LASER. Processi di pompaggio
|
|
- Matteo Viviani
- 2 anni fa
- Visualizzazioni
Transcript
1 LASER Processi di pompaggio
2 Meccanismi più utilizzati per pompare il materiale attivo - Pompaggio mediante scarica elettrica (pompaggio elettrico) - Pompaggio mediante lampade flash (pompaggio ottico) - Pompaggio a diodi (pompaggio ottico)
3 1) Pompaggio mediante scarica elettrica - usato nei laser a gas Il gas è racchiuso in tubo di quarzo sigillato agli estremi dagli spechi che costituiscono la cavità risonante. Tra i due elettrodi (A e C) viene creata una scarica elettrica che attraversa il gas.
4 2) Pompaggio mediante lampade flash - usato nei laser a stato solido
5 2) Pompaggio a diodi - un diodo a semiconduttore (o un array di diodi) può essere usato per il pompaggio ottico nei laser a stato solido (Nd:YAG) oppure nei laser in fibra. R = 80 %
6 Efficienza laser Efficienza laser: η L = energia ottica dell emissione laser energia elettrica
7 Efficienza laser
8 Efficienza di diversi laser
9 Meccanismi di eccitazione Meccanismi di eccitazione (modalità per produrre atomi o molecole in stato eccitato) : - eccitazione tramite pompaggio ottico - eccitazione tramite trasferimento risonante di energie - eccitazione tramite urti elettronici - eccitazione tramite effetto Penning
10 1) Eccitazione tramite pompaggio ottico Pompaggio ottico tecnica per creare inversione di popolazione in sistemi atomici o molecolari tramite la combinazione di processi di eccitzione ottica risonante è processi di diseccitazione. Il pompaggio ottico è utilizzato quasi esclusivamente per i laser del lontano IR (laser rotazionali), ma anche per altri laser molecolari (CO 2, CF 4, NOCl, SF 6, NH 3, etc) La sorgente di radiazione per il pompaggio: - lampada di banda larga (come quelle utilizzate per i laser a stato solido) - laser monocromatico Esempi: - lampada flash con Xe pompa il laser a Iodio, a rubino - lampada con He pompa il laser con Cesio il pompaggio con sorgenti di banda larga si è dimostrato inefficiente nei gas non essistono bande di assorbimento larghe (esse sono di ordino GHz o anche più strette). il pompaggio ottico con i laser (relativamente recente (1970) ha i seguenti vantaggi: - energia è depositata su livelli energetici preferenziali del mezzo attivo; - permette di raggiungere livelli di pompaggio molto alti; - il fascio laser può essere focalizzato in volumi piccoli
11 Eccitazione tramite pompaggio ottico Schemi per realizzare inversione di popolazione tramite pompaggio ottico: a) Laser a 3 livelli: pompaggio jk e inversione ki E k > E i >> E j + kt (i livelli k e i non sono popolati prima del pompaggio) Condizione per funzionamento in onda continua: (N j0 N i0 ) τ ij -1 > (N i0 N k0 )τ ki -1 N i0, N j0, N k0 popolazioni di equilibrio prima del pompaggio τ ij, τ ki tempi di diseccitazione caratteristici. b) Schema con 3 livelli invertita E k >> E j + kt > E Condizione per funzionamento in onda continua: (N s0 N k0 ) τ ks -1 > (N j0 N s0 )τ sj -1 Questo schema e più difficile, meno efficiente, e quindi meno utilizzato. Laser Pompa Pompa Laser
12 Eccitazione tramite pompaggio ottico c) Schema con 4 livelli - eccitazione in più passi tramite processi multifotonici d) Pompaggio ottico con trasferimento di energia - le molecole che si trovano in coincidenza energetica con la radiazione di pompaggio trasferiscono colisional l energia verso il livello l e) Pompaggio in 2 step (push-push) - in questo caso il livello intermedio l non è necessariamente in risonanza con la radiazione di pompaggio f) Combinazione schema 3 livelli + schema 3 livelli invertita (push-pull) L eccitazione tramite pompaggio ottico richiede una stretta coincidenza tra lunghezza d onda di pompaggio e lunghezza d onda di assorbimento. Esiste un num. grande di righe nell IR e un num. grande de righe di assorbimento delle molecole una coincidenze spettrale può essere facilmente ritrovata.
13 Eccitazione tramite pompaggio ottico Pompaggio ottico può essere combinato con altri sistemi di eccitazione: - scarica elettrica - trasferimento risonante di energia Velocità di pompaggio - consideriamo un fascio di pompaggio monocromatico con frequenza ν p potenza assorbita in unità di volume di gas: W [s -1 ] velocità di pompaggio supponendo che il livello superiore è nepopolato hν p energia dei fotoni di pompaggio La velocità di assorbimento può essere espressa anche in funzione del flusso di radiazione di eccitazione φ [m -2 s -1 ] o in funzione dell irradianza I ν [Wm -2 ] alla frequenza ν p. σ [m 2 ] sezione trasersale dell assorbimento
14 Eccitazione tramite pompaggio ottico La potenza di pompaggio assorbita in unita di volume può essere espressa anche in funzione della densità di energia di pompaggio E νp [Jm -3 ] dove: c velocità della luce - efficienza di conversione energetica Efficienza di conversione energetica: λ p η = δ = 2 λ E E p δ E/Ep - Efficienza di estrazione p, - lunghezza d onda della radiazione di pompaggio, rispettiv. radiazione emessa da laser E p, E energia della radiazione di pompaggio, rispettiv. della radiazione di emissione laser - frazione di energia di pompaggio assorbita da gas, - coefficiente di assorbimento per lunghezza d onda di pompaggio L lunghezza del camino di assorbimento N numero efettivo di pasaggi della radiazione di pompaggio nel laser Esempio: pompaggio del laser a CF 4 con il laser a CO 2 (riga 9R(12) della banda 9,4 µm), - per = 1,1x10-4 cm -1 torr -1, p = 3,5 torr è necessario che L = 3,5 m; - per = 16,26 µm
15 2) Eccitazione tramite trasferimento risonante di energia Il gas e formato da 2 specie: A e B (A in stato eccitato, B in stato fondamentale) Esiste la probabilità che dopo l urto l energia di A viene trasferita a B, se la differenza di energie tra le due transizioni E < kt, (T temperatura del gas, k ct. di Boltzmann (k = 1.38 x J/K). A* + B A+B* + E Un metodo efficiente per pompare la molecola di CO 2 : N 2 *+CO 2 N 2 +CO 2 * + E Generalmente la specie A è eccitata tramite gli urti elettronici è speso rimane allungo nello stato superiore A*. il numero di transazioni nell unità di volume e nell unità di tempo per il trasferimento risonante di energie A-B è: - sezione trasversale d urto N A popolazione dello stato superiore della specie A N B popolazione dello stato inferiore della specie B v velocità relativa dei 2 atomi
16 Eccitazione tramite trasferimento risonante di energia il trasferimento risonante di energia occorre anche nel caso in quale A* (atomo eccitato) interagisce con BC (una molecola), risultando un trasferimento di energia su stati vibrazionali della molecola: Esempi: A* + BC A + BC* + E - Hg* - può trasferire l energia alle molecole di CO, NO o HF; - Na* - può trasferire l energia alle molecole di CO. l eccitazione tramite il trasferimento risonante di energia può condurre anche alla dissociazione della molecola BC (non è obbligatorio che B è C sono entrambe eccitate): Esempio: A* + BC A + B* + C* + E - Hg* + CH 2 CF 2 Hg + CHCF + HF* + E
17 3) Eccitazione tramite urti elettronici è il metodo di pompaggio più utilizzato si realizza tramite una scarica elettrica in gas con sorgente di corrente continua, impulsata, di radio frequenza o una combinazione di esse. tramite la scarica si producono ioni ed elettroni liberi e - ricevendo energie cinetica supplementare tramite l accelerazione in campo elettrico, possono eccitare tramite urti una molecola, un atomo neutro o un ione. A+e - A* + e - E c A, A* - atomo, molecola o ione in stato fondamentale, rispettivamente eccitato E c - energie cinetica rilasciata dall elettrone in scarica Gli urti possono essere: - elastici (E c del e - non si modifica, e - cambia solo la sua direzione) non contribuiscono all eccitazione) - inelastici (E c del e - incidente si modifica, la direzione del e - può cambiare o può rimanere inalterata) contribuiscono all eccitazione delle specie atomiche sui livelli superiori o alla loro ionizzazione.
18 Eccitazione tramite urti elettronici Eccitazione del mezzo laser con un fascio di e - monoenergetici collimato: densità delle specie atomiche sullo stato fondamentale flusso di e - (elettroni/scm 2 ) densità di e - velocità dei e - sezione trasversale d urto la variazione nel tempo della popolazione su livello N 2 è collegata con la variazione del flusso di e - che ha eccitato il livello: - sezione trasversale per l eccitazione dal livello fondamentale sul livello superiore - rata di pompaggio elettrone specie atomica (dipende da j e E/N) (E campo eletrico longitudinale, N - densità dei atomi dalla scarica, j densità di corente dalla scarica, v D velocità di drift, e - carica elettrica)
19 Eccitazione tramite effetto Penning Nei laser con vapori metallici (HeCd) l inversione di popolazione si realizza tramite urti di tipo Penning fra gli atomi metastabili di He e atomi di Cd. La ionizzazione tramite urti di tipo Penning si realizza secondo il processo: A* + B A + B + e - L ione B può essere eccitato o meno (dipende se l energia di eccitazione del atomo A* è più grande o uguale con l energia necessaria per la ionizzazione del atomo B). E A E B è l unica condizione imposta L eccesso di energia si trasforma in energia cinetica dell elettrone. il processo è particolarmente efficiente quando A* si trova in uno stato metastabile. A differenza del trasferimento risonante di energia, l ionizzazione Penning è un processo nonrisonante; Esempio: nel laser con HeCd, l eccitazione tramite urti di tipo Penning: He* + Cd He + (Cd )* + e -
20 LASER Regimi di funzionamento di un laser. Laser cw, laser impulsati, Q-switch
21 Regimi di funzionamento di un laser I laser possono funzionare in onda continua o in impulsi. Funzionamento in regime continuo la potenza del laser è mantenuta costante per periodi lunghi di tempo. Funzionamento in regime impulsato il laser emmete impulsi con una certa frequenza. Ogni impulso a la durata τ p. Il modo più semplice di generare impulsi è interompere periodicamente un fascio laser continuo con un otturatore comandato o un disco rotativo con buchi. Potenza [w] Potenza [w] Regime continuo Tempo [s] Tempo [s] Regime impulsato ottenuto interompendo periodicamente un fascio continuo
22 Regimi di funzionamento di un laser Nel caso del regime impulsato ottenuto interompendo periodicamente un fascio continuo, la potenza di picco di un singolo impulso e uguale alla potenza del laser in continuo. T p periodo τ p durata del impulso f r frequenza di ripetizione P p potenza di picco P AV potenza media Potenza [w] P AV T p 1 f p = P = P AV p r τ T p Tempo [s]
23 Regimi di funzionamento di un laser Regime normale impulsato (free running) si ottiene accumulando energia nella soegente di alimentazione del circuito che viene poi scaricata rapidamente conducendo alla emissione di impulsi laser con potenza di picco più grande rispetto al funziona-mento in onda continua. Quindi, il pompaggio è intermitente. τ p ~ 10-4 s Essempio: il laser a CO 2 con superpolso ha potenza di picco di centinaia di W, rispetto W in onda continua. La durata del impulso è di centinaia di µs. L area sotto la curva dei impulsi laser rappresenta l energia di ogni impulso E [J]. Potenza media: Duty cycle: P = AV E T p δ = δ [ 0,1] τ p f r spento continuo
24 Regimi di funzionamento di un laser
25 Regimi di funzionamento di un laser Regime Q-switch fa aumentare il rapporto di inversione della popolazione durante la fase in cui non vi è emissione del fascio in modo che la successiva emissione sia ad una potenza maggiore (si raggiungono i GW di picco). Potenza [W] P p τ p ~ 10-9 s Q fattore di qualità della cavità (comuta da un valore minimo a un valore massimo) Tempo [s]
26
27 LASER Tipi di sorgenti laser: laser a gas, laser a stato solido, diodi laser
28 Classificazione dei laser Secondo il materiale attivo: Altre comuni classificazioni del laser secondo: (UV, IR, VIS)
29 Schema di principio di un LASER a gas L eccitazione si fa tramite scarica elettrica. Elettroni accelerati dall campo elettrico collidono con gli atomi. Energia dell elettrone si trasferisce all atomo (collisione innelastica), portandolo su un livello energetico più alto. Pompaggio ottico è poco efficiente perché le righe di assorbimento sono molto più strette che nei materiali solidi, mentre le lampade hanno una forte componente continua e le emissioni discrete.
30 LASER a gas il grande numero,solo
31 LASER a gas He-Ne Il gas è racchiuso dentro un tubo di quarzo, sigillato agli estremi da 2 specchi (cavità ottica). Un impulso elettrico di 10 kv, applicato fra gli elettrodi, dà luogo a una scarica elettrica attraverso il gas (pompaggio del mezzo attivo). Una corrente di 3-10 ma (dc) è sufficiente per mantenere la carica.
32 LASER a gas He-Ne Pompaggio del LASER a Elio-Neon (He-Ne)
33 LASER a gas eccimeri
34 LASER a gas eccimeri
35 Tipi di laser a gas Mezzo e tipo di amplificazione laser Laser a elio-neon Laser ad argo Laser al kripton Laser a ioni di xeno Lunghezza d'onda operativa Sorgente di pompaggio Usi e note nm (543.5 nm, nm, nm, µm, 1.52 µm, µm) nm, nm, nm (351 nm,457.9 nm, nm, nm, nm, nm) 416 nm, nm, nm, nm, nm, nm, nm Molte righe spettrali dall'ultravioletto fino all'infrarosso. Scarica elettrica Scarica elettrica Scarica elettrica Scarica elettrica Laser ad azoto nm Scarica elettrica Laser ad anidride carbonica Laser a monossido di carbonio Laser a eccimeri 10.6 µm, (9.4 µm) Scarica elettrica trasversale (alta potenza) o longitudinale (bassa potenza) 2.6 to 4 µm, 4.8 to 8.3 µm Scarica elettrica 193 nm (ArF), 248 nm (KrF), 308 nm (XeCl), 353 nm (XeF) Ricombinazione di eccimeri con una scarica elettrica Interferometria, olografia, spettroscopia, scansione di codici a barre, allineamento, dimostrazioni ottiche. Fototerapia retinica (per diabete), litografia, microscopia confocale, pompaggio di altri laser. Ricerca scientifica, mescolati con argo per ottenere laser a luce bianca per giochi di luci. Ricerca scientifica. Pompaggio di laser a coloranti organici, misura dell'inquinamento ambientale, ricerca scientifica. I laser ad azoto possono funzionare in superradianza (cioè senza una cavità risonante). Costruzione di laser amatoriali. Lavorazione di materiali (taglio, saldatura, etc.). Chirurgia. Lavorazione di materiali (incisione, saldatura etc.), spettroscopia fotoacustica. Litografia ultravioletta per fabbricazione di circuiti integrati, chirurgia laser, LASIK.
36 Schema di principio di un LASER a stato solido
37 LASER a stato solido - Titanio:Zaffiro
38 LASER a stato solido - Neodimio
39 Tipi di laser a stato solido Mezzo e tipo di amplificazione laser Lunghezza d'onda operativa Sorgente di pompaggio Laser a rubino nm Lampada stroboscopica Laser Nd:YAG Laser Er:YAG 2.94 µm µm, (1.32 µm) Laser Nd:YLF e µm Laser Nd:YVO µm diodo laser Laser Nd:YCOB (Nd:YCa 4 O(BO 3 ) 3 ) Laser Neodimio-vetro (Nd:Glass) ~1.060 µm (~530 nm alla seconda armonica) ~1.062 µm (vetri ai silicati), ~1.054 µm (vetri ai fosfati) Laser titanio-zaffiro (Ti:zaffiro) nm Lampada stroboscopica, diodo laser Lampada stroboscopica, diodo laser Lampada stroboscopica, diodo laser diodo laser Lampada stroboscopica, diodo laser Altri laser Laser Tm:YAG (Tm:YAG) 2.0 µm diodo laser Lidar. Laser itterbio:yag (Yb:YAG) 1.03 µm Diodo laser, lampada stroboscopica Usi e note Olografia, rimozione di tatuaggi. Il primo tipo di laser a luce visibile inventato (Maia 1960). Lavorazione di materiali, misurazione distanze, puntatori laser, chirurgia, ricerca, pompaggio di altri laser (combinato con duplicatori di frequenza per produrre un fascio verde da 532 nm). Uno dei più comuni laser ad alta potenza. Di solito funziona ad impulsi (brevi fino a frazioni di nanosecondo) Scalatura periodontale, odontoiatria Generalmente usato per il pompaggio impulsivo di certi tipi di laser Ti:zaffiro, combinato con duplicatori di frequenza. Generalmente usato per il pompaggio continuo di laser Ti:zaffiro o a coloranti in modelocking, in combinazione con duplicatori di frequenza. Usato anche a impulsi per marcatura e microlavorazioni meccaniche. Nd:YCOB è un cosiddetto "materiale laser ad autoraddoppio di frequenza" o materiale SFD, che oltre ad essere capace di amplificazione laser ha anche caratteristiche ottiche nonlineari che lo rendono capace di funzionare in seconda armonica. Tali materiali permettono di semplificare il progetto di laser verdi ad elevata brillantezza. Usati per potenze ed energie estremamente elevate (dell'ordine del terawatt e dei megajoule), in sistemi a fasci multipli per fusione a confinamento inerziale. Viste le potenze in gioco, i laser Nd:Glass sono otticamente nonlineari e vengono usati per triplicare la loro stessa frequenza di lavoro: funzionano generalmente in terza armonica a 351 nm. spettroscopia, Lidar, ricerca. Questo laser si usa spesso in laser infrarossi altamente accordabili in modelocking per produrre impulsi ultrabrevi e in amplificatori laser per produrre impulsi ultrabrevi e ultrapotenti. Raffreddamento ottico, lavorazione materiali, ricerca sugli impulsi ultrabrevi, microscopia multifotonica, Lidar. Laser Olmio:YAG (Ho:YAG) 2.1 µm diodo laser Ablazione tissutale, rimozione di calcoli renali, odontoiatria.
40 Laser a semiconduttore - diodo
41 Laser a semiconduttore - diodo
42 Laser a semiconduttore - diodo
43 Laser a semiconduttore - diodo
44 Tipi di laser a semiconduttore Mezzo e tipo di amplificazione laser Diodo laser a semiconduttore (informazioni generiche) Lunghezza d'onda operativa µm, a seconda del materiale della regione attiva. Sorgente di pompaggio Usi e note Telecomunicazioni, olografia, stampa laser, armamenti, macchinari, saldatura, sorgenti di pompaggio per altri laser. GaN 0.4 µm Dischi ottici AlGaAs µm Dischi ottici, puntatori laser, comunicazioni dati. I laser da 780 nm per i lettori CD sono il tipo di laser più comune del mondo. Pompaggio di altri laser a stato solido, lavorazioni industriali, applicazioni mediche. InGaAsP µm Corrente elettrica Telecomunicazioni, pompaggio di altri laser a stato solido, lavorazioni industriali, applicazioni mediche. sali di piombo 3-20 µm Vertical cavity surface emitting laser (VCSEL) Laser a cascata quantica Laser ibridi al silicio nm, a seconda del materiale Dal medio al lontano infrarosso. Medio infrarosso Telecomunicazioni Ricerca, applicazioni future includono radar anticollisione, controllo di processi industriali e strumenti di diagnosi medica come analizzatori del fiato. Ricerca
45 Schema di principio di un LASER con colorante
46 Lunghezze d onda di emissione dei laser La più piccola lunghezza d onda utilizzata è emessa dal laser con eccimeri ArF (193 nm) Le più grandi lunghezze d onda vengono emesse dai laser rotazionali (decine e centinaia di m). L intervallo spettrale di emissione dei laser
47 ULTRAVIOLETTO Nd:YAG quinta armonica Nd:YAG quarta armonica Nd:YAG terza armonica Laser con emissione nell UV i laser più importanti nell UV sono il laser con eccimeri ArF (193 nm), KrCl (223 nm), XeBr (282), XeCl (308 nm), XeF (348 nm) ed il laser con N 2 (337 nm) implusati. λ min in emissione continua: He-Cd (325 nm).
48 continuo impulsato Laser con emissione nel visibile
49 elettroni Laser con emissione nell IR
IL LASER. Principio di funzionamento.
IL LASER Acronimo di Light Amplification by Stimulated Emission of Radiation (amplificazione di luce per mezzo di emissione stimolata di radiazione), è un amplificatore coerente di fotoni, cioè un dispositivo
= 103.8 10 2 5 = = 1
= = π 10 2 = 103.8 10 2 5 = = 1 π =3.2 10 3.810 = 1 5 π = µ = = π = = Industriali: taglio, saldatura, trattamenti di materiali, Misure di distanze e velocità, giroscopi laser Sensori, attuatori a distanza
Coerenza. Risonatori e struttura a modi
Laser L amplificazione (oscillazione) si ottiene facilmente a frequenze dell ordine di 10 10 Hz (microonde) mentre e più difficile da ottenere a frequenze ottiche 10 15 Hz, perché: ~ 3 Il livello superiore
Capitolo 4 Le spettroscopie. 1. Lo spettro elettromagnetico
Capitolo 4 Le spettroscopie 1. Lo spettro elettromagnetico 2) Tipi di spettroscopia Emissione: transizione da livello superiore a livello inferiore Assorbimento: contrario 2.1 Spettroscopie rotazionali,
Spettroscopia atomica
Spettroscopia atomica La spettroscopia atomica è una tecnica di indagine qualitativa e quantitativa, in cui una sostanza viene decomposta negli atomi che la costituiscono tramite una fiamma, un fornetto
EMISSIONE E ASSORBIMENTO DI LUCE DA PARTE DELLA MATERIA
EMISSIONE E ASSORBIMENTO DI LUCE DA PARTE DELLA MATERIA Poiché la luce è energia trasportata da oscillazioni del campo elettrico (fotoni) e la materia è fatta di particelle elettricamente cariche (atomi
Elettroerosione Macchina per elettroerosione
Elettroerosione 1 Macchina per elettroerosione 2 Politecnico di Torino 1 Il processo di elettroerosione Viene generato un campo elettrico tra elettrodo e pezzo Si forma un canale ionizzato tra elettrodo
Capitolo 7. Tipi di Laser. 7.1 Laser a cristalli ionici. 7.1.1 Laser a rubino
Capitolo 7 Tipi di Laser In questo capitolo vengono presentate le caratteristiche dei diversi tipi di laser. In realtà il numero di laser esistenti è di gran lunga superiore a quelli descritti, ma si è
SPETTROSCOPIA ATOMICA
SPETTROSCOPIA ATOMICA Corso di laurea in Tecnologie Alimentari La spettroscopia atomica studia l assorbimento, l emissione o la fluorescenza di atomi o di ioni metallici. Le regioni dello spettro interessate
Laboratorio 2B A.A. 2012/2013. 7 Ottica Fisica II. Assorbimento Sorgenti luminose LED Diodi laser. Lab 2B CdL Fisica
Laboratorio 2B A.A. 2012/2013 7 Ottica Fisica Assorbimento Sorgenti luminose LED Diodi laser Spettrofotometria: assorbimento ottico La spettroscopia può fornire informazioni sulla natura degli atomi. Esempio:
Úzoom in. di ANTONIO GIANNICO
in Úzoom in di ANTONIO GIANNICO I LASER È passato ormai mezzo secolo da quando Gordon Gould mise a punto il primo prototipo di laser. Da allora sono stati innumerevoli gli sviluppi di questi dispositivi
LASER è l acronimo di
LASER è l acronimo di ovvero: amplificazione luminosa per mezzo di emissione stimolata di radiazioni. LASER Il fenomeno fisico sul quale si base il suo funzionamento è quello dell'emissione stimolata,
Dispositivi optoelettronici (1)
Dispositivi optoelettronici (1) Sono dispositivi dove giocano un ruolo fondamentale sia le correnti elettriche che i fotoni, le particelle base della radiazione elettromagnetica. Le onde elettromagnetiche
Versione 1 Luglio 08 http://www.df.unipi.it/~fuso/dida. Laser a.a. 2007/08 Parte 6 Versione 1
Scuola di Dottorato t Leonardo da Vinci i a.a. 2007/08 LASER: CARATTERISTICHE, PRINCIPI FISICI, APPLICAZIONI Versione 1 Luglio 08 http://www.df.unipi.it/~fuso/dida Parte 6 Proprietà della luce laser, emissione
FONDAMENTI DI OPTOELETTRONICA (DM 270/04, III anno CdS in Ing. Elettronica e delle Telecomunicazioni)
FONDAMENTI DI OPTOELETTRONICA (DM 270/04, III anno CdS in Ing. Elettronica e delle Telecomunicazioni) Prof. Vittorio M. N. Passaro Photonics Research Group, Dipartimento di Ingegneria Elettrica e dell
Le sorgenti di radiazioni ottiche artificiali (ROA) non coerenti
Le sorgenti di radiazioni ottiche artificiali (ROA) non coerenti Dr. Riccardo Di Liberto Struttura Complessa di Fisica Sanitaria Fondazione IRCCS Policlinico San Matteo - Pavia Principali applicazioni
7.1 Laser a cristalli ionici o a stato solido
Capitolo 7 Tipi di Laser In questo capitolo vengono presentate le caratteristiche dei diversi tipi di laser. In realtà il numero di laser esistenti è di gran lunga superiore a quelli descritti, ma si è
Riccardo Di Liberto Struttura Complessa di Fisica Sanitaria Fondazione IRCCS Policlinico San Matteo -Pavia
Effetti biologici derivanti da dall interazione tra fasci laser utilizzati nelle applicazioni industriali ed il corpo umano Riccardo Di Liberto Struttura Complessa di Fisica Sanitaria Fondazione IRCCS
Il Laser in Odontoiatria e in fisioterapia
Il Laser in Odontoiatria e in fisioterapia I laser utilizzati nello studio Laser a Diodi 810 nm Creation Laser Er-Yag Fotona Fidelis Er III Cos è il Laser odontoiatrico? Laser è un acronimo per: L = Light
Pericoli e danni connessi alla presenza di luce blu
Pericoli e danni connessi alla presenza di luce blu Analisi e quan3ficazione delle emissioni da sorgen3 LASER nei luoghi di lavoro A.Tomaselli Università di Pavia 15-11- 2013 A.Tomaselli 1 Cos è un LASER?
COMPARAZIONE COSTI LAMPADE AI VAPORI DI MERCURIO AL ALTA PRESSIONE VS LED BAY ECOMAA
COMPARAZIONE COSTI LAMPADE AI VAPORI DI MERCURIO AL ALTA PRESSIONE VS LED BAY ECOMAA VANTAGGI E SVANTAGGI DELLE PRINCIPALI LAMPADE UTILIZZATE NELL ILLUMINAZIONE DI FABBRICATI NON RESIDENZIALI, FABBRICHE,
Laser. U.O. Fisica per le Tecnologie Biomediche. Dott.sa Daniela Ventura 1. Definizione. Radiazioni ottiche. Radiazioni ottiche
Definizione Laser Light Amplification by Stimulated Emission of Radiation Amplificazione della luce per emissione stimolata di radiazione Dott.sa Daniela Ventura 2 Radiazioni ottiche Radiazioni ottiche
Luce laser, fibre ottiche e telecomunicazioni
Luce laser, fibre ottiche e telecomunicazioni Guido Giuliani - Architettura Università di Pavia guido.giuliani@unipv.it Fotonica - Cos è? Scienza che utilizza radiazione elettromagnetica a frequenze ottiche
Spettrometria. Introduzione.
Spettrometria. Introduzione. Lo studio degli spettri di emissione e di assorbimento è stato sicuramente uno degli aspetti che hanno maggiormente contribuito alla crisi della meccanica classica a cavallo
Classificazione dei laser
Classificazione dei laser ATTENZIONE: i criteri di classificazione sono cambiati Classi introdotte nel 1993 Classi introdotte nel 2007 1 1 1M 2 2 3A 3B 2M 3R 3B 4 4 Che cos è la coerenza (spaziale):
Introduzione al corso Lab. di Fisica dei Laser I. Simone Cialdi
Introduzione al corso Lab. di Fisica dei Laser I Simone Cialdi Descrizione del corso di Lab. LASER Interazione radiazione materia Equazioni del laser Allineamento del laser, Pout=f(I) La cavità laser Modi
LA GIUNZIONE PN. Sulla base delle proprietà elettriche i materiali si classificano in: conduttori semiconduttori isolanti
LA GIUNZIONE PN Sulla base delle proprietà chimiche e della teoria di Bohr sulla struttura dell atomo (nucleo costituito da protoni e orbitali via via più esterni in cui si distribuiscono gli elettroni),
La legge di Lambert-Beer
La legge di Lambert-Beer In questa esperienza determinerete la concentrazione di una soluzione incognita di permanganato di potassio per via spettrofotometrica. Generalita La spettroscopia si occupa dell
Correnti e circuiti a corrente continua. La corrente elettrica
Correnti e circuiti a corrente continua La corrente elettrica Corrente elettrica: carica che fluisce attraverso la sezione di un conduttore in una unità di tempo Q t Q lim t 0 t ntensità di corrente media
Capitolo 3 Sorgenti artificiali di luce 3.1 Lampade ad incandescenza
Capitolo 3 Sorgenti artificiali di luce Il Sole è sicuramente la sorgente più comune e facilmente disponibile. In realtà però al giorno d oggi molte attività sono svolte sotto sorgenti artificiali di tipo
PROTEZIONE DEI LAVORATORI DAI RISCHI DI ESPOSIZIONE ALLE RADIAZIONI OTTICHE ARTIFICIALI
PROTEZIONE DEI LAVORATORI DAI RISCHI DI ESPOSIZIONE ALLE RADIAZIONI OTTICHE ARTIFICIALI LASER Dr.ssa L. Ferrero DEPOSITO AVOGADRO S.r.l. Centro di Radioprotezione LASER Acronimo di Light Amplification
Light Amplification by Stimulated Emission of Radiation
Laser? Light Amplification by Stimulated Emission of Radiation Produce un fascio coerente di radiazione ottica da una stimolazione elettronica, ionica, o transizione molecolare a più alti livelli energetici
TAGLIO E SALDATURA LASER
TAGLIO E SALDATURA LASER Ultimo aggiornamento: 18/9/08 Prof. Gino Dini Università di Pisa Lavorazioni tramite energia termica Laser Beam Machining (LBM) fotoni gas d apporto lente di focalizzazione pezzo
Fluorescenza IR di eccimeri Xe 2 in gas denso
Fluorescenza IR di eccimeri Xe 2 in gas denso A. F. Borghesani *,+ and G. Carugno + * Dipartimento di Fisica, Unità CNISM, Università di Padova + Istituto Nazionale di Fisica Nucleare, Sezione di Padova
RIVELAZIONE DELLE RADIAZIONI IONIZZANTI. Nelle tecniche di rivelazione delle radiazioni ionizzanti le grandezze da rivelare possono essere diverse:
RIVELAZIONE DELLE RADIAZIONI IONIZZANTI Nelle tecniche di rivelazione delle radiazioni ionizzanti le grandezze da rivelare possono essere diverse: -Fluenza di particelle -Fluenza di energia -Informazioni
Tecnologie di saldatura per fusione
La saldatura laser Tecnologie di saldatura per fusione saldatura ad arco (MIG, TIG, SAW, Plasma ecc.) saldatura a gas (ossiacetilenica, ossidrica ecc.) saldatura ad elettroscoria saldatura alluminotermica
Spettroscopia e spettrometria ottica. Francesco Nobili
Spettroscopia e spettrometria ottica Francesco Nobili SPETTROSCOPIA OTTICA Nelle tecniche spettroscopiche si analizza l intensità dell interazione radiazione-materia a varie lunghezze d onda Tale interazione
I.P.S.I.A. Di BOCCHIGLIERO. ---- Fotoemettitori e Fotorivelatori ---- Materia: Telecomunicazioni. prof. Ing. Zumpano Luigi. Filippelli Maria Fortunata
I..S.I.A. Di BOCCHIGLIERO a.s. 2010/2011 -classe III- Materia: Telecomunicazioni ---- Fotoemettitori e Fotorivelatori ---- alunna Filippelli Maria Fortunata prof. Ing. Zumpano Luigi Fotoemettitori e fotorivelatori
Spettroscopia FM con diodi laser per il monitoraggio atmosferico: applicazione al metano
ELETTROOTTICA 92 4 Diagnostica Ambientale Spettroscopia FM con diodi laser per il monitoraggio atmosferico: applicazione al metano A. Lucchesini, I. Longo, C. Gabbanini, S. Gozzini Istituto di Fisica Atomica
Laser Fabry-Perot Distributed Feedback Laser. Sorgenti ottiche. F. Poli. 22 aprile 2008. F. Poli Sorgenti ottiche
Sorgenti ottiche F. Poli 22 aprile 2008 Outline Laser Fabry-Perot 1 Laser Fabry-Perot 2 Laser Fabry-Perot Proprietà: sorgente maggiormente utilizzata per i sistemi di telecomunicazione in fibra ottica:
Genova 15 01 14 TIPOLOGIE DI LAMPADE
Genova 15 01 14 TIPOLOGIE DI LAMPADE Le lampade a vapori di mercurio sono sicuramente le sorgenti di radiazione UV più utilizzate nella disinfezione delle acque destinate al consumo umano in quanto offrono
Filtri per la saldatura e tecniche connesse requisiti di trasmissione e utilizzazioni raccomandate
allegato 3 - protezione personale degli occhi Allegato 3 (*) Si riportano di seguito le appendici delle norme UNI EN 169 (1993), UNI EN 170 (1993) e UNI EN 171 (1993) Protezione personale degli occhi (*)
UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FONDO SOCIALE EUROPEO - F.S.E.
UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FONDO SOCIALE EUROPEO F.S.E. Programma Operativo Nazionale 2000/2006 Ricerca Scientifica, Sviluppo Tecnologico, Alta Formazione Misura III.4 Formazione Superiore
Spettroscopia Raman. Trasmissione-assorbimento
Spettroscopia Raman Quando una radiazione monocromatica di frequenza n o e incidente ad un sistema molecolare la luce viene: assorbita se ha energia pari ad una possibile transizione ad un livello energetico
Versione 1 Luglio 08 http://www.df.unipi.it/~fuso/dida. Laser a.a. 2007/08 Parte 5 Versione 1
Scuola di Dottorato t Leonardo da Vinci i a.a. 2007/08 LASER: CARATTERISTICHE, PRINCIPI FISICI, APPLICAZIONI Versione 1 Luglio 08 http://www.df.unipi.it/~fuso/dida Parte 5 Cavità, perdite, gudagno ed oscillazione
Università degli Studi di Bologna
Università degli Studi di Bologna DIEM Dipartimento di Ingegneria delle Costruzioni Meccaniche Nucleari Aeronautiche e di Metallurgia Scuola di Dottorato in Ingegneria Industriale Corso di Dottorato in
Procedure di valutazione delle radiazioni ottiche: saldature ad arco, ecc. www.portaleagentifisici.it
Procedure di valutazione delle radiazioni ottiche: saldature ad arco, ecc. www.portaleagentifisici.it Uso industriale e sanitario delle ROA Saldatura e taglio di metalli con arco elettrico o laser Controlli
Modulo DISPOSITIVI DI SICUREZZA E RIVELAZIONE
Facoltà di Ingegneria Master in Sicurezza e Protezione Modulo DISPOSITIVI DI SICUREZZA E RIVELAZIONE IMPIANTI DI RIVELAZIONE INCENDI Docente Fabio Garzia Ingegneria della Sicurezza w3.uniroma1.it/sicurezza
SUPERLUMINESCENT DIODES (SLDs)
SUPERLUMINESCENT DIODES (SLDs) Emission spectra and L-I characteristics Capitolo 3 Applicazioni degli SLED. I LED superluminescenti vengono utilizzati in varie applicazioni in cui è richiesta una
DECRETO LEGISLATIVO 81/08 Agenti fisici Radiazioni Ottiche Artificiali LASER
Dipartimento di Sanità Pubblica U.O. Prevenzione e Sicurezza Ambienti di Lavoro DECRETO LEGISLATIVO 81/08 Agenti fisici Radiazioni Ottiche Artificiali LASER Alessandra Pompini COSA SONO I LASER? Cioè:
LA LAMPADA A CATODO FREDDO, UNIVERSO QUASI SCONOSCIUTO.
LA LAMPADA A CATODO FREDDO, UNIVERSO QUASI SCONOSCIUTO. Spesso ricerchiamo una soluzione illuminotecnica a basso costo, il più delle volte spinti da fretta, da scarsità di informazioni, da sottovalutazione
Lo schema a blocchi di uno spettrofotometro
Prof.ssa Grazia Maria La Torre è il seguente: Lo schema a blocchi di uno spettrofotometro SORGENTE SISTEMA DISPERSIVO CELLA PORTACAMPIONI RIVELATORE REGISTRATORE LA SORGENTE delle radiazioni elettromagnetiche
Tesi: Sistemi laser hi-tech per chirurgia urologica
Università degli Studi di Padova, Facoltà di Ingegneria Corso di Laurea Triennale in Ingegneria Biomedica ANNO ACCADEMICO 2010/2011 Tesi: Sistemi laser hi-tech per chirurgia urologica Relatore: Prof.ssa
CAPITOLO 2 : I laser a gas
CAPITOLO : I laser a gas I laser a gas costituiscono la categoria più ricca e quella che consente di ottenere il più vasto campo di prestazioni. Essi si suddividono a loro volta in più categorie, di seguito
RIDUZIONE DELLE CLOROAMMINE IN PISCINA TRAMITE RAGGI ULTRAVIOLETTI
RIDUZIONE DELLE CLOROAMMINE IN PISCINA TRAMITE RAGGI ULTRAVIOLETTI Autore: Andrea Peluso INTRODUZIONE: La riduzione delle cloroammine in piscina tramite l utilizzo di raggi ultravioletti è una pratica
Casi pratici di calcolo dei DPI. Vincenzo Salamone A.O.U. Policlinico-V. Emanuele Catania
Casi pratici di calcolo dei DPI Vincenzo Salamone A.O.U. Policlinico-V. Emanuele Catania Cause degli incidenti: Occhiali protettivi non utilizzati (anche se disponibili) Uso di occhiali non adatti o difettosi
Servizio di Terapia Strumentale Cinesiologia - Riabilitazione
Servizio di Terapia Strumentale Cinesiologia - Riabilitazione Istituto di Medicina dello Sport CONI - F.M.S.I Centro Interuniversitario di Studi e Ricerche in Medicina dello Sport Sede di Bologna PULSED
Dipartimento di Scienze Fisiche, Informatiche e Matematiche. Physics Class 2015. Rossella Brunetti. Brunetti
Dipartimento di Scienze Fisiche, Informatiche e Matematiche Physics Class 2015 Rossella monocromatica fortemente collimata (nella stessa direzione) con piccola divergenza elevata intensità liberata in
SALDATURA LASER DI MATERIALI DISSIMILI. Prof. Alessandro Fortunato DIN-Università di Bologna
SALDATURA LASER DI MATERIALI DISSIMILI Prof. Alessandro Fortunato DIN-Università di Bologna DIN Il Dipartimento di Ingegneria Industriale svolge le funzioni relative alla ricerca scientifica e alle attività
PREPARAZIONE E CARATTERIZZAZIONE DEI VETRI COLORATI
PREPARAZIONE E CARATTERIZZAZIONE DEI VETRI COLORATI Cos è un vetro? COS È UN VETRO? SOLIDO? LIQUIDO? ALTRO? GLI STATI DELLA MATERIA Volume specifico Liquido Vetro Tg CAMBIAMENTO DI VOLUME Tf Tf =TEMPERATURA
Introduzione alle tecniche spettroscopiche e all interazione radiazione/materia. Francesco Nobili
Introduzione alle tecniche spettroscopiche e all interazione radiazione/materia Francesco Nobili TECNICHE SPETTROSCOPICHE Le tecniche spettroscopiche sono tecniche analitiche basate sull interazione tra
Polimeri semiconduttori negli OLED
Polimeri semiconduttori negli OLED Nella figura viene mostrato uno schema di funzionamento di un Organic Light Emitting Diode (OLED). Il catodo e formato da un elettrodo di Alluminio (Magnesio o Calcio)
SPETTROSCOPIA MOLECOLARE
SPETTROSCOPIA MOLECOLARE La spettroscopia molecolare studia l assorbimento o l emissione delle radiazioni elettromagnetiche da parte delle molecole. Il dato sperimentale che si ottiene, chiamato rispettivamente
XRF SEM Micro-Raman. Fluorescenza a raggi X (XRF) S4 Pioneer - Bruker. Analisi elementale qualitativa e quantitativa
XRF SEM Micro-Raman Fluorescenza a raggi X (XRF) S4 Pioneer - Bruker Analisi elementale qualitativa e quantitativa Non distruttiva Campioni solidi, liquidi o in polvere Multielementale Veloce Limite di
Charles H. Townes. Arthur L. Shawlow. laser. Introduzione (lez 17, 1h 4 20 ) Note storiche :
laser Introduzione (lez 17, 1h 4 20 ) Note storiche : la prima idea dell inversione di popolazione e dell emissione stimolata fu di Townes, e di Basov, nel 54 La prima realizzazione di un maser fu stesso
Diffrazione da reticolo: un CD come Spettroscopio
Diffrazione da reticolo: un CD come Spettroscopio 1 -Argomento Esperimenti con uno spettroscopio realizzato con materiali a costo nullo o basso o di riciclo. Cosa serve - un vecchio CD, - una scatola di
Teoria dell immagine
Archivi fotografici: gestione e conservazione Teoria dell immagine Elementi di base: la luce, l interazione tra luce e materia, il colore Mauro Missori Cos è la fotografia? La fotografia classica è un
Correnti e circuiti a corrente continua. La corrente elettrica
Correnti e circuiti a corrente continua La corrente elettrica Corrente elettrica: carica che fluisce attraverso la sezione di un conduttore in una unità di tempo Q t Q lim t 0 t ntensità di corrente media
INTRODUZIONE: PERDITE IN FIBRA OTTICA
INTRODUZIONE: PERDITE IN FIBRA OTTICA Il nucleo (o core ) di una fibra ottica è costituito da vetro ad elevatissima purezza, dal momento che la luce deve attraversare migliaia di metri di vetro del nucleo.
LASER e tecnologie fotoniche
LASER e tecnologie fotoniche Nicolò Spagnolo, Fabio Sciarrino Università di Roma La Sapienza http://quantumoptics.phys.uniroma1.it http://www.3dquest.eu Che significa LASER? Acronimo: Light Amplification
LAVORAZIONI MEDIANTE LASER
LAVORAZIONI MEDIANTE LASER Light Ampliication by the Stimulated Emission o Radiation arte II 1 Caratteristiche del ascio roilo temporale L emissione nel tempo può essere: Continua (Continuous Wave - CW):
L analisi della luce degli astri: fotometria e spettrometria
Università del Salento Progetto Lauree Scientifiche Attività formativa Modulo 1 L analisi della luce degli astri: fotometria e spettrometria Vincenzo Orofino Gruppo di Astrofisica LA LUCE Natura della
LEZIONE 2 ( Interazione delle particelle con la materia)
LEZIONE 2 ( Interazione delle particelle con la materia) INTERAZIONE DELLE RADIAZIONI FOTONICHE La materia viene ionizzata prevalentemente ad opera degli elettroni secondari prodotti a seguito di una interazione
1 - Tipologie di lampade per l illuminazione artificiale
Marraffa Orazio, matr. 263439 Mesto Emanuele, matr. 257491 Lezione dell 11/05/2016, ore 10:30 / 13:30 INDICE: 1. Tipologie di lampade per l illuminazione artificiale 2. Apparecchi per la diffusione luminosa
P. Sapia Università della Calabria. a.a. 2009/10
FISICA PER I BENI CULTURALI I - ONDE E RADIAZIONE P. Sapia Università della Calabria a.a. 2009/10 CONTENUTI DEL CORSO a) Cenni sulla natura e proprietà delle onde elettromagnetiche b) Elementi di struttura
vi dipende dalla composizione del mezzo che attraversa
LA SPETTROSCOPIA Le tecniche spettroscopiche si basano sull assorbimento o sulla emissione di una radiazione elettromagnetica da parte di un atomo o di una molecola La radiazione elettromagnetica è una
OTTICA E LABORATORIO
Programma di OTTICA E LABORATORIO Anno Scolastico 2014-2015 Classe V P indirizzo OTTICO Prof. GIUSEPPE CORSINO Programma di OTTICA E LABORATORIO Anno Scolastico 2014-2015 Classe V P indirizzo OTTICO Prof.
DESCRIZIONE DI ALCUNI OSCILLATORI LASER
DESCRIZIONE DI ALCUNI OSCILLATORI LASER Considerazioni sull'efficienza dei laser Si prenda in considerazione il sistema amplificatore più efficiente, ossia quello a quattro livelli. Osservando la posizione
Una sorgente luminosa artificiale è generalmente costituita da due parti:
Illuminotecnica Sorgenti luminose artificiali Definizioni Una sorgente luminosa artificiale è generalmente costituita da due parti: La lampada L apparecchio illuminante Le lampade, preposte alla conversione
Termologia. Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti
Termologia Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti Trasmissione del calore Legge di Wien Legge di Stefan-Boltzmann Gas
Righe d assorbimento dell ossigeno molecolare nella banda atmosferica A
IPCF CNR - Laboratori di Fisica A. Gozzini Righe d assorbimento dell ossigeno molecolare nella banda atmosferica A Introduzione I laser a semiconduttore sono divenuti le sorgenti più economiche e più facilmente
Misura delle proprietà di trasmissione e assorbimento della luce da parte dei materiali mediante spettrofotometro
Misura delle proprietà di trasmissione e assorbimento della luce da parte dei materiali mediante spettrofotometro Apparato sperimentale: Spettrofotometro digitale SPID HR (U21830) con software di acquisizione,
Sensori di grandezze Fisiche e Meccaniche
Sensori di grandezze Fisiche e Meccaniche FISICHE Pressione Portata Livello Temperatura MECCANICHE Posizione e spostamento Velocità e accelerazione Vibrazioni e suono/rumore (per approfondimenti) 1 Sensori
La fisica di Feynmann Termodinamica
La fisica di Feynmann Termodinamica 3.1 TEORIA CINETICA Teoria cinetica dei gas Pressione Lavoro per comprimere un gas Compressione adiabatica Compressione della radiazione Temperatura Energia cinetica
Paleontologia. Archeologia. Radioisotopi. Industria. Biologia. Medicina
Paleontologia Industria Radioisotopi Archeologia Medicina Biologia I radioisotopi I radioisotopi (o radionuclidi), sono dei nuclidi instabili che decadono emettendo energia sottoforma di radiazioni, da
NOTE TECNICHE DI LABORATORIO
NOTE TECNICHE DI LABORATORIO 1. NORME DI RIFERIMENTO La determinazione dell indice di rilascio è definita dalla seguente norma: D.M. 14 maggio 1996 Normative e metodologie tecniche per gli interventi di
PREPARAZIONE E CARATTERIZZAZIONE DEI VETRI COLORATI
PREPARAZIONE E CARATTERIZZAZIONE DEI VETRI COLORATI DEFINIZIONE DI VETRO LO STATO VETROSO È QUELLO DI UN SOLIDO BLOCCATO NELLA STRUTTURA DISORDINATA DI UN LIQUIDO (FASE AMORFA) SOLIDO:ORDINE A LUNGO RAGGIO
Da Newton a Planck. La struttura dell atomo. Da Newton a Planck. Da Newton a Planck. Meccanica classica (Newton): insieme
Da Newton a Planck Meccanica classica (Newton): insieme La struttura dell atomo di leggi che spiegano il mondo fisico fino alla fine del XIX secolo Prof.ssa Silvia Recchia Quantomeccanica (Planck): insieme
LA TRACCIABILITÀ DIVENTA TOTALE
MARCATURA LA TRACCIABILITÀ DIVENTA TOTALE GRANDANGOLO Nelle moderne produzioni industriali diventa sempre più necessaria l esigenza di marcare i prodotti in modo permanente, associandovi una serie di informazioni
Valutazione e protezione dei rischi delle Radiazioni Ottiche Artificiali. Rischio laser in ambito medicale
Valutazione e protezione dei rischi delle Radiazioni Ottiche Artificiali Rischio laser in ambito medicale DLgs 81/2008 titolo VIII, capo V Indicazioni operative ISPESL www.ispesl.it Michele Saba Dipartimento
RELAZIONE TECNICA DESCRITTIVA
LANZONI s.r.l. Via Michelino, 93/B--40127 BOLOGNA, tel. 051-504810/501334-fax 051-6331892 http://www.lanzoni.it e-mail: lanzoni@lanzoni.it LASER LIMAX RELAZIONE TECNICA DESCRITTIVA Campi di applicazione
Applicazioni dei laser
Capitolo 8 Applicazioni dei laser I laser trovano applicazione in svariati campi della scienza e della tecnica, dalla Fisica, alla Chimica, alla Biologia, all Elettronica ed alle tecnologie. Un quadro
Energenia sponsorizza eventi a favore della bioagricoltura e dello sport per ragazzi
Energenia sponsorizza eventi a favore della bioagricoltura e dello sport per ragazzi Via Positano 21, 70014 Conversano (BA) Tel.080 2141618 Fax 080 4952302 WWW.ENERGENIA.NET www.energenia.net 1 EDUCARSI
Unità di misura e formule utili
Unità di misura e formule utili Lezione 7 Unità di misura Il Sistema Internazionale di unità di misura (SI) nasce dall'esigenza di utilizzare comuni unità di misura per la quantificazione e la misura delle
LA MATERIA MATERIA. COMPOSIZIONE (struttura) Atomi che la compongono
LA MATERIA 1 MATERIA PROPRIETÀ (caratteristiche) COMPOSIZIONE (struttura) FENOMENI (trasformazioni) Stati di aggregazione Solido Liquido Aeriforme Atomi che la compongono CHIMICI Dopo la trasformazione
APPLICAZIONI INDUSTRIALI DEL PLASMA
APPLICAZIONI INDUSTRIALI DEL PLASMA Caratteristiche che rendono il plasma utile per applicazioni industriali: ² È caratterizzato da un ampio range di densità di potenza/energia (plasmi termici in archi
Prove di Accettazione e Controlli periodici delle apparecchiature laser
Prove di Accettazione e Controlli periodici delle apparecchiature laser Andrea Guasti U.O.C. Fisica Sanitaria Azienda Ospedaliera Universitaria Senese 4 set 01 c I controlli di qualità comprendono
Spettrofotometria. Le onde luminose consistono in campi magnetici e campi elettrici oscillanti, fra loro perpendicolari.
Spettrofotometria. Con questo termine si intende l utilizzo della luce nella misura delle concentrazioni chimiche. Per affrontare questo argomento dovremo conoscere: Natura e proprietà della luce. Cosa
C V. gas monoatomici 3 R/2 5 R/2 gas biatomici 5 R/2 7 R/2 gas pluriatomici 6 R/2 8 R/2
46 Tonzig La fisica del calore o 6 R/2 rispettivamente per i gas a molecola monoatomica, biatomica e pluriatomica. Per un gas perfetto, il calore molare a pressione costante si ottiene dal precedente aggiungendo
Introduzione alla SPETTROMETRIA IN ASSORBIMENTO ATOMICO SPETTROMETRIA PLASMA MASSA CROMATOGRAFIA IONICA
Introduzione alla SPETTROMETRIA IN ASSORBIMENTO ATOMICO SPETTROMETRIA PLASMA MASSA CROMATOGRAFIA IONICA www.sdasr.unict.it/materiale/lab_geoch_lezione8.ppt venus.unive.it/matdid.php?utente=capoda&base...ppt...