Cinematica dei robot

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Cinematica dei robot"

Transcript

1 Corso di Robotica 1 Cinematica dei robot Prof. Alessandro De Luca Robotica 1 1

2 Cinematica dei robot manipolatori Studio degli aspetti geometrici e temporali del moto delle strutture robotiche, senza riferimento alle cause che lo provocano Robot visto come catena cinematica (aperta) di corpi rigidi connessi da giunti (prismatici o rotanti) Robotica 1 2

3 specifiche funzionali Motivazioni determinazione dello spazio di lavoro (workspace) calibrazione specifiche operative modalità di esecuzione (attuazione) del compito definizione del compito e sua valutazione in due spazi diversi connessi da legami cinematici/dinamici pianificazione delle traiettorie programmazione schemi di controllo Robotica 1 3

4 Cinematica: formulazione e parametrizzazione spazio dei GIUNTI r = f(q) DIRETTA INVERSA spazio CARTESIANO (dell end-effector) q = (q 1,,q n ) q = f -1 (r) r = (r 1,,r m ) scelta della parametrizzazione q caratterizza in modo univoco e minimale la particolare configurazione del robot n = # gradi di libertà (dof) = # giunti (rotatori o traslatori) del robot scelta della parametrizzazione r caratterizza in modo compatto le componenti di posizione e/o orientamento di interesse per il compito (task) m 6, e solitamente m n (ma non è necessario) Robotica 1 4

5 Catene cinematiche aperte q 2 q n SR E q 1 q 3 q 4 ad es., angolo relativo fra un braccio e il successivo r = (r 1,,r m ) descrivono posizione e/o orientamento del riferimento SR E m = 2 m = 3 puntamento nello spazio posizionamento nel piano orientamento nello spazio posizionamento e orientamento nel piano Robotica 1 5

6 Classificazione tipi cinematici (primi 3 gradi di libertà) SCARA (RRP) cartesiano o a portale (PPP) cilindrico (RPP) polare o sferico (RRP) articolato o antropomorfo (RRR) P = giunto ad 1 dof prismatico (traslatorio) R = giunto ad 1 dof rotatorio Robotica 1 6

7 Cinematica diretta La struttura della funzione cinematica diretta dipende dalla scelta di r r = f r (q) Metodi per ricavare f r (q) geometrico/per ispezione sistematico: assegnando SR solidali con i bracci del robot e usando matrici di trasformazione omogenea Robotica 1 7

8 y Esempio: cinematica diretta 2R l 1 l 2 q 1 q 2 P φ p q = q 1 y p x x r = q 2 p x p y φ p x = l 1 cos q 1 + l 2 cos(q 1 +q 2 ) p y = l 1 sin q 1 + l 2 sin(q 1 +q 2 ) φ = q 1 + q 2 in casi più generali occorre un metodo! n = 2 m = 3 Robotica 1 8

9 Numerazione bracci/giunti giunto 1 braccio 0 (base) braccio 1 giunto 2 giunto i-1 braccio i-1 giunto i giunto i+1 braccio i giunto n braccio n (end effector) Robotica 1 9

10 Relazioni tra assi di giunto asse giunto i asse giunto i+1 90 A α i π 90 B normale comune (asse del braccio i) a i = distanza AB (sempre univocamente definita) α i = angolo di twist tra gli assi di giunto [proiettati sul piano π normale all asse di braccio] con segno (pos/neg)! Robotica 1 10

11 Relazioni tra assi di braccio braccio i-1 asse giunto i braccio i D C asse braccio i-1 θ i σ asse braccio i d i = CD (distanza variabile se giunto i è prismatico) θ i = angolo (variabile se giunto i è rotatorio) tra gli assi dei bracci [proiettati sul piano σ normale all asse di giunto] con segno (pos/neg)! Robotica 1 11

12 Assegnazione SR secondo Denavit-Hartenberg asse giunto i-1 braccio i-1 asse giunto i braccio i asse giunto i+1 a i z i α i d i z i-1 x i-1 O i x i θ i O i-1 asse intorno al quale il giunto ruota o lungo il quale il giunto trasla normale comune agli assi di giunto i ed i+1 Robotica 1 12

13 asse giunto i-1 Parametri di Denavit-Hartenberg braccio i-1 asse giunto i D braccio i a i asse giunto i+1 z i α i d i z i-1 x i-1 O i x i θ i O i-1 asse z i lungo l asse di giunto i+1 asse x i lungo la normale comune agli assi di giunto i e i+1 (verso: i i+1) a i = distanza DO i orientata con x i (costante = lunghezza braccio i) d i = distanza O i-1 D orientata con z i-1 (variabile se giunto i PRISMATICO) α i = angolo di twist tra z i-1 e z i intorno a x i (costante) θ i = angolo tra x i-1 e x i intorno a z i-i (variabile se giunto i ROTATORIO) Robotica 1 13

14 Ambiguità nella definizione dei SR per SR 0 : origine e asse x 0 sono arbitrari per SR n : l asse z n non è determinato (ma x n deve essere incidente e ortogonale a z n-1 ) quando z i-1 e z i sono paralleli, la normale comune non è univocamente determinata (O i può essere scelto arbitrariamente su z i ) quando z i-1 e z i sono incidenti, il verso di x i è arbitrario (spesso però x i = z i-1 z i ) Robotica 1 14

15 Trasformazione omogenea da SR i-1 a SR i rototraslazione intorno e lungo z i-1 cθ i -sθ i sθ i cθ i i-1 A i (q i ) = d = i cθ i -sθ i 0 0 sθ i cθ i d i giunto rotatorio q i = θ i giunto prismatico q i = d i rototraslazione intorno e lungo x i i A i = a i 0 cα i -sα i 0 0 sα i cα i costante nel tempo Robotica 1 15

16 Matrice di Denavit-Hartenberg i-1 A i (q i ) = i-1 A i (q i ) i A i = cθ i -cα i sθ i sα i sθ i a i cθ i sθ i cα i cθ i -sα i cθ i a i sθ i 0 sα i cα i d i notazione compatta: c = cos, s = sin Robotica 1 16

17 Cinematica diretta di manipolatori descrizione interna al robot z 0 tramite: prodotto 0 A 1 (q 1 ) 1 A 2 (q 2 ) n-1 A n (q n ) q=(q 1,,q n ) y E x E z E scorrimento s approccio a normale n SR B y 0 x 0 B T E = B T 0 0 A 1 (q 1 ) 1 A 2 (q 2 ) n-1 A n (q n ) n T E r = f r (q) descrizione esterna tramite r = (r 1,,r m ) B T E = R p = n s a p descrizioni alternative della cinematica diretta Robotica 1 17

18 Esempio: robot SCARA q 3 q 2 q 1 q 4 Robotica 1 18

19 Passo 1: assi di giunto tutti paralleli (o coincidenti) twists α i = 0 oppure π J1 spalla J2 gomito J3 prismatico J4 rotatorio Robotica 1 19

20 Passo 2: assi di braccio le quote verticali degli assi dei bracci sono (per ora) arbitrarie a 1 a 2 a 3 = 0 Robotica 1 20

21 Passo 3: terne z 1 assi y i non riportati (non servono; completano terne destre) z 0 x z 2 = z 3 1 x 2 x 3 x 4 z 4 = asse a (di approccio) x 0 y 0 Robotica 1 21

22 Passo 4: tabella di DH i α i a i d i θ i z 1 x z 2 = z a 1 d 1 q a 2 0 q 2 x 4 x 2 x q π 0 d 4 q 4 z 0 z 4 x 0 y 0 N.B. d 1 e d 4 si potevano scegliere = 0! inoltre qui d 4 < 0!! Robotica 1 22

23 Passo 5: calcolo trasformazioni 0 A 1 (q 1 )= 1 A 2 (q 2 )= cθ 1 - sθ 1 0 a 1 cθ 1 sθ 1 cθ 1 0 a 1 sθ d cθ 2 - sθ 2 0 a 2 cθ 2 sθ 2 cθ 2 0 a 2 sθ q = (q 1, q 2, q 3, q 4 ) = (θ 1, θ 2, d 3, θ 4 ) 2 A 3 (q 3 )= 3 A 4 (q 4 )= d cθ 4 sθ sθ 4 -cθ d 4 1 Robotica 1 23

24 Passo 6: cinematica diretta 0 A 3 (q 1,q 2,q 3 )= 3 A 4 (q 4 )= R(q 1,q 2,q 4 )=[ n s a ] 0 A 4 (q 1,q 2,q 3,q 4 )= c 12 -s 12 0 a 1 c 1 + a 2 c 12 s 12 c 12 0 a 1 s 1 + a 2 s d 1 +q 3 1 c 4 s s 4 -c d 4 1 c 124 s a 1 c 1 + a 2 c 12 s 124 -c a 1 s 1 + a 2 s d 1 +q 3 +d p = p(q 1,q 2,q 3 ) Robotica 1 24

25 Esercizio: Stanford manipulator 6 dofs: 2R-1P-3R (polso sferico) offset di spalla è mostrata una possibile assegnazione di terne di D-H determinare tabella dei parametri di D-H matrici di trasformazione omogenea cinematica diretta scrivere un programma per la cinematica diretta numerico (Matlab) simbolico (SM toolbox Matlab, Maple, Mathematica, etc.) Robotica 1 25

26 Tabella di DH per lo Stanford manipulator 6 dofs: 2R-1P-3R (polso sferico) i i a i d i i 1 -π/2 0 d 1 >0 q 1 =0 2 π/2 0 d 2 >0 q 2 = q 3 >0 -π/2 4 -π/2 0 0 q 4 =0 5 π/2 0 0 q 5 =-π/ d 6 >0 q 6 =0 le variabili di giunto sono in rosso: è il riportato il loro valore corrente nella configurazione mostrata Robotica 1 26

27 Esercizio: KUKA KR5 Sixx R650 6R (offsets sia di spalla che di gomito, polso sferico) determinare terne e tabella dei parametri di D-H matrici di trasformazione omogenea cinematica diretta disponibile nel Laboratorio di Robotica del DIS Robotica 1 27

di manipolatori seriali

di manipolatori seriali Cinematica i diretta ed inversa di manipolatori seriali Robotica I Marco Gabiccini AA A.A. 2009/2010 LS Ing. Meccanica ed Automazione Struttura meccanica Struttura meccanica costituita da insieme di: corpi

Dettagli

Corso di Percezione Robotica Modulo B. Fondamenti di Robotica

Corso di Percezione Robotica Modulo B. Fondamenti di Robotica Corso di Percezione Robotica Modulo B. Fondamenti di Robotica Fondamenti di meccanica e cinematica dei robot Cecilia Laschi cecilia.laschi@sssup.it Modulo B. Fondamenti di Robotica Fondamenti di meccanica

Dettagli

Corso di Robotica 1 Cinematica inversa

Corso di Robotica 1 Cinematica inversa Corso di Robotica 1 Cinematica inversa Prof. Alessandro De Luca Robotica 1 1 Problema cinematico inverso data una posa (posizione + orientamento) dell end-effector determinare l insieme di valori delle

Dettagli

Meccanica dei Manipolatori. Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo

Meccanica dei Manipolatori. Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo Meccanica dei Manipoatori Corso di Robotica Prof. Davide Brugai Università degi Studi di Bergamo Definizione di robot industriae Un robot industriae è un manipoatore mutifunzionae riprogrammabie, comandato

Dettagli

Spazio dei giunti e spazio operativo

Spazio dei giunti e spazio operativo CINEMATICA relazioni tra posizioni dei giunti e posizione e orientamento dell organo terminale Matrice di rotazione Rappresentazioni dell orientamento Trasformazioni omogenee Cinematica diretta Spazio

Dettagli

Robotica I. Test 11 Novembre 2009

Robotica I. Test 11 Novembre 2009 Esercizio 1 Robotica I Test 11 Novembre 009 Si consideri una rappresentazione minimale dell orientamento data dalla seguente sequenza di angoli definiti rispetto a assi fissi: α intorno a Y ; β intorno

Dettagli

Prova Scritta di Robotica I

Prova Scritta di Robotica I Esercizio 1 Prova Scritta di Robotica I 8 Gennaio 4 Il robot planare in figura è costituito da due giunti rotatori ed uno prismatico. L P Assegnare le terne di riferimento secondo la convenzione di Denavit-Hartenberg,

Dettagli

Corso di Percezione Robotica (PRo) Modulo B. Fondamenti di Robotica

Corso di Percezione Robotica (PRo) Modulo B. Fondamenti di Robotica Corso di Percezione Robotica (PRo) Modulo B. Fondamenti di Robotica Fondamenti di meccanica e cinematica dei robot Cecilia Laschi cecilia.laschi@sssup.it Modulo B. Fondamenti di Robotica Fondamenti di

Dettagli

I.I.S.S. G. Marconi Bari. Istituto Tecnico settore Tecnologico :: Liceo Scientifico opzione Scienze applicate. Il Robot a scuola

I.I.S.S. G. Marconi Bari. Istituto Tecnico settore Tecnologico :: Liceo Scientifico opzione Scienze applicate. Il Robot a scuola Il Robot a scuola Un approfondimento sui Robot industriali Classificazione dei Robot industriali Classificazione Cinematica Funzionale Operativa Dinamica Sensoriale Criterio Caratteristiche geometriche

Dettagli

I sistemi manifatturieri

I sistemi manifatturieri Sistemi di produzione discreti Sistemi manifatturieri Sistemi di Sistemi di movimentazione Robot industriali I sistemi manifatturieri I sistemi manifatturieri sono impianti dedicati alla lavorazione e

Dettagli

Spazio dei giunti e spazio operativo

Spazio dei giunti e spazio operativo CINEMATICA relazioni tra posizioni dei giunti e posizione e orientamento dell organo terminale Matrice di rotazione Rappresentazioni dell orientamento Trasformazioni omogenee Cinematica diretta Spazio

Dettagli

Rappresentazioni in 3D. Vettori: rappresentano punti e/o segmenti orientati

Rappresentazioni in 3D. Vettori: rappresentano punti e/o segmenti orientati Rappresentazioni in 3D Leggere Cap. 2 del libro di testo Sistemi di riferimento Caratterizzano i corpi rigidi Vettori: rappresentano punti e/o segmenti orientati Operazioni vettoriali: somma, prodotto

Dettagli

Cinematica differenziale

Cinematica differenziale Corso di Robotica 1 Cinematica differenziale Prof Alessandro De Luca Robotica 1 1 Cinematica differenziale studio dei legami tra moto (velocità) nello spazio dei giunti e moto (velocità lineare e angolare)

Dettagli

Prova Scritta di Robotica I

Prova Scritta di Robotica I Prova Scritta di Robotica I 0 Luglio 2009 Esercizio Si consideri il robot planare RP in figura, dove l è la lunghezza del primo braccio e sono indicate le coordinate generalizzate da utilizzare. Sia p

Dettagli

4 Cinematica diretta dei robot

4 Cinematica diretta dei robot 4 Cinematica diretta dei robot In questa sezione verrà fornito un metodo costruttivo per caratterizzare la posizione del punto terminale di un manipolatore (detto anche effettore) in base alla posizione

Dettagli

Robotica I. Test 2 18 Dicembre 2009

Robotica I. Test 2 18 Dicembre 2009 Robotica I Test 8 Dicembre 9 Si consideri il robot con quattro giunti rotatori in Figura. Le terne di Denavit-Hartenberg sono già assegnate, con la terna posta all intersezione tra primo e secondo asse

Dettagli

Rappresentazioni in 3D. Fare riferimento al cap. 2 del libro di testo Sistemi di riferimento Vettori: rappresentano punti e/o segmenti orientati

Rappresentazioni in 3D. Fare riferimento al cap. 2 del libro di testo Sistemi di riferimento Vettori: rappresentano punti e/o segmenti orientati Rappresentazioni in 3D Fare riferimento al cap. 2 del libro di testo Sistemi di riferimento Vettori: rappresentano punti e/o segmenti orientati Operazioni vettoriali: somma, prodotto scalare, prodotto

Dettagli

università DEGLI STUDI DI NAPOLI FEDERICO II

università DEGLI STUDI DI NAPOLI FEDERICO II università DEGLI STUDI DI NAPOLI FEDERICO II Facoltà di INGEGNERIA Registro delle Lezioni del Corso di CONTROLLO DEI ROBOT Dettate dal Prof. Bruno SICILIANO nell Anno Accademico 2006-2007 Visto: IL PRESIDE

Dettagli

Robotica: Errata corrige

Robotica: Errata corrige Robotica: Errata corrige Capitolo 1: Introduzione pag. 13: Nella nota 2, la frase Il dispositivo che ripartisce adeguatamente la velocità è il differenziale. va modificata come segue: Il dispositivo che

Dettagli

Cinematica. La cinematica riguarda lo studio delle 4 funzioni che legano le variabili giunto con le variabili cartesiane

Cinematica. La cinematica riguarda lo studio delle 4 funzioni che legano le variabili giunto con le variabili cartesiane Cinematica La cinematica riguarda lo studio delle 4 funzioni che legano le variabili giunto con le variabili cartesiane Cinematica diretta di posizione Cinematica inversa di posizione Cinematica diretta

Dettagli

Prova Scritta di Robotica I

Prova Scritta di Robotica I Prova Scritta di Robotica I 7 Gennaio 8 Esercizio Si consideri il robot planare a tre giunti rotatori nella configurazione mostrata in figura Le lunghezze dei bracci sono l 5, l, l 3 5 [m] Si determini

Dettagli

Inversione della cinematica differenziale

Inversione della cinematica differenziale CINEMATICA DIFFERENZIALE relazioni tra velocità dei giunti e velocità dell organo terminale Jacobiano geometrico Jacobiano analitico Singolarità cinematiche Analisi della ridondanza Inversione della cinematica

Dettagli

SISTEMI DI CONTROLLO CINEMATICA E DINAMICA DEI ROBOT

SISTEMI DI CONTROLLO CINEMATICA E DINAMICA DEI ROBOT SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccanica e del Veicolo SISTEMI DI CONTROLLO CINEMATICA E DINAMICA DEI ROBOT Ing. Cristian Secchi Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

Robotica - 01CFIDV, 02CFICY docente: prof. Basilio BONA tel. 7023

Robotica - 01CFIDV, 02CFICY docente: prof. Basilio BONA tel. 7023 001/1 Robotica - 01CFIDV, 02CFICY docente: prof. Basilio BONA tel. 7023 basilio.bona@polito.it www.ladispe.polito.it/meccatronica/01cfi/ 001/2 Quando pensiamo ai robot pensiamo a (1) Metropolis (1927)

Dettagli

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II Facoltà di INGEGNERIA Registro delle Lezioni del Corso di CONTROLLO DEI ROBOT Corso di Laurea Specialistica di Ingegneria dell Automazione Dettate dal Prof.

Dettagli

Robotica - 01CFIDV, 02CFICY docente: prof. Basilio BONA tel. 7023

Robotica - 01CFIDV, 02CFICY docente: prof. Basilio BONA tel. 7023 Robotica - 01CFIDV, 02CFICY docente: prof. Basilio BONA tel. 7023 basilio.bona@polito.it www.ladispe.polito.it/meccatronica/01cfi/ Lucidi 001/2005 Robotica 01CFI AA 2004/05 Basilio Bona DAUIN Politecnico

Dettagli

Lezione 3: Le strutture cinematiche. Vari modi per fare un braccio

Lezione 3: Le strutture cinematiche. Vari modi per fare un braccio Robotica Industriale Lezione 3: Le strutture cinematiche Vari modi per fare un braccio Tre G.D.L. traslazionali e tre rotazionali Robot cartesiano Esempio 2 1 Vari modi per fare un braccio Due G.D.L. traslazionali

Dettagli

Compito d esame 14/11/2005

Compito d esame 14/11/2005 COGNOME NOME Compito d esame 14/11/2005 modulo 01CFI Robotica AA 2004/05 modulo 01CFI Robotica AA 2003/04 modulo 01BTT Modellistica dei manipolatori industriali modulo 01ALB Controllo dei Manipolatori

Dettagli

Sistemi di produzione discreti. Sistemi manifatturieri Sistemi di trasporto Sistemi di movimentazione Robot industriali. I sistemi manifatturieri

Sistemi di produzione discreti. Sistemi manifatturieri Sistemi di trasporto Sistemi di movimentazione Robot industriali. I sistemi manifatturieri Sistemi di produzione discreti Sistemi manifatturieri Sistemi di trasporto Sistemi di movimentazione Robot industriali I sistemi manifatturieri I sistemi manifatturieri I sistemi manifatturieri sono impianti

Dettagli

Sistemi di produzione discreti Sistemi manifatturieri

Sistemi di produzione discreti Sistemi manifatturieri Sistemi di produzione discreti Sistemi manifatturieri Sistemi di Sistemi di movimentazione Robot industriali I sistemi manifatturieri Lez. 2 - Sistemi manifatturieri 1 I sistemi manifatturieri I sistemi

Dettagli

Gradi di libertà e vincoli. Moti del corpo libero

Gradi di libertà e vincoli. Moti del corpo libero Gradi di libertà e vincoli Moti del corpo libero Punto materiale Il punto materiale descrive un corpo di cui interessa individuare solo la sua posizione Nel piano la posizione di un punto si individua

Dettagli

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA TESINA DI CONTROLLO DEI ROBOT

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA TESINA DI CONTROLLO DEI ROBOT UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA TESINA DI CONTROLLO DEI ROBOT Modellistica, pianiaicazione e controllo di un robot SCARA e di un braccio antropomorfo Candidati Davide

Dettagli

Modello dinamico dei robot: approccio di Newton-Eulero

Modello dinamico dei robot: approccio di Newton-Eulero Corso di Robotica 2 Modello dinamico dei robot: approccio di Newton-Eulero Prof. Alessandro De Luca A. De Luca Approcci alla modellistica dinamica (reprise) approccio energetico (eq. di Eulero-Lagrange)

Dettagli

Controllo dei robot. I testi. Introduzione al corso. Sito web con materiale aggiuntivo: home.dei.polimi.it/rocco/controllorobot

Controllo dei robot. I testi. Introduzione al corso. Sito web con materiale aggiuntivo: home.dei.polimi.it/rocco/controllorobot Controllo dei robot Introduzione al corso Prof. Paolo Rocco (paolo.rocco@polimi.it) I testi Sito web con materiale aggiuntivo: home.dei.polimi.it/rocco/controllorobot Controllo dei robot - Introduzione

Dettagli

Controllo dei robot. Introduzione al corso. Prof. Paolo Rocco

Controllo dei robot. Introduzione al corso. Prof. Paolo Rocco Controllo dei robot Introduzione al corso Prof. Paolo Rocco (paolo.rocco@polimi.it) I testi Sito web con materiale aggiuntivo: home.dei.polimi.it/rocco/controllorobot Controllo dei robot - Introduzione

Dettagli

Test, domande e problemi di Robotica industriale

Test, domande e problemi di Robotica industriale Test, domande e problemi di Robotica industriale 1. Quale, tra i seguenti tipi di robot, non ha giunti prismatici? a) antropomorfo b) cilindrico c) polare d) cartesiano 2. Un volume di lavoro a forma di

Dettagli

Laboratorio di Automatica Alcuni temi per tesi BIAR in Automazione e Robotica

Laboratorio di Automatica Alcuni temi per tesi BIAR in Automazione e Robotica Laboratorio di Automatica Alcuni temi per tesi BIAR in Automazione e Robotica Prof. Alessandro De Luca deluca@diag.uniroma1.it Laboratorio di Automatica 25.2.2016 Sommario - 1! esperimenti con un sensore

Dettagli

Prova Scritta di Robotica I 9 Febbraio 2009

Prova Scritta di Robotica I 9 Febbraio 2009 Esercizio Prova Scritta di Robotica I 9 Febbraio 9 Si consideri l estensione al secondo ordine in accelerazione dello schema di controllo cinematico di traiettoria cartesiana. A tale scopo, si assuma che

Dettagli

Prova Scritta di Robotica I. 12 Gennaio 2005

Prova Scritta di Robotica I. 12 Gennaio 2005 Esercizio 1 Prova Scritta di Robotica I 12 Gennaio 2005 Si consideri il robot (un manipolatore su base mobile) in figura, in moto sul piano (x, y) La base mobile è dotata di due ruote fisse poste a distanza

Dettagli

Tesine da svolgere per la preparazione dell esame

Tesine da svolgere per la preparazione dell esame Corso di Laurea in Ingegneria dell Automazione Esame di Robotica Industriale A.A. 2007/2008 Tesine da svolgere per la preparazione dell esame Vengono di seguito presentati alcuni esercizi studiati per

Dettagli

Meccanica. 5. Cinematica del Corpo Rigido. Domenico Galli. Dipartimento di Fisica e Astronomia

Meccanica. 5. Cinematica del Corpo Rigido.  Domenico Galli. Dipartimento di Fisica e Astronomia Meccanica 5. Cinematica del Corpo Rigido http://campus.cib.unibo.it/252232/ Domenico Galli Dipartimento di Fisica e Astronomia 22 febbraio 2017 Traccia 1. 2. 2 Si chiama numero dei gradi di libertà (GdL)

Dettagli

Robot Industriali MT

Robot Industriali MT Robot Industriali I Robot Il termine robot deriva dal termine ceco robota, che significa "lavoro pesante" o "lavoro forzato". L'introduzione o di questo termine e si deve allo scrittore ceco Karel Čapek,

Dettagli

Coordinate e Sistemi di Riferimento

Coordinate e Sistemi di Riferimento Coordinate e Sistemi di Riferimento Sistemi di riferimento Quando vogliamo approcciare un problema per risolverlo quantitativamente, dobbiamo per prima cosa stabilire in che sistema di riferimento vogliamo

Dettagli

Cinematica differenziale inversa Statica

Cinematica differenziale inversa Statica Corso di Robotica 1 Cinematica differenziale inversa Statica Prof. Alessandro De Luca Robotica 1 1 Inversione della cinematica differenziale trovare le velocità di giunto che realizzano una velocità generalizzata

Dettagli

Cinematica. modelli e vincoli. Corso di Robotica Parte di Laboratorio. Docente: Domenico Daniele Bloisi

Cinematica. modelli e vincoli. Corso di Robotica Parte di Laboratorio. Docente: Domenico Daniele Bloisi Laurea magistrale in Ingegneria e scienze informatiche Cinematica modelli e vincoli Corso di Robotica Parte di Laboratorio Docente: Domenico Daniele Bloisi Ottobre 2017 Obiettivo Capire il comportamento

Dettagli

Tipi di polso robotico 2 gdl

Tipi di polso robotico 2 gdl Tipi di polso robotico 2 gdl I polsi possono avere 2 o 3 giunti = 2 o 3 gdl I polsi sono tutti R, ma con caratteristiche diverse Per alcuni compiti bastano polsi 2R come illustrato 005/1 Tipi di polso

Dettagli

Fisica Generale A. Cinematica del corpo rigido. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico Maurizio Piccinini

Fisica Generale A. Cinematica del corpo rigido. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico Maurizio Piccinini Fisica Generale A Cinematica del corpo rigido Scuola di Ingegneria e Architettura UNIB Cesena Anno Accademico 205 206 Gradi di libertà (t) Numero dei gradi di libertà (GdL) di un sistema meccanico: minimo

Dettagli

Esercizi svolti. Geometria analitica: rette e piani

Esercizi svolti. Geometria analitica: rette e piani Esercizi svolti. Sistemi di riferimento e vettori. Dati i vettori v = i + j k, u =i + j + k determinare:. il vettore v + u ;. gli angoli formati da v e u;. i vettore paralleli alle bisettrici di tali angoli;

Dettagli

Lezione 13: I sistemi di riferimento

Lezione 13: I sistemi di riferimento Lezione 13: I sistemi di riferimento Cambiamenti di coordinate In questa lezione proveremo a vedere le trasformazioni lineari sotto un altra luce Quando abbiamo visto l esempio di un oggetto che, soggetto

Dettagli

Controllo Adattativo

Controllo Adattativo Corso di Robotica 2 Controllo Adattativo Prof. Alessandro De Luca A. De Luca Motivazioni e approccio necessità dell adattamento nella legge di controllo incertezza sui parametri dinamici del robot scarsa

Dettagli

ITS MAKER Modulo industrializzazione di prodotto. Modena, febbraio 2017

ITS MAKER Modulo industrializzazione di prodotto. Modena, febbraio 2017 ITS MAKER Modulo industrializzazione di prodotto Modena, febbraio 2017 Design for assembly-caratteristiche I prodotti sono progettati in generale seguendo 6 particolari criteri Minimo costo. I singoli

Dettagli

Controllo del moto e robotica industriale

Controllo del moto e robotica industriale Controllo del moto e robotica industriale Introduzione al corso Prof. Paolo Rocco (paolo.rocco@polimi.it) Obiettivi del corso Il corso si propone di affrontare problemi di controllo del moto relativi sia

Dettagli

INDICE GRANDEZZE FISICHE

INDICE GRANDEZZE FISICHE INDICE CAPITOLO 1 GRANDEZZE FISICHE Compendio 1 1-1 Introduzione 2 1-2 Il metodo scientifico 2 1-3 Leggi della Fisica e Principi 4 1-4 I modelli in Fisica 7 1-5 Grandezze fisiche e loro misurazione 8 1-6

Dettagli

Cinematica diretta e inversa di un manipolatore

Cinematica diretta e inversa di un manipolatore Cinematica diretta e inversa di un manipolatore ARSLAB - Autonomous and Robotic Systems Laboratory Dipartimento di Matematica e Informatica - Università di Catania, Italy santoro@dmi.unict.it Programmazione

Dettagli

CENTRO DI MASSA. il punto geometrico le cui coordinate, in un dato sistema di riferimento, sono date da:

CENTRO DI MASSA. il punto geometrico le cui coordinate, in un dato sistema di riferimento, sono date da: CENTRO DI MASSA il punto geometrico le cui coordinate, in un dato sistema di riferimento, sono date da: dove M = m 1 + m 2 +... + m N è la massa totale del sistema e le quantità r i sono i raggi vettori

Dettagli

Cinematica. La cinematica riguarda lo studio delle 4 funzioni che legano le variabili giunto con le variabili cartesiane

Cinematica. La cinematica riguarda lo studio delle 4 funzioni che legano le variabili giunto con le variabili cartesiane Cinematica La cinematica riguarda lo studio delle 4 funzioni che legano le variabili giunto con le variabili cartesiane Cinematica diretta di posizione Cinematica inversa di posizione Cinematica diretta

Dettagli

Prova Scritta di Robotica I

Prova Scritta di Robotica I Prova Scritta di Robotica I 5 Marzo 004 Esercizio 1 Si consideri un robot mobile a due ruote ad orientamento fisso (ed una passiva riorientabile e non centrata di appoggio) comandate indipendentemente

Dettagli

MECCANICA DEI ROBOT E DELLE MACCHINE AUTOMATICHE LM Anno accademico (ing. M. Troncossi)

MECCANICA DEI ROBOT E DELLE MACCHINE AUTOMATICHE LM Anno accademico (ing. M. Troncossi) MECCANICA DEI ROBOT E DELLE MACCHINE AUTOMATICHE LM Anno accademico 2015-2016 (ing. M. Troncossi) Conoscenze e abilità da conseguire Lo studente acquisisce gli strumenti necessari per effettuare un'analisi

Dettagli

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 10/2/2018.

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 10/2/2018. Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 10/2/2018 Prova teorica - A Nome... N. Matricola... Ancona, 10 febbraio 2018 1. Un asta AB di lunghezza

Dettagli

Rette nel piano. Esercizi. Mauro Saita. Versione provvisoria. Novembre { x = 2 + 3t y = 1 2t

Rette nel piano. Esercizi. Mauro Saita.   Versione provvisoria. Novembre { x = 2 + 3t y = 1 2t Rette nel piano. Esercizi. e-mail: maurosaita@tiscalinet.it Versione provvisoria. Novembre 205. Esercizi Esercizio.. Nel piano R 2 si considerino i vettori A = ( 2, ) e B = ( 5 2, 3 ). A è parallelo a

Dettagli

Meccanica. Componenti, mobilità, strutture

Meccanica. Componenti, mobilità, strutture Meccanica Componenti, mobilità, strutture Tipi di giunti rotazione o traslazione. Z Z GIUNTI di ROTAZIONE Z1 GIUNTO di TRASLAZIONE Z2 Tipi di link Spesso allungati Ogni geometria Componenti, mobilità,

Dettagli

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II Facoltà di INGEGNERIA Registro delle Lezioni del Corso di CONTROLLO DEI ROBOT Corso di Laurea Magistrale in Ingegneria dell Automazione Dettate dal Prof. Bruno

Dettagli

Prova Scritta di Robotica II. 25 Marzo 2004

Prova Scritta di Robotica II. 25 Marzo 2004 Prova Scritta di Robotica II 5 Marzo 004 Si consideri il robot planare RP in figura in moto in un piano verticale Siano: m 1 e m le masse dei due bracci; d 1 la distanza del baricentro del primo braccio

Dettagli

Lezione 2: I problemi fondamentali. Per capire meglio i problemi

Lezione 2: I problemi fondamentali. Per capire meglio i problemi Robotica Industriale Lezione 2: I problemi fondamentali Per capire meglio i problemi Diamo un occhiata a cosa si fa con i robot industriali Cerchiamo di capire quali siano le esigenze del lavoro che devono

Dettagli

Fisica 1 Anno Accademico 2011/2012

Fisica 1 Anno Accademico 2011/2012 Matteo Luca Ruggiero DISAT@Politecnico di Torino Anno Accademico 2011/2012 (16 Aprile - 20 Aprile 2012) 1 ESERCIZI SVOLTI AD ESERCITAZIONE Sintesi Abbiamo studiato le equazioni che determinano il moto

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 22/23 Matrici d inerzia Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica Razionale -

Dettagli

Robotica I. M. Gabiccini

Robotica I. M. Gabiccini Descrizione i dei moti rigidi idi Robotica I M. Gabiccini AA A.A. 2009/2010 LS Ing. Meccanica ed Automazione Descrizione di moti rigidi Consideriamo uno spazio a 3 dimensioni Euclideo, cioè lo spazio delle

Dettagli

Si occupa di dare un descrizione quantitativa degli aspetti geometrici e temporali del moto indipendentemente dalle cause che lo producono.

Si occupa di dare un descrizione quantitativa degli aspetti geometrici e temporali del moto indipendentemente dalle cause che lo producono. CINEMATICA DEL PUNTO MATERIALE I Si occupa di dare un descrizione quantitativa degli aspetti geometrici e temporali del moto indipendentemente dalle cause che lo producono. Il moto di un punto risulta

Dettagli

Modello dinamico dei robot:

Modello dinamico dei robot: Corso di Robotica 2 Modello dinamico dei robot: analisi, estensioni, proprietà, identificazione, usi Prof. Alessandro De Luca A. De Luca Analisi accoppiamenti inerziali robot cartesiano robot cartesiano

Dettagli

Calcolo vettoriale. Versore: vettore u adimensionale di modulo unitario (rapporto tra un vettore e il suo modulo)

Calcolo vettoriale. Versore: vettore u adimensionale di modulo unitario (rapporto tra un vettore e il suo modulo) Grandezze scalari: caratterizzate da un valore numerico in una unità di misura scelta (ex: massa, temperatura, ecc) Grandezze vettoriali: oltre al valore numerico necessitano della definizione di una direzione

Dettagli

Analisi del moto dei proietti

Analisi del moto dei proietti Moto dei proietti E il moto di particelle che vengono lanciate con velocità iniziale v 0 e sono soggette alla sola accelerazione di gravità g supposta costante. La pallina rossa viene lasciata cadere da

Dettagli

5a.Rotazione di un corpo rigido attorno ad un asse fisso

5a.Rotazione di un corpo rigido attorno ad un asse fisso 5a.Rotazione di un corpo rigido attorno ad un asse fisso Un corpo rigido è un corpo indeformabile: le distanze relative tra i punti materiali che lo costituiscono rimangono costanti. Il modello corpo rigido

Dettagli

Esempi di sistemi cinematici equivalenti ricavati a partire da esempi di meccanismi

Esempi di sistemi cinematici equivalenti ricavati a partire da esempi di meccanismi Esempi di sistemi cinematici equivalenti ricavati a partire da esempi di meccanismi Sistema di azionamento sincrono di aghi Il meccanismo sottostante a sinistra rappresenta una serie di catene cinematiche

Dettagli

Informatica Grafica. Un introduzione

Informatica Grafica. Un introduzione Informatica Grafica Un introduzione Rappresentare la Geometria Operabile da metodi di calcolo automatici Grafica Vettoriale Partiamo dalla rappresentazione di un punto... Spazi Vettoriale SPAZI VETTORIALI

Dettagli

Esercitazione di Meccanica Razionale 16 novembre 2016 Laurea in Ingegneria Meccanica Latina

Esercitazione di Meccanica Razionale 16 novembre 2016 Laurea in Ingegneria Meccanica Latina Esercitazione di Meccanica Razionale 16 novembre 2016 Laurea in Ingegneria Meccanica Latina Quesito 1. Si consideri un cilindro rigido libero in moto rispetto a un osservatore. Sia O il punto occupato

Dettagli

Teoria dei Sistemi Dinamici

Teoria dei Sistemi Dinamici Teoria dei Sistemi Dinamici 1GTG - 2GTG Correzione compito d esame del 14/9/25 1 Sistemi di riferimento, rototraslazioni (6 punti) Esercizio 1.1 Data la composizione di rotazioni Una indica le descrizioni

Dettagli

SPAZIO DI LAVORO. Paolo Fiorini Dipartimento di Informatica Università degli Studi di Verona

SPAZIO DI LAVORO. Paolo Fiorini Dipartimento di Informatica Università degli Studi di Verona SPAZIO DI LAVORO Paolo Fiorini Dipartimento di Informatica Università degli Studi di Verona 1 11 Introduzione Equazione Cinematica Diretta Esprime la posizione della terna utensile rispetto alla terna

Dettagli

Prova Scritta di Robotica II

Prova Scritta di Robotica II Prova Scritta di Robotica II 10 Giugno 009 Esercizio 1 Ricavare l espressione della matrice d inerzia Bq per il robot planare PRP mostrato in figura. Per i = 1,, 3, siano: m i = massa del braccio i; I

Dettagli

DIPARTIMENTO DI INGEGNERIA Anno Accademico 2017/18 Registro lezioni del docente DE FALCO DOMENICO

DIPARTIMENTO DI INGEGNERIA Anno Accademico 2017/18 Registro lezioni del docente DE FALCO DOMENICO Attività didattica DIPARTIMENTO DI INGEGNERIA Anno Accademico 2017/18 Registro lezioni del docente DE FALCO DOMENICO MECCANICA APPLICATA ALLE MACCHINE [A14099] Periodo di svolgimento: Secondo Semestre

Dettagli

Numero progressivo: 6 Turno: 1 Fila: 1 Posto: 1 Matricola: Cognome e nome: (dati nascosti per tutela privacy)

Numero progressivo: 6 Turno: 1 Fila: 1 Posto: 1 Matricola: Cognome e nome: (dati nascosti per tutela privacy) Numero progressivo: 6 Turno: 1 Fila: 1 Posto: 1 Matricola: 0000695216 Cognome e nome: (dati nascosti per tutela privacy) 1. Di quanto ruota in un giorno sidereo il piano di oscillazione del pendolo di

Dettagli

Esame 12/02/2004 Soluzione

Esame 12/02/2004 Soluzione Teoria dei Sistemi Dinamici 1GTG/2GTG Esame 12/2/24 Prego segnalare errori o inesattezze a basilio.bona@polito.it 1 Sistemi di riferimento, rototraslazioni (6 punti) Esercizio 1.1 Costruire la matrice

Dettagli

Trasformazioni - II. Classificazione delle trasformazioni in R 3. Rotazioni in R 3. Lezione 6 Maggio Lezione 6 maggio 2003

Trasformazioni - II. Classificazione delle trasformazioni in R 3. Rotazioni in R 3. Lezione 6 Maggio Lezione 6 maggio 2003 Corso di Laurea in Disegno Industriale Corso di Metodi Numerici per il Design Lezione 6 maggio Trasformazioni - II F. Caliò Classificazione delle trasformazioni in R (TITOLO) Rotazioni in R (TITOLO) Rotazione

Dettagli

BIOMECCANICA A A 2 0 11-2 0 1 2. P r o f. s s a M a r i a G u e r r i s i D o t t. P i e t r o P i c e r n o

BIOMECCANICA A A 2 0 11-2 0 1 2. P r o f. s s a M a r i a G u e r r i s i D o t t. P i e t r o P i c e r n o A A 2 0 11-2 0 1 2 U N I V E R S I TA D E G L I S T U D I D I R O M A T O R V E R G ATA FA C O LTA D I M E D I C I N A E C H I R U R G I A L A U R E A T R I E N N A L E I N S C I E N Z E M O T O R I E

Dettagli

SISTEMI E AUTOMAZIONE: esempi di domande e esercizi per III prova esame di stato

SISTEMI E AUTOMAZIONE: esempi di domande e esercizi per III prova esame di stato SISTEMI E AUTOMAZIONE: esempi di domande e esercizi per III prova esame di stato Automazione industriale 1- Disegnare lo schema di un semplice alimentatore di tensione continua da 24 volt mettendo in evidenza

Dettagli

Calcolo vettoriale. Grandezze scalari: caratterizzate da un valore numerico in una unità di misura scelta (ex: massa, temperatura, ecc)

Calcolo vettoriale. Grandezze scalari: caratterizzate da un valore numerico in una unità di misura scelta (ex: massa, temperatura, ecc) Grandezze scalari: caratterizzate da un valore numerico in una unità di misura scelta (ex: massa, temperatura, ecc) Grandezze vettoriali: oltre al valore numerico necessitano della definizione di una direzione

Dettagli

; r 0 2 m = l 2 (s 2 θ + c 2 θ) = l 2

; r 0 2 m = l 2 (s 2 θ + c 2 θ) = l 2 1 Calcolo del momento d inerzia Esercizio I.1 Pendolo semplice Si faccia riferimento alla Figura 1, dove è rappresentato un pendolo semplice; si utilizzeranno diversi sistemi di riferimento: il primo,

Dettagli

Calibrazioni BRACCI ROBOTICI in dotazione al Laboratorio di Elettronica AA

Calibrazioni BRACCI ROBOTICI in dotazione al Laboratorio di Elettronica AA Calibrazioni BRACCI ROBOTICI in dotazione al Laboratorio di Elettronica AA2005-2006 2006 Folder = calibrazioni_servomotori-bracci-robotici_180506et150606 File = sommario-calibrazioni_150606.ppt 1 #2 gomito

Dettagli

RUOTE DENTATE = ' MECCANICA APPLICATA ALLE MACCHINE LM. ρ 2. γ 2. γ 1

RUOTE DENTATE = ' MECCANICA APPLICATA ALLE MACCHINE LM. ρ 2. γ 2. γ 1 Università degli Studi di Bologna Scuola di Ingegneria e Architettura Dipartimento di Ingegneria Industriale Corso di aurea Magistrale in INGEGNERIA MECCANICA sede di Forlì Il rapporto di trasmissione

Dettagli

I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica

I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica Negli esercizi che seguono si suppone fissato nello spazio

Dettagli

Esercizio: pendoli accoppiati. Soluzione

Esercizio: pendoli accoppiati. Soluzione Esercizio: pendoli accoppiati Si consideri un sistema di due pendoli identici, con punti di sospensione posti alla stessa quota in un piano verticale. I due pendoli sono collegati da una molla di costante

Dettagli

Apprendimento iterativo per la compensazione di gravità

Apprendimento iterativo per la compensazione di gravità Corso di Robotica 2 Apprendimento iterativo per la compensazione di gravità Prof. Alessandro De Luca A. De Luca Obiettivo regolazione di arbitrarie configurazioni di equilibrio in presenza di gravità senza

Dettagli

Grandezze scalari e vettoriali-esempi

Grandezze scalari e vettoriali-esempi Grandezze scalari e vettoriali-esempi Massa Tempo Temperatura Pressione Posizione lungo un asse (linea) Volume Lavoro Energia Posizione nel piano Posizione nello spazio Velocità Accelerazione Forza Quantità

Dettagli

Stima di Posizione e Orientamento Mediante Elaborazione di Immagini con il Filtro di Kalman

Stima di Posizione e Orientamento Mediante Elaborazione di Immagini con il Filtro di Kalman Incontro CIRA 21 Lecce, 12 14 Settembre 21 Stima di Posizione e Orientamento Mediante Elaborazione di Immagini con il Filtro di Kalman Fabrizio CACCAVALE Vincenzo LIPPIELLO Bruno SICILIANO Luigi VILLANI

Dettagli

Part II Prefazione Elenco degli Autori

Part II Prefazione Elenco degli Autori Indice Part II Prefazione Elenco degli Autori vii xvii La modellazione nei sistemi meccanici 21 20.1 Cenni storici 21 20.2 Che cosa si intende per modellazione? 22 20.3 Che cosa si intende per modello

Dettagli

CINEMATICA LA CINEMATICA E QUELLA PARTE DELLA MECCANICA CHE STUDIA IL MOTO DEI CORPI SENZA CONSIDERARE LE CAUSE CHE LO HANNO PRODOTTO.

CINEMATICA LA CINEMATICA E QUELLA PARTE DELLA MECCANICA CHE STUDIA IL MOTO DEI CORPI SENZA CONSIDERARE LE CAUSE CHE LO HANNO PRODOTTO. LA CINEMATICA E QUELLA PARTE DELLA MECCANICA CHE STUDIA IL MOTO DEI CORPI SENZA CONSIDERARE LE CAUSE CHE LO HANNO PRODOTTO. Prima di tutto per studiare la cinematica bisogna chiarire alcuni concetti ossia:

Dettagli

I PARTE Domande a risposta multipla

I PARTE Domande a risposta multipla 10/02/2012 MATRICOLA I PARTE Domande a risposta multipla La valutazione di ogni domanda sarà fatta assegnando alle risposte esatte i punteggi indicati. La valutazione finale sarà in trentesimi è farà media

Dettagli

Esercizio: pendolo sferico. Soluzione

Esercizio: pendolo sferico. Soluzione Esercizio: pendolo sferico Si consideri un punto materiale di massa m vincolato a muoversi senza attrito sulla superficie di una sfera di raggio R e soggetto alla forza di gravita. Ridurre il moto alle

Dettagli

Esercizi da fare a casa

Esercizi da fare a casa apitolo 1 Esercizi da fare a casa 1.1 Premesse I seguenti esercizi sono risolubili nella seconda settimana di corso. Per quelli del primo gruppo le soluzioni si possono estrarre dal mio libro di Esercizi

Dettagli

Dinamica del Manipolatore (seconda parte)

Dinamica del Manipolatore (seconda parte) Dinamica del Manipolatore (seconda parte) Ph.D Ing. Michele Folgheraiter Corso di ROBOTICA2 Prof.ssa Giuseppina Gini Anno. Acc. 2006/2007 Equilibrio Statico Manipolatore Il manipolatore può essere rappresentato

Dettagli