliminare Paolo Tilli Dipartimento di Matematica Politecnico di Torino email: paolo.tilli@polito.it 8 gennaio 5 Capitolo 6 La trasformata di Fourier 6. Introduzione

Dettagli

EQUAZIONI DIFFERENZIALI / ESERCIZI SVOLTI

EQUAZIONI DIFFERENZIALI / ESERCIZI SVOLTI ANALISI MATEMATICA I - A.A. 011/01 EQUAZIONI DIFFERENZIALI / ESERCIZI SVOLTI L asterisco contrassegna gli esercizi più difficili. Determinare l integrale generale dell equazione differenziale y = e x y

Dettagli

Serie di Fourier - Esercizi svolti

Serie di Fourier - Esercizi svolti Serie di Fourier - Esercizi svolti Esercizio 1 È data la funzione f con domf) = R, periodica di periodo, tale che onda quadra) 1 se < x < fx) = se x = e x = 1 se < x < 1) 1 Calcolare i coefficienti di

Dettagli

Sistemi e Tecnologie della Comunicazione

Sistemi e Tecnologie della Comunicazione Sistemi e Tecnologie della Comunicazione Complementi 1: numeri complessi I numeri complessi La definizione dei numeri complessi nasce dalla esigenza di trovare una soluzione alla equazione: x 1 che non

Dettagli

Esame di Fisica Matematica 2, a.a (8/7/2014)

Esame di Fisica Matematica 2, a.a (8/7/2014) Esame di Fisica Matematica 2, a.a. 23-24 (8/7/24) Tempo a disposizione: DUE ORE. Svolgere tutti gli esercizi, che hanno lo stesso nel determinare il voto finale. Scrivere chiaramente e a stampatello nome,

Dettagli

Svolgimento Versione A

Svolgimento Versione A Svolgimento Versione A Esercizio 1 a) Dall espressione data nel testo si ricava subito il grafico di f su [0, ]. Poiché la funzione è pari, simmetrizzando questo rispetto all asse y si ottiene il grafico

Dettagli

Corso interno di Matematica compito scritto del n n+1

Corso interno di Matematica compito scritto del n n+1 Corso interno di Matematica compito scritto del 4.07.05 1. Dire se la serie converge e giustificare la risposta. n=1 1 n n+1 n Soluzione: Il criterio della radice o del rapporto falliscono; proviamo col

Dettagli

Dispense sulle serie di potenze, funzioni esponenziali e trigonometriche

Dispense sulle serie di potenze, funzioni esponenziali e trigonometriche Dispense sulle serie di potenze, funzioni esponenziali e trigonometriche Luca Biasco 1 27 dicembre 2015 1 Queste dispense sono prese, quasi verbatim, da alcune pagine del libro di Analisi Matematica 2

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali In un equazione differenziale l incognita da trovare è una funzione, di cui è data, dall equazione, una relazione con le sue derivate (fino ad un certo ordine) e la variabile libera:

Dettagli

Modelli e Metodi Matematici della Fisica. Scritto 2

Modelli e Metodi Matematici della Fisica. Scritto 2 Modelli e Metodi Matematici della Fisica Scritto Cesi/Presilla AA 6 7 Canale 1 Cesi Presilla Nome Cognome Il voto dello scritto rimpiazza gli esoneri 1 3 penalità problema voto 1 3 5 6 7 8 9 penalità ritardo

Dettagli

Metodi Matematici per l Ingegneria dell Informazione

Metodi Matematici per l Ingegneria dell Informazione Università degli Studi di Firenze Versione 0.5 Francesco Mugelli Metodi Matematici per l Ingegneria dell Informazione 0.5 4 3 2 2 3 4 x 0.5 Firenze - 4 giugno 2003 Capitolo 3 Serie di Fourier Le serie

Dettagli

1) D0MINIO FUNZIONE. Determinare il dominio della funzione f (x) = 4 x 2 4x + 3 x 2 6x + 8 Deve essere. x 2 6x + 5 (x 1) (x 5)

1) D0MINIO FUNZIONE. Determinare il dominio della funzione f (x) = 4 x 2 4x + 3 x 2 6x + 8 Deve essere. x 2 6x + 5 (x 1) (x 5) ) DMINIO FUNZIONE Determinare il dominio della funzione f (x) = x x + x x + 8 x x + (x ) (x ) Deve essere = quindi x (, ] (, ] (, + ). x x + 8 (x ) (x ) Determinare il dominio della funzione f (x) = x

Dettagli

Sviluppi e derivate delle funzioni elementari

Sviluppi e derivate delle funzioni elementari Sviluppi e derivate delle funzioni elementari In queste pagine dimostriamo gli sviluppi del prim ordine e le formule di derivazioni delle principali funzioni elementari. Utilizzeremo le uguaglianze lim

Dettagli

Serie trigonometriche e di Fourier Ci occuperemo di serie le cui ridotte N-esime sono polinomi trigonometrici di grado (o ordine) N:

Serie trigonometriche e di Fourier Ci occuperemo di serie le cui ridotte N-esime sono polinomi trigonometrici di grado (o ordine) N: Serie trigonometriche e di Fourier Ci occuperemo di serie le cui ridotte N-esime sono polinomi trigonometrici di grado (o ordine) N: S N (x) = N n=0 (a n cos (nx) + b n sin (nx)), a n, b n R (periodiche

Dettagli

Sistemi lineari 1 / 41

Sistemi lineari 1 / 41 Sistemi lineari 1 / 41 Equazioni lineari Una equazione lineare a n incognite, è una equazione del tipo: a 1 x 1 + a 2 x 2 + + a n x n = b, dove a 1,,a n,b sono delle costanti (numeri) reali. I simboli

Dettagli

DIFFERENZIAZIONE. Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim

DIFFERENZIAZIONE. Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim DIFFERENZIAZIONE 1 Regola della catena Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim = f (x 0 ). x x 0 x x 0 Questa

Dettagli

Calcolo integrale. Regole di integrazione

Calcolo integrale. Regole di integrazione Calcolo integrale Linearità dell integrale Integrazione per parti Integrazione per sostituzione Integrazione di funzioni razionali 2 2006 Politecnico di Torino Proprietà Siano e funzioni integrabili su

Dettagli

Esercizi di riepilogo 2: soluzioni ( Verifica di analisi funzionale e serie di Fourier)

Esercizi di riepilogo 2: soluzioni ( Verifica di analisi funzionale e serie di Fourier) Esercizi di riepilogo 2: soluzioni ( Verifica di analisi funzionale e serie di Fourier) Spazi Vettoriali e Funzionali 1. Risposte: (a) Spazio vettoriale complesso. (b) Spazio vettoriale reale. (c) Non

Dettagli

2) Scrivere la soluzione generale del seguente sistema di equazioni differenziali lineari del primo ordine. y 1 = 2y 1 5y 3 y 2

2) Scrivere la soluzione generale del seguente sistema di equazioni differenziali lineari del primo ordine. y 1 = 2y 1 5y 3 y 2 Corso di Laurea in Matematica Analisi Matematica 3/Analisi 4 - SOLUZIONI (8/6/5) Docente: Claudia Anedda ) Trovare il limite puntuale della successione di funzioni f k (t) = cos(kt), t R. Stabilire se

Dettagli

Dom. 1 Dom 2 Es. 1 Es. 2 Es. 3 Es. 4 Totale. Cognome: Nome: Matricola:

Dom. 1 Dom 2 Es. 1 Es. 2 Es. 3 Es. 4 Totale. Cognome: Nome: Matricola: Dom. 1 Dom Es. 1 Es. Es. 3 Es. 4 Totale Analisi e Geometria 1 Primo appello 16 febbraio 016 Docente: Politecnico di Milano Scuola di Ingegneria Industriale e dell Informazione Cognome: Nome: Matricola:

Dettagli

Analisi vettoriale - A.A. 2003/04

Analisi vettoriale - A.A. 2003/04 Soluzioni Analisi vettoriale - A.A. 2003/04 Foglio di esercizi n.7 1. Esercizio Studiare la convergenza delle seguenti serie di potenze: 2 n (n + 3)! x n 3(x 2) n, (2n)! log (n + 1). (1) 1.1. Soluzione.

Dettagli

Disequazioni - ulteriori esercizi proposti 1

Disequazioni - ulteriori esercizi proposti 1 Disequazioni - ulteriori esercizi proposti Trovare le soluzioni delle seguenti disequazioni o sistemi di disequazioni:. 5 4 >. 4. < 4. 4 9 5. 9 > 6. > 7. < 8. 5 4 9. > > 4. < 4. < > 9 4 Non esitate a comunicarmi

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA DI BASE. Prova scritta del 26 gennaio 2005

COMPLEMENTI DI ANALISI MATEMATICA DI BASE. Prova scritta del 26 gennaio 2005 Prova scritta del 26 gennaio 2005 Esercizio 1. Posto B = x R 2 : x 2 2}, sia f n } una successione di funzioni (misurabili e) integrabili in B tali che f n f q.o. in B e, per ogni n N, f n (x) 2 x 3 per

Dettagli

appunti per il corso di Analisi Matematica I corso di laurea in Ingegneria Gestionale, a.a autore: Giovanni Alberti

appunti per il corso di Analisi Matematica I corso di laurea in Ingegneria Gestionale, a.a autore: Giovanni Alberti appunti per il corso di Analisi Matematica I corso di laurea in Ingegneria Gestionale, a.a. 2013-14 autore: Giovanni Alberti Equazioni differenziali [versione: 22-12-2013] Richiamo delle nozioni fondamentali

Dettagli

Esempi di soluzione di equazioni differenziali mediante serie di potenze

Esempi di soluzione di equazioni differenziali mediante serie di potenze Esempi di soluzione di equazioni differenziali mediante serie di potenze Cerchiamo una soluzione dell equazione differenziale nella forma 3y () + y () + y() 0 + y() σ n con σ,. Una serie di potenze generalizzata

Dettagli

Successioni e serie di funzioni / Esercizi svolti

Successioni e serie di funzioni / Esercizi svolti M.Guida, S.Rolando, 4 Successioni e serie di funzioni / Esercizi svolti ESERCIZIO. Sia f n :[, ] R definita da f n (x) =x n ( x n ) per ogni n. a) Determinare l insieme di convergenza puntuale e la funzione

Dettagli

Quesito 1 (1/0/-0.25 punti)

Quesito 1 (1/0/-0.25 punti) NOME COGNOME Politecnico di Milano Analisi Matematica 1 Anno Accademico 017-018 Prof. Ettore Lanzarone Appello febbraio 018 Parte A: punteggio 6/30; soglia minima per passare la prova /30 ogni risposta

Dettagli

LE EQUAZIONI LINEARI LE IDENTITA ( )( ) 5. a Cosa hanno in comune le seguenti uguaglianze? Uguaglianza (1) a

LE EQUAZIONI LINEARI LE IDENTITA ( )( ) 5. a Cosa hanno in comune le seguenti uguaglianze? Uguaglianza (1) a LE EQUAZIONI LINEARI 1 LE IDENTITA a b = ( a + b)( a b) () 1 a = a + a ( ) ( a + b) = a + ab + b () 3 Cosa hanno in comune le seguenti uguaglianze? Uguaglianza (1) a b = ( a+ b)( a b) È sempre vera qualunque

Dettagli

Argomento 8 Integrali indefiniti

Argomento 8 Integrali indefiniti 8. Integrale indefinito Argomento 8 Integrali indefiniti Definizione 8. Assegnata la funzione f definita nell intervallo I, diciamo che una funzione F con F : I R è una primitiva di f in I se i) F è derivabile

Dettagli

1 Successioni di funzioni

1 Successioni di funzioni Analisi Matematica 2 Successioni di funzioni CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 6 SERIE DI POTENZE Supponiamo di associare ad ogni n N (rispettivamente ad ogni n p, per qualche

Dettagli

ANALISI MATEMATICA III PREREQUISITI SULL ANALISI COMPLESSA A.A

ANALISI MATEMATICA III PREREQUISITI SULL ANALISI COMPLESSA A.A ANALISI MATEMATICA III PREREQUISITI SULL ANALISI COMPLESSA A.A. 205-206 March 4, 206 In questa parte vengono brevemente presentati alcuni richiami a) sui numeri complessi b) sulle funzioni complesse e

Dettagli

n! n n. n=1 an = L [0, + ] Se L = 1 il criterio non dà una risposta e la serie potrebbe sia convergere che divergere. 2 n2. n 1

n! n n. n=1 an = L [0, + ] Se L = 1 il criterio non dà una risposta e la serie potrebbe sia convergere che divergere. 2 n2. n 1 46 Roberto Tauraso - Analisi 2 Esempio 3.6 Determinare il carattere della serie Applichiamo il criterio del rapporto: n n. a n+ a n (n +! nn (n + nn (n + n+ (n + n n n+ (n + ( n + n e. n Dato che e

Dettagli

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 3 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 3 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 3 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,

Dettagli

Esponenziale complesso

Esponenziale complesso Esponenziale complesso Paola Rubbioni Analisi Matematica II - CdL in Ingegneria Informatica ed Elettronica a.a. 2016/2017 1 Serie nel campo complesso Per fornire il concetto di serie nel campo complesso

Dettagli

Complemento 10 Numeri complessi

Complemento 10 Numeri complessi Analisi Matematica I CL Fisica, Università Roma Tre AA 2008/09 L. Chierchia Complemento 0 Numeri complessi. Il campo complesso Il campo complesso C è, per definizione, la terna R 2, +,, cioè R 2 equipaggiato

Dettagli

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013 Prova scritta del 24 gennaio 2013 Esercizio 1. Sia Ω R 3 un insieme misurabile secondo Lebesgue e di misura finita. Sia {f n } n N una successione di funzioni f n : Ω R misurabili e tali che 1) f n (x)

Dettagli

Metodi I Secondo appello

Metodi I Secondo appello Metodi I Secondo appello Chi recupera la prima prova fa la parte A in due ore. Chi recupera la seconda prova fa la parte B in due ore. Chi fa l appello per intero fa A., B., le prime tre domande di A.2

Dettagli

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.

Dettagli

3. (Punti 8) Si consideri l integrale improprio. x n dx, n N.

3. (Punti 8) Si consideri l integrale improprio. x n dx, n N. Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA Prova scritta del 4 febbraio 27 Fila. Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 9) Data l

Dettagli

Compito di Analisi Matematica, Seconda parte, COGNOME: NOME: MATR.:

Compito di Analisi Matematica, Seconda parte, COGNOME: NOME: MATR.: Compito di Analisi Matematica, Seconda parte, gennaio 9 Tema X COGNOME: NOME: MATR.: Esercizio. ( Determinare al variare di β R la soluzione di y (x + y (x + y(x = e x + x tale che y( = β = y (. ( Al variare

Dettagli

Limiti di successioni

Limiti di successioni Capitolo 5 Limiti di successioni 5.1 Successioni Quando l insieme di definizione di una funzione coincide con l insieme N costituito dagli infiniti numeri naturali 1, 2, 3,... talvolta si considera anche

Dettagli

Limiti e continuità. Limiti di funzioni

Limiti e continuità. Limiti di funzioni Limiti e continuità Limite all ininito di una unzione Limite al inito di una unzione Continuità di una unzione Limite ininito al inito di una unzione Limiti laterali di una unzione Punti di discontinuità

Dettagli

La Trasformata di Fourier Discreta. e sue applicazioni

La Trasformata di Fourier Discreta. e sue applicazioni Prof. Lucio Cadeddu Giorgia Tranquilli Università degli Studi di Cagliari Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica La Trasformata di Fourier Discreta e sue applicazioni Relatore: Tesi

Dettagli

Corso di Laurea in Matematica I prova intermedia di Analisi Matematica 3

Corso di Laurea in Matematica I prova intermedia di Analisi Matematica 3 Corso di Laurea in Matematica I prova intermedia di Analisi Matematica 3 12 novembre 2015 1. Sia f : [0, 2π[ R una funzione decrescente e regolare (C 1 a tratti), prolungata poi per periodicità su tutto

Dettagli

ESERCITAZIONE 4: I NUMERI COMPLESSI

ESERCITAZIONE 4: I NUMERI COMPLESSI ESERCITAZIONE 4: I NUMERI COMPLESSI Tiziana Raparelli 19/0/008 1 DEFINIZIONI E PROPRIETÀ Vogliamo risolvere l equazione x + 1 = 0, estendiamo dunque l insieme dei numeri reali, introducendo l unità immaginaria

Dettagli

MIGLIOR APPROSSIMAZIONE IN SPAZI EUCLIDEI

MIGLIOR APPROSSIMAZIONE IN SPAZI EUCLIDEI MIGLIOR APPROSSIMAZIONE IN SPAZI EUCLIDEI A. SOMMARIVA Conoscenze richieste. Spazio vettoriale. Spazio normato. Vettori linearmente indipendenti. Sistemi lineari. Operatore delta di Kronecker. Conoscenze

Dettagli

Corso di Laurea in Fisica. Geometria. a.a Prof. P. Piazza Soluzione compito a casa del 24/10/09

Corso di Laurea in Fisica. Geometria. a.a Prof. P. Piazza Soluzione compito a casa del 24/10/09 Corso di Laurea in Fisica. Geometria. a.a. 29-. Prof. P. Piazza Soluzione compito a casa del 24//9 Soluzione esercizio. Siano A e B due matrici simmetriche e λ un numero reale. Dobbiamo mostrare che anche

Dettagli

I numeri complessi. Richiami di teoria. AMA Ing.Edile - Prof. Colombo 1. Esercitazioni: Francesco Di Plinio -

I numeri complessi. Richiami di teoria. AMA Ing.Edile - Prof. Colombo 1. Esercitazioni: Francesco Di Plinio - AMA Ing.Edile - Prof. Colombo 1 Esercitazioni: Francesco Di Plinio - francesco.diplinio@libero.it I numeri complessi. Richiami di teoria. 1.1 Numeri complessi. Un numero complesso è un espressione della

Dettagli

Soluzioni. Notiamo preliminarmente che tale soluzione continua esiste, in quanto le condizioni iniziali ed al bordo sono tra di loro compatibili.

Soluzioni. Notiamo preliminarmente che tale soluzione continua esiste, in quanto le condizioni iniziali ed al bordo sono tra di loro compatibili. Es. Es. 2 Es. 3 Es. 4 Totale Politecnico di Milano - Ingegneria Energetica Metodi Analitici e Numerici (A) 4 Luglio 27 Cognome Nome Matricola Esercizio. Sia u = u(x, t) la soluzione continua del problema

Dettagli

Nel capitolo precedente abbiamo visto che sotto opportune condizioni su una funzione f : I! R si ha lo sviluppo di Taylor

Nel capitolo precedente abbiamo visto che sotto opportune condizioni su una funzione f : I! R si ha lo sviluppo di Taylor Capitolo 6 Serie numeriche Nel capitolo precedente abbiamo visto che sotto opportune condizioni su una funzione f : I! R si ha lo sviluppo di Taylor f(x) = nx k=0 f (k) (x 0 ) (x x 0 ) k + o((x x 0 ) n

Dettagli

Integrazione di funzioni razionali

Integrazione di funzioni razionali Esercitazione n Integrazione di funzioni razionali Consideriamo il rapporto P (x) di due polinomi di gradi n e m rispettivamente. Per determinare una primitiva della funzione f(x) P (x) possiamo procedere

Dettagli

Corso di Analisi Matematica. Polinomi e serie di Taylor

Corso di Analisi Matematica. Polinomi e serie di Taylor a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Polinomi e serie di Taylor Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli

Dettagli

(1) Per ciascuno dei seguenti spazi dire se è o meno uno spazio vettoriale (spiegare)

(1) Per ciascuno dei seguenti spazi dire se è o meno uno spazio vettoriale (spiegare) 1 Spazi vettoriali (1) Per ciascuno dei seguenti spazi dire se è o meno uno spazio vettoriale (spiegare) (a) R 5 (b) [0, ) (c) x R 2 : x 1 + 2x 2 = 0} (d) x R 2 : x 2 1 + 2x 2 = 0} (e) x R 2 : x 1 > x

Dettagli

Serie e Trasformata di Fourier

Serie e Trasformata di Fourier Serie e Trasformata di Fourier Corso di Analisi Funzionale Prof. Paolo Nistri Cancelli, D Angelo, Giannetti Polinomio di Fourier Si consideri la successione costituita dalle restrizioni delle funzioni

Dettagli

Dispense sulle serie di potenze, funzioni analitiche esponenziale complesso, seno e coseno

Dispense sulle serie di potenze, funzioni analitiche esponenziale complesso, seno e coseno Dispense sulle serie di potenze, funzioni analitiche esponenziale complesso, seno e coseno Luca Biasco 1 25 aprile 216 1 Queste dispense sono prese, quasi verbatim, da alcune pagine del libro di Analisi

Dettagli

Analisi Matematica 3 (Fisica) Prova scritta del 17 febbraio 2012 Un breve svolgimento delle versioni A

Analisi Matematica 3 (Fisica) Prova scritta del 17 febbraio 2012 Un breve svolgimento delle versioni A Analisi Matematica 3 (Fisica) Prova scritta del 7 febbraio Un breve svolgimento delle versioni A Vi sarò grato per la segnalazione di eventuali errori. Esercizio. (a) Dimostrare che l equazione () (3 +

Dettagli

Analisi I - IngBM COMPITO A 6 luglio 2016 MATRICOLA... VALUTAZIONE =...

Analisi I - IngBM COMPITO A 6 luglio 2016 MATRICOLA... VALUTAZIONE =... Analisi I - IngBM - 2015-16 COMPITO A 6 luglio 2016 COGNOME... NOME... MATRICOLA... VALUTAZIONE... +... =... 1. Istruzioni Gli esercizi devono essere svolti negli appositi spazi del presente fascicolo;

Dettagli

Modelli e Metodi Matematici della Fisica. E2

Modelli e Metodi Matematici della Fisica. E2 Modelli e Metodi Matematici della Fisica. E Filippo Cesi 15 16 Nome Cognome problema voto 1 3 5 6 7 test totale voto in trentesimi Regolamento: 1) Tutti gli esercizi, in particolare quelli a carattere

Dettagli

appunti per il corso di Analisi Matematica I corso di laurea in Ingegneria Gestionale, a.a autore: Giovanni Alberti

appunti per il corso di Analisi Matematica I corso di laurea in Ingegneria Gestionale, a.a autore: Giovanni Alberti appunti per il corso di Analisi Matematica I corso di laurea in Ingegneria Gestionale, a.a. 2014-15 autore: Giovanni Alberti Equazioni differenziali [versione: 2 gennaio 2015] Richiamo delle nozioni fondamentali

Dettagli

Numeri complessi. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) I numeri complessi Analisi A 1 / 37

Numeri complessi. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) I numeri complessi Analisi A 1 / 37 Numeri complessi Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) I numeri complessi Analisi A 1 / 37 Introduzione I numeri complessi vengono introdotti perché tutte

Dettagli

Serie di Fourier. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi. DIMS Università di Trento. anno accademico 2008/2009

Serie di Fourier. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi. DIMS Università di Trento. anno accademico 2008/2009 Serie di Fourier (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi DIMS Università di Trento anno accademico 8/9 Serie di Fourier 1 / 48 Jean Baptiste Joseph Fourier (1768 183) Serie di Fourier

Dettagli

L ANALISI ARMONICA DI UN SEGNALE PERIODICO

L ANALISI ARMONICA DI UN SEGNALE PERIODICO L ANALISI ARMONICA DI UN SEGNALE PERIODICO Il segnale elettrico è una grandezza fisica (in genere una tensione) che varia in funzione del tempo e che trasmette un'informazione. Quasi tutti i segnali che

Dettagli

Risoluzione di ax 2 +bx+c = 0 quando a, b, c sono numeri complessi.

Risoluzione di ax 2 +bx+c = 0 quando a, b, c sono numeri complessi. LeLing14: Ancora numeri complessi e polinomi Ārgomenti svolti: Risoluzione di ax + bx + c = 0 quando a, b, c sono numeri complessi La equazione di Eulero: e i θ = cos(θ) + i sin(θ) La equazione x n = a,

Dettagli

Miglior approssimazione in spazi euclidei

Miglior approssimazione in spazi euclidei Miglior approssimazione in spazi euclidei 15 gennaio 2009 1 Introduzione astratta Sia E uno spazio vettoriale dotato di un prodotto interno (, ) (talvolta un tale spazio è detto euclideo, cf. [7, p.148]),

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Equazioni differenziali Analisi Matematica 1 1 / 30 Formulazione del problema In generale

Dettagli