Equilibri Acido-Base ed Equilibri di Solubilità. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Equilibri Acido-Base ed Equilibri di Solubilità. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display."

Transcript

1 Equilibri Acido-Base ed Equilibri di Solubilità 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2 Soluzioni tampone Un tampone è una soluzione che varia in maniera trascurabile il proprio ph in seguito all aggiunta di quantità moderate di un acido o di una base forte. Se ad un litro di acqua pura vengono aggiunte 0,01 moli di HCl il ph varia da 7 a 2 [ph=-log(0,01) =2,0], ovvero di 5 unità. L aggiunta della stessa quantità di HCl ad un litro di soluzione tampone può far variare il ph di circa 0,1 unità. Per questo motivo le soluzioni tampone sono molto importanti, anche a livello biologico. Per esempio il sangue è una soluzione tampone ed ha un ph di circa 7,4 e la sua funzione di trasportatore di ossigeno risulterebbe compromessa se tale valore dovesse variare.

3 HCl H + + Cl - HCl + CH 3 COO - CH 3 COOH + Cl - 3

4 I tamponi possono essere costituiti da: - un acido debole e la sua base coniugata (es. HCN/CN - ) - una base debole e il suo acido coniugato (es. NH 3 /NH 4+ ) Una soluzione tampone contiene quindi una coppia acido-base coniugata cioè un acido e la sua base coniugata in equilibrio fra di loro. All aggiunta di un acido o di una base forte l equilibrio si sposta dalla parte della base o dell acido deboli che costituiscono il tampone assorbendo così l eccesso di ioni H + o di OH -. Consideriamo ad esempio il tampone costituito da CN - e HCN.

5 Se aggiungiamo un acido forte, che libera quindi ioni H 3 O +, questi reagiscono con CN - per dare HCN, secondo la reazione: CN - + H 3 O + HCN + H 2 O K Per valutare se gli ioni H 3 O + vengono efficacemente sottratti consideriamo la costante di equilibrio della reazione precedente. Questa reazione è l inverso della reazione di ionizzazione acida dell acido cianidrico: HCN + H 2 O CN - + H 3 O + K a =4, Possiamo quindi calcolare la costante K della prima reazione come: 1 K 4, = = 2, questo è un valore molto grande e l equilibrio è fortemente spostato verso i prodotti: tutti gli ioni H 3 O + aggiunti reagiscono con CN - e vengono così consumati e quindi il ph non varia.

6 Consideriamo ora invece l aggiunta di base forte al tampone costituito da CN - e HCN. La base forte libera ioni OH -, che reagiscono con HCN per dare CN -, secondo la reazione: HCN + OH - CN - + H 2 O K Per valutare se gli ioni OH - vengono efficacemente sottratti consideriamo la costante di equilibrio della reazione precedente. Questa reazione è l inverso della reazione di ionizzazione basica della base coniugata dell acido cianidrico, CN - : 14 CN - + H 2 O HCN + OH - 1, Kb = = 2, ,9 10 Possiamo quindi calcolare la costante K della reazione del tampone come: 1 K = = 5, ,0 10 Cioè un valore molto grande, e l equilibrio è fortemente spostato verso i prodotti: tutti gli ioni OH - aggiunti reagiscono con HCN e vengono così consumati e quindi il ph non varia. 4

7 In generale, poichè le reazioni su cui si basa una soluzione tampone sono le reazioni inverse di quelle di una base debole o di un acido deboli (K<<1), saranno caratterizzate da costanti di equilibrio grandi (K>>1), per cui i rispettivi equilibri sono fortemente spostati verso i prodotti. Ovviamente il tampone funziona bene fino a quando le quantità di acido o base forte aggiunti rimangono inferiori alle quantità di acido e base coniugata presenti. A questo proposito si parla di potere tampone intendendo la quantità di acido o di base con cui il tampone può reagire prima che si produca una variazione significativa di ph. È anche importante il rapporto fra le quantità di acido e di base coniugata presenti nel tampone. Queste devono essere paragonabili (il rapporto deve essere circa 1 e può differire al massimo per un fattore 10) affinchè la soluzione non perda il suo potere tampone.

8 ph di una soluzione tampone Un altra importante caratteristica di una soluzione tampone è il suo ph. Ricaviamo ora un espressione generale che permetta di calcolare il ph di un tampone costituito da un generica acido debole HA e la sua base coniugata A - in concentrazioni iniziali note pari a [HA] 0 e [A - ] 0. L equilibrio di dissociazione acida di HA è: HA(aq) H + (aq) + A - (aq) K a = + [H ][A [HA] ] Riarrangiando l espressione precedente abbiamo: [HA] [H + ] = K a [A ]

9 [HA] [H + ] = K a [A ] Si noti che [HA] e [A - ] sono le concentrazioni all equilibrio: dato però che Ka è piccolo e che la presenza di A - sposta verso sinistra l equilibrio tali concentrazioni sono quasi uguali alle concentrazioni [HA] 0 e [A - ] 0 usate nella preparazione del tampone. [HA] [A ] [H + ] = K a 0 0 Se nel tampone [HA] 0 = [A - ] 0 (sono le condizioni in cui il potere tampone è migliore) si ha: + [H ] = K a

10 È possibile ricavare un equazione che fornisce direttamente il ph di una soluzione tampone. Prendendo il logaritmo di entrambi i membri dell equazione precedente con il segno meno, si ha: - log[h ph + = logk ] = log K che in termini generali può essere scritta: a a [HA] [A ] [HA] log [A ] ph = pk + a 0 0 = 0 0 pk a [A ] + log [HA] [base] log [acido] Nota come equazione di Henderson-Hasselbalch 0 0

11 ph = pk + a [base] log [acido] Questa equazione può essere applicata al calcolo del ph di un tampone preparato a partire da una base debole e del suo acido coniugato, ad esempio NH 3 e NH 4+, tenendo presente che il K a da introdurre nell equazione è il K a dell acido coniugato, da ricavarsi secondo la K a =K w /K b dove K b è la costante di ionizzazione basica (nel tampone precedente quella di NH 3 ).

12 ph = pk + a [base] log [acido] Spesso il problema è l opposto di quello visto prima: non vogliamo calcolare il ph di una soluzione tampone con concentrazioni date di acido e base coniugata, ma vogliamo preparare una soluzione tampone che abbia un particolare ph. In base a quanto detto prima, cioè che il potere tampone di una soluzione è massimo quando la concentrazione della base è paragonabile con quella dell acido, una tale situazione si realizza quando il pk a della coppia acido-base coniugata che si sceglie è vicino al ph voluto, aggiustando poi il corretto rapporto tra [base] e [acido].

13 Ad esempio, se vogliamo un tampone con ph=4,9 possiamo selezionare un acido debole con pk a più vicino possibile a tale valore: Il valore di 4,9 si ottiene poi cambiando il rapporto tra [CH 3 CO 2 H] e [CH 3 CO 2- ]

14

15 Esempio: Calcolare il ph di una soluzione tampone che contiene CH 3 COOH 0,10M e CH 3 COONa (acetato di sodio) 0,20M. Il K a dell acido acetico è 1.7x10-5 In soluzione acquosa il sale acetato di sodio dissocia CH 3 COONa(s) CH 3 COO - (aq) + Na + (aq) per cui la soluzione è 0.20M in CH 3 COO - (la base) Il pk a dell acido acetico è: Applicando l equazione di Henderson-Hasselbach si ha: ph = pk a = log2-5 pk a = log1,7 10 = [CH3COO ] + log [CH COOH] 3 = = 0.20 = log = ,77

16 Esempio: Calcolare il ph di una soluzione tampone che contiene NH M e NH 4 Cl 0.20M sapendo che per NH 3 è K b =1.8x10-5 In soluzione acquosa il sale cloruro di ammonio dissocia Dobbiamo innanzitutto ricavare il K a dell acido coniugato NH 4 + che è K a = K w /K b = 1.0x10-14 /1.8x10-5 = 5.6x10-10 Si applica poi l equazione di Henderson-Hasselbalch: ph NH 4 Cl(s) NH 4+ (aq) + Cl - (aq) per cui la soluzione è 0.20M in NH 4 + (l acido). = pk = log0.5 a [NH + log [NH ] = log( ] = = ) + log = 0.2

17 Esempio: Calcolare il rapporto fra la concentrazione di acido acetico e di ione acetato necessari per preparare una soluzione tampone con ph 4,9. Il pk a dell acido acetico è 4,77 Applicando l equazione di Henderson-Hasselbach si ha: ph = pk a + log [base] [acido] 4,9 = 4,77 + [CH3COO ] log [CH COOH] 3 [CH3 COO ] log = 4,9 4,77 = [CH COOH] 3 [CH3COO ] 0,13 = 10 =1,35 [CH COOH] 3 0,13 [CH 3 COO ] = 1,35 [CH 3COOH] Ad esempio se in un litro di soluzione mettiamo 1,0 moli di acido acetico, dobbiamo aggiungere 1,35 moli di acetato di sodio (in pratica non si può aggiungere lo ione acetato da solo ma un suo sale con una base forte quale NaOH)

18 Metodi di preparazione di un tampone Un tampone è sempre costituito da un acido debole HA e la sua base coniugata A- oppure da una base debole B e il suo acido coniugato B +. In pratica può essere preparato in vari modi:

19 Riepilogo: Acido debole: [H K + 3O ] aca Base debole: [OH ] Kbc b Sale Ac. forte - Base debole : [H O K + w 3 ] cs Kb Sale Ac. debole - Base forte : [OH ] K K w cs a

20 Riepilogo: Tampone formato da un acido debole e la sua base coniugata: + [ H O ] K 3 a c c a b

21 INDICATORI Un indicatore è un acido debole o una base debole la cui forma protonata ha un colore diverso dalla forma ionizzata. Esso viene aggiunto in piccole quantità ad una soluzione e può assumere colori diversi a seconda del ph della soluzione. Come acido debole l indicatore HIn presenta l equilibrio HIn + H 2 O H 3 O+ + In - rosso giallo metilarancio 3 K In = + [H O ][In [HIn] Poiché l indicatore è aggiunto in piccolissima quantità, [H 3 O + ] ha un valore costante uguale a quello della soluzione alla quale si aggiunge l indicatore e si ha [HIn] [In ] = [H3O K In + ] ]

22 Il rapporto [HIn]/[In - ] determina il colore della soluzione e si possono avere tre casi limite + [HIn] 3 O ] >> K In (ph < pk ) >> [In ] [H In 1 Soluzione rossa + [HIn] 3O ] KIn (ph pk ) [In ] [H In 1 Soluzione arancio (viraggio) + [HIn] 3 O ] << KIn (ph > pk ) << [In ] [H In 1 Soluzione gialla In generale ogni indicatore è caratterizzato da un valore di K In : in una soluzione esso assumerà il colore della specie protonata HIn per ph<pk In mentre assumerà il colore della specie ionizzata In - per ph>pk In.

23 Principali indicatori acido-base

24 Variazioni di colore per alcuni indicatori: Metilarancio Blu di bromotimolo Fenolftaleina

25 Titolazione acido-base Una titolazione acido-base è un procedimento che permette di determinare la quantità di acido (o base) presente in una soluzione misurando il volume di una soluzione a concentrazione nota di base (o acido) necessario per raggiungere la neutralizzazione completa. La soluzione di acido da titolare viene introdotta in un recipiente (una beuta) e la soluzione di base a concentrazione nota viene posta in una buretta graduata sopra il recipiente e aggiunta goccia a goccia fino alla neutralizzazione completa dell acido. Dal volume di base aggiunto si risale immediatamente al numero di moli di base necessarie alla neutralizzazione n base = volume concentrazione che, per un acido monoprotico coincide col numero di moli di acido incognito. Per capire quando si è raggiunta la neutralizzazione si aggiunge un indicatore con viraggio a ph 7

26 Titolazione in pratica

27 Punto di Equivalenza rilevato con il phmetro Monitorare il ph 27

28 Titolazione Acido Forte- Base Forte NaOH (aq) + HCl (aq) OH - (aq) + H + (aq) H 2 O (l) H 2 O (l) + NaCl (aq) 28

29 Titolazione Acido Debole-Base Forte CH 3 COOH (aq) + NaOH (aq) CH 3 COONa (aq) + H 2 O (l) CH 3 COOH (aq) + OH - (aq) CH 3 COO - (aq) + H 2 O (l) Al punto di equivalenza (ph > 7): CH 3 COO - (aq) + H 2 O (l) OH - (aq) + CH 3 COOH (aq) 29

30 Titolazione Acido Forte-Base Debole HCl (aq) + NH 3 (aq) NH 4 Cl (aq) H + (aq) + NH 3 (aq) NH 4 Cl (aq) Al punto di equivalenza (ph < 7): NH 4 + (aq) + H 2 O (l) NH 3 (aq) + H + (aq) 30

31 La curva di titolazione di un acido forte con una base forte. 31

32 Quale indicatore(i) possono essere usati nella titolazione di HNO 2 con KOH? Acido debole titolato con base forte. Al punto di equivalenza ci sarà la base coniugata dell acido debole. Al punto di equivalenza, ph > 7 Possiamo usare il rosso cresolo o la fenolftaleina 32

33 EQUILIBRI DI SOLUBILITA

34 Molti composti ionici sono poco solubili o praticamente insolubili e instaurano un equilibrio con gli ioni costituenti nella soluzione satura. Ad esempio per il cloruro di argento si ha: AgCl(s) Ag + (aq) + Cl - (aq) cui corrisponde una costante di equilibrio K ps, detta prodotto di solubilità: K ps =[Ag + ][Cl - ] Altri esempi sono di sali poco solubili sono: PbI 2 (s) Pb 2+ (aq) + 2I - (aq) K ps =[Pb 2+ ][I - ] 2 Ca 3 (PO 4 ) 2 (s) 3 Ca 2+ (aq) + 2 PO 4 3- (aq) K ps =[Ca 2+ ] 3 [PO 4 3- ] 2

35 Si intende con solubilità il numero di moli di sale che si sciolgono per litro di soluzione. Essa è indicata con s ed è legata alle concentrazione dei vari ioni in cui si dissocia il sale dai coefficienti stechiometrici. Ad esempio per i tre composti precedenti si ha: AgCl(s) Ag + (aq) + Cl - (aq) s=[ag + ]=[Cl - ] PbI 2 (s) Pb 2+ (aq) + 2I - (aq) s=[pb 2+ ] s=[i - ]/2 [I - ]=2s Ca 3 (PO 4 ) 2 (s) 3 Ca 2+ (aq) + 2 PO 4 3- (aq) s=[ca 2+ ]/3 [Ca 2+ ]=3s s=[po 4 3- ]/2 [PO 4 3- ]=2s

36 Calcolo del K ps dalla solubilità Calcolare il K ps del PbI 2 sapendo che la sua solubilità è di 1, mol/l PbI 2 (s) [Pb 2+ ]=s [I - ]=2s Pb 2+ (aq) + 2I - (aq) K ps =[Pb 2+ ][I - ] 2 K ps =[Pb 2+ ][I - ] 2 =s(2s) 2 =4s 3 K ps =4s 3 =4(1, ) 3 = 6, Calcolo della solubilità dal K ps Calcolare la solubilità dell AgCl sapendo che il suo K ps vale 1, AgCl(s) Ag + (aq) + Cl - (aq) Concentraz. iniziali Variaz. concentraz. - +x +x Concentraz. Equilibrio - x x K ps =[Ag + ][Cl - ]=x x=x ps = 1,8 10 = 1,4 10 x = K x = Kps s = x = 1,4 10-5

37 Calcolo della solubilità dal K ps Calcolare la solubilità del CaF 2 sapendo che il suo K ps vale 3, CaF 2 (s) Ca 2+ (aq) + 2F - (aq) Concentraz. iniziali Variaz. concentraz. - +x +2x Concentraz. Equilibrio - x 2x x = K ps =[Ca 2+ ][F - ] 2 =x(2x) 2 =4x 3 3 K ps / x = K ps/4 = 3,4 10 /4 = 2,0 10

38 Effetto dello ione comune Consideriamo ora la solubilità di un sale poco solubile in una soluzione contenente uno dei due ioni implicati nell equilibrio di solubilità, ad esempio, di AgCl(s) in una soluzione di NaCl. AgCl(s) Ag + (aq) + Cl - (aq) In base al principio di Le Chatelier, l equilibrio viene spostato verso sinistra dalla presenza di Cl - per cui possiamo prevedere che la solubilità in NaCl sia inferiore a quella dell acqua pura. Calcoliamo ad esempio la solubilità di AgBrO 3, per il quale K ps =5,8 10-5, in una soluzione di NaBrO 3 0,10M. In soluzione l NaBrO 3 si dissocia completamente NaBrO 3 (s) Na + (aq) + BrO 3- (aq) per cui la soluzione è 0,10 M in BrO - 3 che uno ione in comune con l AgBrO 3 : AgBrO 3 (s) Ag + (aq) + BrO 3- (aq)

39 Le concentrazioni all equilibrio vanno calcolate da: AgBrO 3 (s) Ag + (aq) + BrO 3- (aq) Concentraz. iniziali - 0 0,10 Variaz. concentraz. - +x +x Concentraz. Equilibrio - x 0,10+x K ps =[Ag + ][BrO 3- ]=x (0,10+x) Si noti che x è molto piccolo per cui 0,10+x 0,10 K -5 ps 5, K ps =x 0,10 x = = = 5,8 10 0,10 0,10 s = x= 5, Si noti che la solubilità è inferiore a quella in acqua pura: -5-3 ps = 5,8 10 = 7,6 10 x = K

40 Precipitazione Consideriamo due soluzioni di sali solubili contenenti ciascuna uno dei due ioni che partecipano ad un equilibrio di solubilità di un sale poco solubile. Prendiamo ad esempio una soluzione di AgNO 3 (che è solubile e dissocia negli ioni Ag + e NO 3- ) ed una di NaCl (che è solubile e dissocia negli ioni Na + e Cl - ): se le mescoliamo abbiamo nella soluzione risultante la presenza degli ioni Ag + e Cl che partecipano all equilibrio di solubilità: AgCl(s) Ag + (aq) + Cl - (aq) Se le concentrazioni [Ag + ] e [Cl ] subito dopo il mescolamento sono sufficientemente elevate si ha formazione immediata nel corpo della soluzione di AgCl solido: la soluzione diventa improvvisamente torbida per la presenza di particelle di AgCl in sospensione e solo dopo un certo tempo il solido si deposita sul fondo lasciando in soluzione concentrazioni [Ag + ] e [Cl ] compatibili con l equilibrio. Tale fenomeno è noto come precipitazione.

41 Esempio: aggiunta di una soluzione di NaCl ad una di AgNO 3.

42 Per determinare se si ha o no precipitazione in seguito al mescolamento delle due soluzioni, si fa uso del criterio generale per determinare in che direzione procede una reazione per raggiungere l equilibrio a partire da concentrazioni iniziali note di reagenti e prodotti: Se Q C > K C la reazione procede verso sinistra Se Q C < K C la reazione procede verso destra Se Q C = K C la reazione è all equilibrio Nel caso di equilibri di solubilità, K c corrisponde al prodotto di solubilità K ps e Q c corrisponde al prodotto ionico che ha la stessa espressione del K ps ma le concentrazioni dei due ioni non sono quelle all equilibrio ma quelle della soluzione subito dopo il dal mescolamento. Ad esempio per la solubilità di AgCl: K ps = [Ag + ] eq [Cl - ] eq Q C = [Ag + ] 0 [Cl - ] 0

43 Questa situazione corrisponde a mescolare i due prodotti della reazione di equilibrio di solubilità e determinare in che direzione si sposta la reazione per raggiungere l equilibrio. Ad esempio per l equilibrio di solubilità: AgCl(s) Ag + (aq) + Cl - (aq) poiché solo uno spostamento a sinistra di tale reazione corrisponde alla formazione di AgCl(s) cioè alla precipitazione, si deriva immediatamente il seguente criterio: Se Q C > K ps si ha precipitazione Se Q C K C non si ha precipitazione Le concentrazioni da inserire in Q c sono quelle dopo il mescolamento e si ottengono a partire da quelle delle due soluzioni mescolate tenendo conto della diluizione.

44 Esempio Se mescoliamo 1,0 litri di una soluzione 0,10 M di Pb (NO 3 ) 2 e 1,0 litri di una soluzione 0,20 M di NaCl, si avrà precipitazione di PbCl 2? (K ps =1, ) Poiché il PbCl 2 dissocia secondo l equazione: PbCl 2 (s) Pb 2+ (aq) + 2Cl - (aq) i due ioni da considerare nelle due soluzioni sono Pb 2+ e Cl - Il Pb(NO 3 ) 2 è solubile e dissocia completamente negli ioni Pb 2+ e NO 3 - per cui nella prima soluzione [Pb 2+ ]=0,10 M. Analogamente nella seconda soluzione [Cl - ]=0,20 M. Per prima cosa calcoliamo le concentrazioni di questi due ioni nella soluzione risultante dopo il mescolamento. I volumi delle due soluzioni mescolate sono V 1 =V 2 =1,0 litri e quindi dopo il mescolamento il volume finale è: V fin = V 1 +V 2 = 1,0+1,0= 2,0 litri

45 Nella soluzione iniziale di Pb(NO 3 ) 2 la concentrazione degli ioni Pb 2+ è 0,10M e quindi ci sono 0,10 moli di tale ione. Dopo il mescolamento, lo stesso numero di moli è diluito nel volume finale di 2,0 litri e quindi la sua concentrazione sarà: [Pb 2+ ]=0,1/2,0=0,05 M Analogamente la concentrazione degli ioni Cl - dopo il mescolamento sarà: [Cl - ]=0,2/2,0=0,1 M Si calcola Q c per la reazione di equilibrio di solubilità: Q c =[Pb 2+ ][Cl - ] 2 =(0,05)(0,10) 2 =5, E lo si confronta con il valore dato K ps =1, Piochè Q c >K ps, la reazione è spostata verso sinistra e quindi si ha la precipitazione di PbCl 2. Man mano che PbCl 2 precipita le concentrazioni di Pb 2+ e Cl - diminuiscono fino a che il loro prodotto ionico diventa uguale a K ps e la precipitazione si arresta.

46 Può essere interessante stabilire quanto dello ione Pb 2+ inizialmente presente rimane in soluzione dopo la precipitazione e quanto invece è precipitato come PbCl 2. Siccome Pb 2+ e Cl - sono stati mescolati in quantità stechiometriche nessuno dei due è in eccesso e si ha [Pb 2+ ]= [Cl - ]=x e quindi all equilibrio K ps =[Pb 2+ ][Cl - ] 2 =(x)(2x) 2 =4x [Pb ] = Kps /4 = 1,6 10 /4 = 1,6 10 che corrisponde ad un numero di moli pari a: [Pb 2+ ] V fin = 1, =0,032 Le moli di Pb 2+ inizialmente presenti erano 0,1 per cui ne sono precipitate: 0,068 0,1-0,032=0,068 cioè il 100 = 68% 0,10-2

47 Precipitazione frazionata E una tecnica per separare due o più ioni da una soluzione tramite l aggiunta di un reagente che ne fa precipitare prima uno poi un altro e così via. Supponiamo di avere una soluzione di Ba 2+ 0,10M e Sr 2+ 0,10M e di aggiungere lentamente una soluzione concentrata di cromato di potassio, K 2 CrO 4. Sia il BaCrO 4 che il SrCrO 4 sono poco solubili e possono precipitare: BaCrO 4 (s) Ba 2+ (aq) + CrO 4 2- (aq) K ps =1, SrCrO 4 (s) Sr 2+ (aq) + CrO 4 2- (aq) K ps =3, Poiché K ps è più piccolo per BaCrO 4, si ha prima la precipitazione di questo sale e solo dopo che la maggior parte del Ba 2+ è precipitato inizia a precipitare anche il SrCrO 4 che ha un K ps maggiore. E possibile determinare le concentrazioni dello ione CrO 4 2- alla quale i due ioni iniziano a precipitare.

48 Il bario precipita quando: [Ba 2+ ] [CrO 4 2- ] 2 = 1, (0,10) [CrO 4 2- ] 2 = 1, ,2 10 [CrO 4 ] = = 1,2 10 0,10 mentre lo stronzio precipita quando: [Sr 2+ ] [CrO 4 2- ] 2 = 3, (0,10) [CrO 4 2- ] 2 = 3, ,5 10 [CrO 4 ] = = 3,5 10 0, Quindi aggiungendo una soluzione di K 2 CrO 4 alla soluzione 0,10M dei due ioni, il BaCrO 4 comincia a precipitare per primo quando la concentrazione dello ione cromato raggiunge il valore 1, ; quando la concentrazione del cromato raggiunge 3, comincia a precipitare anche il SrCrO 4.

49 Effetto del ph sulla solubilità Nel caso in cui l anione che partecipa ad un equilibrio di solubilità è la base coniugata di un acido debole, essa può essere protonata dagli ioni H + e di conseguenza la solubilità del sale poco solubile sarà influenzata dal ph. Consideriamo ad esempio l equilibrio di solubilità del CaF 2 : CaF 2 (s) Ca 2+ (aq) + 2F - (aq) Lo ione fluoruro, F, è la base coniugata dell acido fluoridrico che è un acido debole e reagisce quindi con gli ioni idrogeno per ridare l acido coniugato: F - (aq) + H + (aq) HF(aq) Tale reazione è molto spostata verso destra poiché la sua costante è molto grande: K=1 /Ka = 1/(6, ) = 1, Lo ione fluoruro è quindi sottratto all equilibrio di solubilità e, per il principio di Le Chatelier, tale equilibrio è spostato verso destra cioè verso la dissoluzione di altro CaF 2

50 Di conseguenza il fluoruro di calcio è più solubile in soluzione acida che in acqua: la solubilità aumenta al diminuire del ph. Tale effetto è tanto maggiore quanto più debole è l acido coniugato dell anione implicato nell equilibrio di solubilità. Infatti più debole è tale acido e più spostata a destra è la reazione dell anione con H + per ridare l acido (K=1/Ka) L aumento della solubilità con l acidità è ad esempio molto maggiore per i carbonati che per i solfati, in accordo con le costanti acide dei loro rispettivi acidi coniugati: HCO 3 - K a2 =4, HSO 4 - K a2 =1, Particolarmente elevato è l aumento di solubilità con l acidità di idrossidi poco solubili in cui l anione è l OH - che reagisce con H + per dare l acido coniugato H 2 O che è particolarmente debole con K a =K w =1,

51 Solubility Equilibria AgCl (s) Ag + (aq) + Cl - (aq) K sp = [Ag + ][Cl - ] K sp is the solubility product constant MgF 2 (s) Mg 2+ (aq) + 2F - (aq) K sp = [Mg 2+ ][F - ] 2 Ag 2 CO 3 (s) 2Ag + (aq) + CO 2-3 (aq) K sp = [Ag + ] 2 [CO 2-3 ] Ca 3 (PO 4 ) 2 (s) 3Ca 2+ (aq) + 2PO 3-4 (aq) K sp = [Ca 2+ ] 3 [PO 3-4 ] 2 Dissolution of an ionic solid in aqueous solution: Q < K sp Unsaturated solution No precipitate Q = K sp Saturated solution Q > K sp Supersaturated solution Precipitate will form 51

52 52

53 Molar solubility (mol/l) is the number of moles of solute dissolved in 1 L of a saturated solution. Solubility (g/l) is the number of grams of solute dissolved in 1 L of a saturated solution. 53

54 What is the solubility of silver chloride in g/l? AgCl (s) Initial (M) Change (M) Equilibrium (M) [Ag + ] = 1.3 x 10-5 M Ag + (aq) + Cl - (aq) s +s s s [Cl - ] = 1.3 x 10-5 M K sp = 1.6 x K sp = [Ag + ][Cl - ] K sp = s 2 s = K sp s = 1.3 x 10-5 Solubility of AgCl = 1.3 x 10-5 mol AgCl 1 L soln x g AgCl 1 mol AgCl = 1.9 x 10-3 g/l 54

55 55

56 If 2.00 ml of M NaOH are added to 1.00 L of M CaCl 2, will a precipitate form? The ions present in solution are Na +, OH -, Ca 2+, Cl -. Only possible precipitate is Ca(OH) 2 (solubility rules). Is Q > K sp for Ca(OH) 2? [Ca 2+ ] 0 = M [OH - ] 0 = 4.0 x 10-4 M Q = [Ca 2+ ] 0 [OH - ] 0 2 = 0.10 x (4.0 x 10-4 ) 2 = 1.6 x 10-8 K sp = [Ca 2+ ][OH - ] 2 = 8.0 x 10-6 Q < K sp No precipitate will form 56

57 What concentration of Ag is required to precipitate ONLY AgBr in a solution that contains both Br - and Cl - at a concentration of 0.02 M? AgBr (s) Ag + (aq) + Br - (aq) K sp = 7.7 x K sp = [Ag + ][Br - ] [Ag + ] = K sp [Br - ] 7.7 x 10 = -13 = 3.9 x M AgCl (s) [Ag + ] = K sp [Cl - ] Ag + (aq) + Cl - (aq) K sp = 1.6 x K sp = [Ag + ][Cl - ] 1.6 x 10 = -10 = 8.0 x M 3.9 x M < [Ag + ] < 8.0 x 10-9 M AgCl AgBr 57

58 The Common Ion Effect and Solubility The presence of a common ion decreases the solubility of the salt. What is the molar solubility of AgBr in (a) pure water and (b) M NaBr? AgBr (s) K sp = 7.7 x s 2 = K sp s = 8.8 x 10-7 Ag + (aq) + Br - (aq) NaBr (s) Na + (aq) + Br - (aq) [Br - ] = M AgBr (s) Ag + (aq) + Br - (aq) [Ag + ] = s [Br - ] = s K sp = x s s = 7.7 x

59 Complex Ion Equilibria and Solubility A complex ion is an ion containing a central metal cation bonded to one or more molecules or ions. Co 2+ (aq) + 4Cl - (aq) 2- CoCl 4 (aq) The formation constant or stability constant (K f ) is the equilibrium constant for the complex ion formation. 2+ Co(H 2 O) 6 2- CoCl 4 K f = 2- [CoCl 4 ] [Co 2+ ][Cl - ] 4 HCl K f stability of complex 59

60 Effect of Complexation on Solubility AgNO 3 + NaCl Add NH 3 Ag(NH 3 ) 2 + AgCl 60

61 61

62 Qualitative Analysis of Cations 62

63 Flame Test for Cations lithium sodium potassium copper 63

EQUILIBRI DI SOLUBILITA

EQUILIBRI DI SOLUBILITA EQUILIBRI DI SOLUBILITA Solubilità In generale solo una quantità finita di un solido si scioglie in un dato volume di solvente dando luogo ad una soluzione satura, cioè una soluzione in equilibrio con

Dettagli

Una soluzione tampone contiene quindi una coppia acidobase

Una soluzione tampone contiene quindi una coppia acidobase Soluzioni tampone Un tampone è una soluzione che varia in maniera trascurabile il proprio ph in seguito all aggiunta di quantità moderate di un acido o di una base forte. Se ad un litro di acqua pura vengono

Dettagli

Acidi e basi ph, costanti di acidità e basicità Idrolisi, soluzioni tampone

Acidi e basi ph, costanti di acidità e basicità Idrolisi, soluzioni tampone Acidi e basi ph, costanti di acidità e basicità Idrolisi, soluzioni tampone Dr. Gabriella Giulia Pulcini Ph.D. Student, Development of new approaches to teaching and learning Natural and Environmental

Dettagli

Prodotto di solubilità ed Effetto dello ione comune

Prodotto di solubilità ed Effetto dello ione comune Prodotto di solubilità ed Effetto dello ione comune Dr. Gabriella Giulia Pulcini Ph.D. Student, Development of new approaches to teaching and learning Natural and Environmental Sciences University of Camerino,

Dettagli

Soluzioni tampone. Se ad un litro di acqua pura (ph=7) vengono aggiunte 0,01 moli di HCl il ph varia da 7 a 2 (ph=-log(0,01) =2,0), ovvero di 5 unità.

Soluzioni tampone. Se ad un litro di acqua pura (ph=7) vengono aggiunte 0,01 moli di HCl il ph varia da 7 a 2 (ph=-log(0,01) =2,0), ovvero di 5 unità. Soluzioni tampone Se ad un litro di acqua pura (ph=7) vengono aggiunte 0,01 moli di HCl il ph varia da 7 a 2 (ph=-log(0,01) =2,0), ovvero di 5 unità. Un tampone è una soluzione che varia in maniera trascurabile

Dettagli

EQUILIBRI DI SOLUBILITA

EQUILIBRI DI SOLUBILITA EQUILIBRI DI SOLUBILITA Molti composti ionici sono poco solubili. In soluzione, inizialmente si sciolgono (a), fino a raggiungere un equilibrio dinamico tra ioni che passano in soluzione e ioni che cristallizzano

Dettagli

Soluzioni Acido Base Definizione di Brønsted

Soluzioni Acido Base Definizione di Brønsted acido + base sale + acqua Soluzioni Acido Base Definizione di Brønsted acido: sostanza capace di donare protoni* HCl + H 2 O Cl + H 3 O + * In soluzione, il protone esiste in forma idratata (H 3 O + )

Dettagli

CALCOLO DEL ph. ph = - log [1,0x10-3 ] = 3,00

CALCOLO DEL ph. ph = - log [1,0x10-3 ] = 3,00 CALCOLO DEL ph Calcolare il ph di una soluzione di HCl 1,0x10-3 M HCl acido forte che si dissocia completamente HCl H + + Cl - 1 mol di HCl produce 1 mol di H + ph = - log [1,0x10-3 ] = 3,00 Tipici acidi

Dettagli

Sommario della lezione 22. Idrolisi Indicatori di ph Soluzioni tampone - Titolazioni

Sommario della lezione 22. Idrolisi Indicatori di ph Soluzioni tampone - Titolazioni Sommario della lezione 22 Idrolisi Indicatori di ph Soluzioni tampone - Titolazioni Determinazione del ph Il ph di una soluzione può essere determinato in modo approssimato mediante l uso di un indicatore.

Dettagli

Sommario della lezione 24. Equilibri di solubilità. Chimica Organica. Elettrochimica

Sommario della lezione 24. Equilibri di solubilità. Chimica Organica. Elettrochimica Sommario della lezione 24 Equilibri di solubilità Chimica Organica Elettrochimica EQUILIBRI DI SOLUBILITA Solubilità È la concentrazione del soluto in una soluzione satura (dove è presente il corpo di

Dettagli

Chimica A.A. 2017/2018

Chimica A.A. 2017/2018 Chimica A.A. 2017/2018 INGEGNERIA BIOMEDICA Tutorato Lezione 9 Calcolare la solubilità molare del solfato di bario in una soluzione 0.020 M di solfato di sodio. Il prodotto di solubilità del solfato di

Dettagli

Misure di ph e titolazione acidobase con metodo potenziometrico

Misure di ph e titolazione acidobase con metodo potenziometrico - Laboratorio di Chimica 1 Misure di ph e titolazione acidobase con metodo potenziometrico PAS A.A. 2013-14 Obiettivi 2 Uso di un ph-metro per la misura del ph Titolazione acido-base: costruzione della

Dettagli

SOLUZIONI TAMPONE SOLUZIONI TAMPONE

SOLUZIONI TAMPONE SOLUZIONI TAMPONE SOLUZIONI TAMPONE Le soluzioni tampone (o tamponi) sono costituite da: un acido debole e un suo sale (tampone acido) oppure una base debole e un suo sale (tampone basico) Una soluzione di un acido debole

Dettagli

Es: consideriamo una soluzione contenente acido K = 1, [CH 3 COOH]

Es: consideriamo una soluzione contenente acido K = 1, [CH 3 COOH] SOLUZIONI TAMPONE Una soluzione tampone è una soluzione che contiene quantità paragonabili (dello stesso ordine di grandezza) di un acido debole e della sua base coniugata o di una base debole e del suo

Dettagli

Equilibri acido-base

Equilibri acido-base Equilibri acido-base Ione idronio, acidi forti ed acidi deboli in acqua, costante di dissociazione dell acido (Ka) Acido forte: completamente dissociato HA(aq) H + (aq) + A - (aq) HA(aq) + H 2 O(l) H 3

Dettagli

EQUILIBRI ACIDO-BASE

EQUILIBRI ACIDO-BASE EQUILIBRI ACIDO-BASE Benchè dalla teoria di Brønsted-Lowry abbiamo visto che è possibile considerare reazioni acido-base in un solvente qualunque, qui soffermeremo la nostra attenzione sugli equilibri

Dettagli

Equilibri acido-base

Equilibri acido-base Equilibri acido-base Ione idronio, acidi forti ed acidi deboli in acqua, costante di dissociazione dell acido (Ka) Acido forte: completamente dissociato HA(aq) H + (aq) + A - (aq) HA(aq) + H 2 O(l) H 3

Dettagli

2NH3(g) Pa(Ag)=108 Pa(I)=127 pf(agi)=235 -> S(g/l) =S(m/l) pf = 9.2 10-9 235 =2162 10-9 = 2.16 10-6 (g/l) Effetto del ph Anche il ph può influenzare la solubilità di un sale poco solubile. E ciò

Dettagli

Brady Senese Pignocchino Chimica.blu Zanichelli 2014 Soluzione degli esercizi Capitolo 22

Brady Senese Pignocchino Chimica.blu Zanichelli 2014 Soluzione degli esercizi Capitolo 22 Brady Senese Pignocchino Chimica.blu Zanichelli 014 Soluzione degli esercizi Capitolo Esercizio Risposta PAG 515 ES 1 Basica, a causa dell idrolisi dell anione (base coniugata di un acido debole). PAG

Dettagli

Acidi e basi di Lewis

Acidi e basi di Lewis Gli acidi e le basi Acidi e basi di Lewis Acidi di Lewis= specie che possono accettare in compartecipazione una coppia di elettroni da un altra specie. Base di Lewis = specie che può cedere in compartecipazione

Dettagli

Analizziamo i casi più frequenti. Acido forte Base forte Acido debole Base debole Idrolisi Tampone

Analizziamo i casi più frequenti. Acido forte Base forte Acido debole Base debole Idrolisi Tampone Lezione 17 1. Acidi e basi deboli 2. Relazione tra a e b 3. ph di acidi e basi deboli (esempi) 4. Idrolisi salina acida e basica 5. Soluzioni tampone 6. Equilibrio eterogeneo 7. Idrolisi salina acida e

Dettagli

CAPITOLO 12 EQUILIBRI ACIDO-BASE E SOLUBILITA

CAPITOLO 12 EQUILIBRI ACIDO-BASE E SOLUBILITA CAPITOLO 12 EQUILIBRI ACIDO-BASE E SOLUBILITA 12.1 (a) ph = 2,57 (b) ph = 4,44 12.3 (a) no. (b) no. (c) sì. (d) sì. (e) no. 12.5 ph = 8,88 12.7 0,024 12.9 0,58 12.11 ph = 9,25; ph = 9,18. 12.13 Na 2 A/NaHA.

Dettagli

Molti sali contengono un anione o un catione che possono reagire con acqua rendendo le loro soluzioni ACIDE o BASICHE

Molti sali contengono un anione o un catione che possono reagire con acqua rendendo le loro soluzioni ACIDE o BASICHE Molti sali contengono un anione o un catione che possono reagire con acqua rendendo le loro soluzioni ACIDE o BASICHE Molti sali reagiscono con l acqua alterando il suo rapporto molare tra [H] e [OH] -

Dettagli

TUTORAGGIO CHIMICA A.A. 2018/2019 Tutoraggio Chimica (Prof. L. Pilia) Nicola Melis

TUTORAGGIO CHIMICA A.A. 2018/2019 Tutoraggio Chimica (Prof. L. Pilia) Nicola Melis TUTORAGGIO CHIMICA 18.12.2018 1 Es. 1: Il fluoruro di calcio si discioglie in piccole quantità in acqua. Calcolare il valore di K ps sapendo che [Ca 2+ ] = 2,3*10-4 CaF 2 (s) Ca 2+ (aq) + 2 F - (aq) Es.

Dettagli

Ionizzazione dell acqua, ph, poh

Ionizzazione dell acqua, ph, poh Ionizzazione dell acqua, ph, poh L acqua è una sostanza la cui ionizzazione può essere rappresentata dall equazione SEMPLIFICATA H 2 O H + + OH - in realtà gli ioni H+ allo stato libero non esistono in

Dettagli

ph e indicatori acido-base

ph e indicatori acido-base ph e indicatori acido-base La dissociazione ionica dell acqua H 2 O + H 2 O OH - + H 3 O + acido base base acido coniugata coniugato 2 H 2 O (l) OH - (aq) + H 3 O + (aq) Il numero di molecole di acqua

Dettagli

FOCUS SU EQUILIBRI ACIDO-BASE

FOCUS SU EQUILIBRI ACIDO-BASE 1 Ci sono varie definizioni di acidi e basi, tra le quali meritano di essere ricordate quella di Bronsted e quella di Lewis. Per i nostri fini pratici, ovvero gli esercizi, ci basta però ricordare le definizioni

Dettagli

Argomento 6 Equilibri in soluzione 1. Acidi e basi

Argomento 6 Equilibri in soluzione 1. Acidi e basi Argomento 6 quilibri in soluzione 1. Acidi e basi lettroliti in soluzione Un elettrolita è un composto che ionizza in solventi polari (H O) dissociandosi nei suoi costituenti NON elettroliti (molecole

Dettagli

CH 3 COOH (aq) + OH - (aq) CH 3 COO - (aq) + H 2 O (l)

CH 3 COOH (aq) + OH - (aq) CH 3 COO - (aq) + H 2 O (l) 2. Titolazione di un acido debole con una base forte : CH 3 COOH (aq) + NaOH (aq) (a cura di Giuliano Moretti) La titolazione è descritta dalla seguente reazione CH 3 COOH (aq) + OH - (aq) CH 3 COO - (aq)

Dettagli

Soluzioni. 12 a. La soluzione più acida è la soluzione A. b. La soluzione con il ph maggiore è la soluzione B.

Soluzioni. 12 a. La soluzione più acida è la soluzione A. b. La soluzione con il ph maggiore è la soluzione B. Soluzioni capitolo 21 VERIFICA LE TUE CONOSCENZE IL PRODOTTO IONICO DELL ACQUA 1 Concentrazione degli ioni H 3 O + : a. [H 3 O + ] = 1 $ 10-1 mol/l b. [H 3 O + ] = 1 $ 10 0 mol/l 2 Concentrazione degli

Dettagli

Base. Acido. Acido. Base

Base. Acido. Acido. Base ACIDI E BASI Un acido è un donatore di protoni, una base è un accettore di protoni. La base coniugata di un acido è quella che si forma quando l acido si è privato del protone. L acido coniugato di una

Dettagli

10. Acidi e basi deboli, tamponi e titolazioni

10. Acidi e basi deboli, tamponi e titolazioni Lezione. cidi e basi deboli, tamponi e titolazioni cidi e basi deboli Generalmente possiamo parlare di elettrolita, cioè una sostanza che in acqua si dissocia. Possono essere distinti elettroliti forti,

Dettagli

Solubilità. Il fatto che un composto sia un elettrolita forte (cioè si dissoci completamente in acqua) non deve essere confuso con la sua solubilità.

Solubilità. Il fatto che un composto sia un elettrolita forte (cioè si dissoci completamente in acqua) non deve essere confuso con la sua solubilità. Solubilità Il fatto che un composto sia un elettrolita forte (cioè si dissoci completamente in acqua) non deve essere confuso con la sua solubilità. La solubilità di un composto in acqua è definita come

Dettagli

Acidi Basi e Sali. ChimicaGenerale_lezione19 1

Acidi Basi e Sali. ChimicaGenerale_lezione19 1 Acidi Basi e Sali Le soluzioni della maggior parte dei sali sono acide o basiche piuttosto che neutre. Infatti, cationi e anioni possono agire da basi o acidi E possibile prevedere il ph di una soluzione

Dettagli

Soluti in acqua. Elettroliti. Non elettroliti

Soluti in acqua. Elettroliti. Non elettroliti Soluti in acqua Elettroliti Forti Dissociazione Elettrolitica COMPLETA Soluto Deboli Dissociazione Elettrolitica NON COMPLETA Non elettroliti Dissociazione Elettrolitica NaCl (s) + acqua Na + (aq) + Cl

Dettagli

2NH3(g) Pa(Ag)=108 Pa(I)=127 pf(agi)=235 -> S(g/l) =S(m/l) pf = 9.2 10-9 235 =2162 10-9 = 2.16 10-6 (g/l) Effetto del ph Anche il ph può influenzare la solubilità di un sale poco solubile. E ciò

Dettagli

BaSO 4 Ba ++ + SO 4. Co-x x x. Solubilità : moli di composto dissociate per litro. [Ba ++ ] = [SO 4= ] = [BaSO 4 ] o (moli di composto dissociato)

BaSO 4 Ba ++ + SO 4. Co-x x x. Solubilità : moli di composto dissociate per litro. [Ba ++ ] = [SO 4= ] = [BaSO 4 ] o (moli di composto dissociato) 1. Da misure di conducibilità elettrica risulta che la solubilità del solfato di bario BaSO 4 in acqua pura è 1.05 10 5 mole/litro a 25 C. Si calcoli il prodotto di solubilità del solfato di bario. BaSO

Dettagli

BaSO 4 Ba ++ + SO. Solubilità : moli di composto dissociate per litro. [Ba ++ ] = [SO 4= ] = [BaSO 4 ] o. (moli di composto dissociato)

BaSO 4 Ba ++ + SO. Solubilità : moli di composto dissociate per litro. [Ba ++ ] = [SO 4= ] = [BaSO 4 ] o. (moli di composto dissociato) 1. Da misure di conducibilità elettrica risulta che la solubilità del solfato di bario BaSO 4 in acqua pura è 1.05 10 5 mole/litro a 5 C. Si calcoli il prodotto di solubilità del solfato di bario. BaSO

Dettagli

Equilibri ionici in soluzione acquosa

Equilibri ionici in soluzione acquosa Equilibri ionici in soluzione acquosa L acqua anche se purissima rivela una conducibilità elettrica molto piccola che indica la presenza di ioni. Infatti una ridottissima frazione di molecole è dissociata

Dettagli

Appello Straordinario di Chimica Generale ed Inorganica (29 Aprile 2019) Canale M-Z. Testo A

Appello Straordinario di Chimica Generale ed Inorganica (29 Aprile 2019) Canale M-Z. Testo A Appello Straordinario di Chimica Generale ed Inorganica (29 Aprile 2019) Canale M-Z Testo A 1) Una soluzione è ottenuta miscelando 15,00 ml di una soluzione di HCl (MM36,46) 0,360 M, 10,00 ml di una soluzione

Dettagli

[ ] [ ][ H 3 [ A " -SOLUZIONI TAMPONE- [ ] OH " O + K A = A" K i = HA K W = [ H 3

[ ] [ ][ H 3 [ A  -SOLUZIONI TAMPONE- [ ] OH  O + K A = A K i = HA K W = [ H 3 -SOLUZIONI TAMPONE- Quando abbiamo in soluzione un acido debole ed il suo sale con una base forte ci sono da considerare 3 equilibri in soluzione: 1. HA + H 2 O A - + H 3 2. A - + H 2 O HA + OH - 3. 2H

Dettagli

ESERCIZI SUL ph 3 0,002 0,2 13. 2. Completa la seguente tabella relativa a acidi o basi deboli.

ESERCIZI SUL ph 3 0,002 0,2 13. 2. Completa la seguente tabella relativa a acidi o basi deboli. ESERCIZI SUL ph Livello difficoltà 1 1. Completa la tabella relativa a soluzioni di acidi o basi forti. 1 11 ph poh [H + ] [OH - ] 3 0,002 0,2 13 2 2. Completa la seguente tabella relativa a acidi o basi

Dettagli

La chimica degli acidi e delle basi 2

La chimica degli acidi e delle basi 2 La chimica degli acidi e delle basi 2 ph - log 10 [H O poh - log 10 [OH - a 25 C W [H O x[oh - 1.0x10-14 M 2 ph poh 14 1 lcune immagini sono state prese e modificate da Chimica di otz, Treichel & Weaver,

Dettagli

AUTOIONIZZAZIONE DELL ACQUA

AUTOIONIZZAZIONE DELL ACQUA AUTOIONIZZAZIONE DELL ACQUA H 2 O si comporta da acido e da base anfiprotica CH 3 COOH + H 2 O CH 3 COO - + H 3 O + NH 3 +H 2 O NH 4 + + OH - A1 B2 H 2 O + H 2 O H 3 O + + OH - B1 A1 K eq [ H O ][ OH 3

Dettagli

Equilibrio Acido base

Equilibrio Acido base Equilibrio Acido base Acido e base secondo ARRHENIUS Un acido è una sostanza che in soluzione acquosa libera ioni idrogeno HA à H A - HCl à H Cl - Un base è una sostanza che in soluzione acquosa libera

Dettagli

24. PRECIPITAZIONE Prodotto di solubilità (K s )

24. PRECIPITAZIONE Prodotto di solubilità (K s ) 24. PRECIPITAZIONE D. In un racconto di Primo Levi, a proposito di un analisi chimica di campioni di roccia, si incontrano queste parole apparentemente prive di senso: «... giù il ferro con ammoniaca,

Dettagli

Equilibri in soluzione acquosa unità 1, modulo G del libro

Equilibri in soluzione acquosa unità 1, modulo G del libro Equilibri in soluzione acquosa unità 1, modulo G del libro Si parla di equilibri in soluzione acquosa quando un soluto, solido, viene sciolto in acqua. Cosa accade? La specie solida si dissocia in ioni,

Dettagli

Punto finale di un analisi volumetrica. Cambiamento di colore del reagente (analita) Uso di indicatore Variazione del potenziale elettrico

Punto finale di un analisi volumetrica. Cambiamento di colore del reagente (analita) Uso di indicatore Variazione del potenziale elettrico Punto finale di un analisi volumetrica Cambiamento di colore del reagente (analita) Uso di indicatore Variazione del potenziale elettrico Punto finale di una titolazione con il calcolo del P. equivalente

Dettagli

Esame (0) - solubilità dei composti e reaz - Codice Prova:

Esame (0) - solubilità dei composti e reaz - Codice Prova: 1) Ci si aspetta la formazione di un precipitato quando una soluzione acquosa di ioduro di potassio è aggiunta ad una soluzione acquosa di: A. idrossido di bario B. perclorato di piombo C. cloruro di ferro(ii)

Dettagli

Corso di Laboratorio Integrato di Chimica Generale BIOTEC-2011 Esercizi Svolti su Equilibri acido-base

Corso di Laboratorio Integrato di Chimica Generale BIOTEC-2011 Esercizi Svolti su Equilibri acido-base Corso di Laboratorio Integrato di Chimica Generale BIOTEC2011 Esercizi Svolti su Equilibri acidobase 1. Quanto vale il ph di una soluzione 0.1 M di CO 2 se si ritiene che essa non esiste più come tale

Dettagli

Equilibrio Acido base

Equilibrio Acido base Equilibrio Acido base Acido e base secondo ARRHENIUS Un acido è una sostanza che in soluzione acquosa libera ioni idrogeno HA H + +A - HCl H + + Cl - Un base è una sostanza che in soluzione acquosa libera

Dettagli

FORZA DI ACIDI E BASI HA + :B HB + + A

FORZA DI ACIDI E BASI HA + :B HB + + A FORZA DI ACIDI E BASI n La forza di un acido è la misura della tendenza di una sostanza a cedere un protone. n La forza di una base è una misura dell'affinità di un composto ad accettare un protone. n

Dettagli

HCl è un acido NaOH è una base. HCl H + + Clˉ NaOH Na + + OHˉ. Una reazione acido-base di Arrhenius forma acqua e un sale. HCl + NaOH H 2 O + NaCl

HCl è un acido NaOH è una base. HCl H + + Clˉ NaOH Na + + OHˉ. Una reazione acido-base di Arrhenius forma acqua e un sale. HCl + NaOH H 2 O + NaCl Secondo Arrhenius un acido è una sostanza che dissociandosi in acqua libera protoni (H + ). Una base è una sostanza che dissociandosi in acqua libera ioni ossidrile (OHˉ). H 2 O HCl H + + Clˉ H 2 O NaOH

Dettagli

EQUILIBRI IN SOLUZIONE ACQUOSA

EQUILIBRI IN SOLUZIONE ACQUOSA EQUILIBRI IN SOLUZIONE ACQUOSA Costante di equilibrio Si consideri la seguente reazione di equilibrio: aa + bb cc + dd La costante di equilibrio della reazione ad una data temperatura è definita come il

Dettagli

LEGGE di AZIONE di MASSA

LEGGE di AZIONE di MASSA LEGGE di AZIONE di MASSA Lo stato di equilibrio di una reazione chimica è rappresentata dalla concentrazione di reagenti e prodotti tali da soddisfare una opportuna relazione matematica: a A + b B + c

Dettagli

Forza relativa di acidi e basi

Forza relativa di acidi e basi Forza relativa di acidi e basi Un acido forte è una sostanza che in acqua è completamente ionizzata: HCl(aq) + H 2 O(l) H 3 O + (aq) + Cl - (aq) acido base acido base La reazione è spostata completamente

Dettagli

Parte terza b: Elementi di termodinamica, equilibrio chimico, stati della materia, soluzioni. Prof. Stefano Piotto Università di Salerno

Parte terza b: Elementi di termodinamica, equilibrio chimico, stati della materia, soluzioni. Prof. Stefano Piotto Università di Salerno Parte terza b: Elementi di termodinamica, equilibrio chimico, stati della materia, soluzioni Prof. Stefano Piotto Università di Salerno 1. Definizioni di acido e base (Arrhenius) 2. Coppie coniugate acido-base

Dettagli

Appunti di Stechiometria per Chimica

Appunti di Stechiometria per Chimica Appunti di Stechiometria per Chimica Equilibri in soluzione acquosa Teoria degli acidi/basi secondo Brönsted-Lowry Acido una qualunque sostanza che è capace di donare uno ione idrogeno ad un altra sostanza

Dettagli

18.4 Equilibri di solubilità

18.4 Equilibri di solubilità Problemi risolti 18. Equilibri di solubilità A) Quanti ml di una soluzione 5. 10 M di acido solforico è necessario aggiungere a 50 ml di una soluzione 3,. 10 M di CaCl affinchè inizi a precipitare CaSO

Dettagli

EQUILIBRI IONICI IN SOLUZIONE

EQUILIBRI IONICI IN SOLUZIONE EQUILIBRI IONICI IN SOLUZIONE 12.A PRE-REQUISITI 12.B PRE-TEST 12.C OBIETTIVI 12.1 INTRODUZIONE: SOLUZIONI DI ELETTROLITI 12.2 ACIDI E BASI 12.2.1 DEFINIZIONI DI ACIDO E BASE 12.2.2 FORZA DEGLI ACIDI E

Dettagli

PROPRIETA ACIDO-BASE DELLE SOLUZIONI SALINE

PROPRIETA ACIDO-BASE DELLE SOLUZIONI SALINE PROPRIETA ACIDO-BASE DELLE SOLUZIONI SALINE Un sale è un solido ionico contenente un catione diverso da H + e un anione diverso da OH -. I sali sono degli elettroliti forti, cioè in acqua si dissociano

Dettagli

Solubilità dei sali Prodotto di solubilità

Solubilità dei sali Prodotto di solubilità Programma Misure ed Unità di misura. Incertezza della misura. Cifre significative. Notazione scientifica. Atomo e peso atomico. Composti, molecole e ioni. Formula molecolare e peso molecolare. Mole e massa

Dettagli

La chimica degli acidi e delle basi 2

La chimica degli acidi e delle basi 2 La chimica degli acidi e delle basi 2 ph - log [H O poh - log [OH - a 25 C [H O x[oh - 1.0x -14 M 2 ph poh 14 1 lcune immagini sono state prese e modificate da Chimica di otz, Treichel & eaver, Edises

Dettagli

V V n K NH NH 3 + H 2 O NH. Gli OH - sono solo quelli provenienti dalla base, perché quelli dell acqua sono molto pochi.

V V n K NH NH 3 + H 2 O NH. Gli OH - sono solo quelli provenienti dalla base, perché quelli dell acqua sono molto pochi. D71 La costante di dissociazione ionica dell ammoniaca in acqua è uguale a 1.8 10 5. Determinare (a) il grado di dissociazione e (b) la concentrazione in ioni OH d una soluzione di NH 0.08 M. NH OH 4 NH

Dettagli

Equilibri Acido Base e ph

Equilibri Acido Base e ph Equilibri Acido Base e ph Definizioni di Acido e Base Secondo la teoria di Arrhenius, un acido è una sostanza che dissociandosi in acqua libera ioni H +, una base è invece una sostanza che dissociandosi

Dettagli

Teoria di Lewis. Un acido di Lewis è una specie chimica che può formare un legame covalente accettando una coppia di elettroni da un altra specie.

Teoria di Lewis. Un acido di Lewis è una specie chimica che può formare un legame covalente accettando una coppia di elettroni da un altra specie. Teoria di Lewis Spiega perché alcune reazioni hanno proprietà acidobase pur non avendo idrogeni. Nella teoria di Lewis le reazioni acido-base hanno come protagonista la messa in condivisione di una coppia

Dettagli

+ 4e - + 16H 3 O + 3S 2- + 36H 2 O 3SO 2-4 + 24e - + 24H 3 O +

+ 4e - + 16H 3 O + 3S 2- + 36H 2 O 3SO 2-4 + 24e - + 24H 3 O + SOLUZIONI COMPITO A DI CHIMICA DEL 22-06-11 1A) 258 g di un minerale contenente il 91% di solfuro di arsenico (III), vengono immessi in 4,0 L di una soluzione acquosa di acido manganico al 10% in peso

Dettagli

1.2.5 Titolazioni acido-base

1.2.5 Titolazioni acido-base 1.2.5 Titolazioni acidobase Queste titolazioni si basano su reazioni di neutralizzazione in cui un acido cede un protone ad una base capace di accettarlo. Nel caso più semplice di un acido forte (es. HCl)

Dettagli

Solubilità dei sali Prodotto di solubilità

Solubilità dei sali Prodotto di solubilità Solubilità dei sali Prodotto di solubilità Aggiunta di una soluzione di NaCl ad una di AgNO 3 : formazione di un precipitato -AgCl- Solubilità Stabilite le condizioni di equilibrio di una soluzione satura

Dettagli

LA MOLE. Si definisce MOLE una quantita di sostanza di un sistema che contiene tante entita elementari quanti sono gli atomi (NA) in 12g di C 12

LA MOLE. Si definisce MOLE una quantita di sostanza di un sistema che contiene tante entita elementari quanti sono gli atomi (NA) in 12g di C 12 LA MOLE Si definisce MOLE una quantita di sostanza di un sistema che contiene tante entita elementari quanti sono gli atomi (NA) in 12g di C 12 NA = 6,022 x 10 23 particelle /mol numero di Avogadro 1 mole

Dettagli

REAZIONI IN SOLUZIONE

REAZIONI IN SOLUZIONE REAZIONI IN SOLUZIONE - ACIDO-BASE [ SCAMBIO DI PROTONI HA + B D A - + BH + - REDOX [ SCAMBIO DI ELETTRONI A OX + B RED D A RED + B OX - REAZIONI DI SOLUBILIZZAZIONE AgCl (s) D Ag + (aq) + Cl- (aq) - REAZIONI

Dettagli

Lezione 4. Le soluzioni Acidi e Basi Reazioni Chimiche La Concentrazione delle Soluzioni

Lezione 4. Le soluzioni Acidi e Basi Reazioni Chimiche La Concentrazione delle Soluzioni 2018 Lezione 4. Le soluzioni Acidi e Basi Reazioni Chimiche La Concentrazione delle Soluzioni Una soluzione è una miscela omogenea di 2 o più sostanze Il soluto è la sostanza (o sostanze) presente/i in

Dettagli

NH 3 + H 2 O NH. Gli OH - sono solo quelli provenienti dalla base, perché quelli dell acqua sono molto pochi.

NH 3 + H 2 O NH. Gli OH - sono solo quelli provenienti dalla base, perché quelli dell acqua sono molto pochi. D71 La costante di dissociazione ionica dell ammoniaca in acqua è uguale a 1.8 10 5. Determinare (a) il grado di dissociazione e (b) la concentrazione in ioni OH d una soluzione di NH 3 0.08 M. NH 3 +

Dettagli

Antilogaritmo (logaritmo inverso) Log N = N =antilogaritmo =

Antilogaritmo (logaritmo inverso) Log N = N =antilogaritmo = RICHIAMO SUI LOGARITMI Log N= logaritmo di N= esponente x al quale elevare la base 10, tale che: 10 x =N, ovvero: log N = x N=10 x Log 1 = log 10 0 =0 Log 10 = log 10 1 =0 Log 10-2 = -2 Antilogaritmo (logaritmo

Dettagli

ACIDI e BASI. Definizione di Brønsted-Lowry (non solo limitata alle soluzioni acquose)

ACIDI e BASI. Definizione di Brønsted-Lowry (non solo limitata alle soluzioni acquose) ACIDI e BASI Definizione di Brønsted-Lowry (non solo limitata alle soluzioni acquose) ACIDO = Sostanza in grado di donare ioni H + (protoni o ioni idrogeno) BASE = Sostanza in grado di accettare ioni H

Dettagli

-DEFINIZIONE DI ACIDI E BASI-

-DEFINIZIONE DI ACIDI E BASI- -DEFINIZIONE DI ACIDI E BASI- DEFINIZIONE DI ARRHENIUS ACIDO: rilascia ioni H + HCl H + + Cl - BASE: rilascia ioni OH - NaOH Na + + OH - DEFINIZIONE DI BRÖNSTED ACIDO: rilascia ioni H + BASE: lega ioni

Dettagli

Soluzioni degli esercizi del testo

Soluzioni degli esercizi del testo Klein, Il racconto della chimica degli esercizi del testo Lavorare con le mappe 1. 2. Risposta aperta. 3. Risposta aperta. 4. Il prodotto ionico dell acqua è il prodotto tra la concentrazione molare di

Dettagli

Acidi e basi sono sostanze note da molto tempo e diverse classificazioni sono state fatte nel corso del tempo in base alle loro proprietà.

Acidi e basi sono sostanze note da molto tempo e diverse classificazioni sono state fatte nel corso del tempo in base alle loro proprietà. TEORIE ACIDO-BASE Acidi e basi sono sostanze note da molto tempo e diverse classificazioni sono state fatte nel corso del tempo in base alle loro proprietà. Teoria di Arrhenius Arrhenius fu il primo a

Dettagli

Le sostanze che dissociandosi i d i in acqua danno

Le sostanze che dissociandosi i d i in acqua danno EQUILIBRI ACIDO-BASE Secondo la teoria di Arrhenius Le sostanze che dissociandosi in acqua dando ioni idrogeno sono acide H 2 O HCl H + + Cl - Le sostanze che dissociandosi i d i in acqua danno ioni idrossido

Dettagli

REAZIONI IN SOLUZIONE

REAZIONI IN SOLUZIONE REAZIONI IN SOLUZIONE - ACIDO-BASE SCAMBIO DI PROTONI HA + B A - + BH + - REDOX SCAMBIO DI ELETTRONI A OX + B RED A RED + B OX - REAZIONI DI SOLUBILIZZAZIONE AgCl (s) Ag + (aq) + Cl- (aq) - REAZIONI DI

Dettagli

RNH 3 + OH - C 0 x x x

RNH 3 + OH - C 0 x x x Università degli Studi di Roma Tor Vergata, Facoltà di Scienze MFN Corso di Laurea Triennale in Chimica Applicata, Insegnamento di Chimica Generale Modulo di Stechiometria. AA 2009/2010. Soluzioni prima

Dettagli

EQUILIBRI IN SOLUZIONI SATURE DI SALI POCO SOLUBILI. K eq = Ba 2+ SO 4 EQUILIBRIO CHIMICO. A a B b. Equilibri eterogenei: Equilibri omogenei:

EQUILIBRI IN SOLUZIONI SATURE DI SALI POCO SOLUBILI. K eq = Ba 2+ SO 4 EQUILIBRIO CHIMICO. A a B b. Equilibri eterogenei: Equilibri omogenei: EQUILIBRIO CHIMICO aa + bb cc + dd K eq = C c D d A a B b K eq è una costante che dipende esclusivamente dalla natura delle specie all equilibrio e dalla temperatura Equilibri omogenei: Tutte le specie

Dettagli

Problemi su Equilibri di solubilità

Problemi su Equilibri di solubilità CORSO DI LAUREA IN BIOTECNOLOGIE LABORATORIO INTEGRATO DI CHIMICA GENERALE ED INORGANICA Studenti F-O Problemi su Equilibri di solubilità 1. 30 mg di Fe(OH)3 vengono posti in 200 ml di acqua e quindi vengono

Dettagli

Acidi e basi deboli, tamponi e titolazioni

Acidi e basi deboli, tamponi e titolazioni Lezione cidi e basi deboli, tamponi e titolazioni cidi e basi di Lewis La teoria enunciata da Lewis è ancora più generale di quella di Brønsted che non riusciva a spiegare alcune reazioni innegabilmente

Dettagli

ANALISI VOLUMETRICA. si misura il volume di reagente richiesto dalla reazione con l analita TITOLAZIONI

ANALISI VOLUMETRICA. si misura il volume di reagente richiesto dalla reazione con l analita TITOLAZIONI ANALISI VOLUMETRICA si misura il volume di reagente richiesto dalla reazione con l analita Metodi volumetrici TITOLAZIONI in una titolazione, si aggiungono aliquote di soluzione di reagente a concentrazione

Dettagli

Arrhenius. HCl H + + Cl - NaOH Na + + OH -

Arrhenius. HCl H + + Cl - NaOH Na + + OH - Arrhenius Un acido è una sostanza che contiene H ed è in grado di cedere ioni H + e base è una sostanza che ha tendenza a cedere ioni OH - in acqua H 2 O HCl H + + Cl - H 2 O NaOH Na + + OH - Reazione

Dettagli

Prova scritta d esame

Prova scritta d esame Prova scritta d esame Sono riportati i testi e, successivamente, le soluzioni di prove scritte d esame. Il documento intende dare una informazione sul livello della prova con cui si confronteranno gli

Dettagli

-IDROLISI SALINA- composti ionici = elettroliti forti sono completamente dissociati in cationi e anioni

-IDROLISI SALINA- composti ionici = elettroliti forti sono completamente dissociati in cationi e anioni SALI: composti ionici = elettroliti forti sono completamente dissociati in cationi e anioni Alcuni sali alterano il ph quando vengono sciolti in acqua. Ciò è dovuto al verificarsi dell idrolisi salina,

Dettagli

Chimica Generale. Reazioni Chimiche. Reazioni Chimiche

Chimica Generale. Reazioni Chimiche. Reazioni Chimiche Una reazione chimica è un processo in cui avviene un cambiamento chimico di uno o più composti, detti reagenti, che vengono convertiti in una nuova serie di composti detti prodotti. Spesso le reazioni

Dettagli

+ NO 2 + 3H 2 O = Ce +3 + NO 3 + 2H 3 O +, b) 0.478 g

+ NO 2 + 3H 2 O = Ce +3 + NO 3 + 2H 3 O +, b) 0.478 g 1) Una soluzione di Na 3 PO 4 (PM = 163.94) viene titolata con una soluzione di AgNO 3 (PM = 169.87) a) Scrivere l equazione chimica del processo di titolazione e specificare di quale tecnica si tratta

Dettagli

TEORIE ACIDO-BASE. 1) Teoria di Arrhenius

TEORIE ACIDO-BASE. 1) Teoria di Arrhenius TEORIE ACIDO-BASE 1) Teoria di Arrhenius Arrhenius fu il primo a proporre una teoria acido-base a partire dal comportamento di queste sostanze in acqua. Un acido è una sostanza che, sciolta in acqua, provoca

Dettagli

Transizioni di fase: Equazione di Clausius-Clapeyron

Transizioni di fase: Equazione di Clausius-Clapeyron Passaggi di stato e diagrammi di stato Come già detto più volte la materia è presente sottoforma di diversi stati di aggregazione: - solido - liquido - gassoso Ed è possibile osservare il passaggio da

Dettagli

EQUILIBRI DEI SISTEMI TAMPONE ACIDO-BASE

EQUILIBRI DEI SISTEMI TAMPONE ACIDO-BASE EQUILIBRI DEI SISTEMI TAMPONE ACIDO-BASE E importante per poter controllare l andamento di una reazione mantenere costante il ph di una soluzione. Ad esempio il ph del plasma può variare, senza influenzare

Dettagli

15 aprile 2010 Prova scritta di Chimica Analitica 1 con Laboratorio

15 aprile 2010 Prova scritta di Chimica Analitica 1 con Laboratorio 15 aprile 2010 Prova scritta di Chimica Analitica 1 con Laboratorio 1. La concentrazione di ioni cloruro in una soluzione viene determinata con il metodo di olhard. Un aliquota di 25.0 ml della soluzione

Dettagli

15 luglio 2009 Prova scritta di Chimica Analitica 1 con Laboratorio

15 luglio 2009 Prova scritta di Chimica Analitica 1 con Laboratorio 15 luglio 2009 Prova scritta di Chimica Analitica 1 con Laboratorio 1. Normalmente, soluzioni diluite di NaOH vengono preparate a partire da una soluzione concentrata al 50 % in massa. Se la densita della

Dettagli

K [H 2 O] 2 = K w = [H 3 O + ][OH ]

K [H 2 O] 2 = K w = [H 3 O + ][OH ] Autoionizzazione dell acqua L acqua pura allo stato liquido è un debole elettrolita anfiprotico. L equilibrio di dissociazione è: 2H 2 O H 3 O + + OH - [H 3 O + ][OH ] K = [H 2 O] 2 Con K

Dettagli

Esperienza 4: Preparazione di soluzioni tampone e verifica del potere tamponante

Esperienza 4: Preparazione di soluzioni tampone e verifica del potere tamponante Esperienza 4: Preparazione di soluzioni tampone e verifica del potere tamponante Soluzione tampone: soluzione il cui ph non varia in modo apprezzabile per piccole aggiunte di acidi o di basi. Inoltre,

Dettagli

Acidi e basi di Lewis

Acidi e basi di Lewis Programma Misure ed Unità di misura. Incertezza della misura. Cifre significative. Notazione scientifica. Atomo e peso atomico. Composti, molecole e ioni. Formula molecolare e peso molecolare. Mole e massa

Dettagli

Seconda Prova in Itinere del 28 Gennaio 2008

Seconda Prova in Itinere del 28 Gennaio 2008 Università degli Studi di Roma Tor Vergata, Facoltà di Scienze MFN Corso di Laurea Triennale in Chimica Applicata, Sede di Ceccano Insegnamento di Chimica Generale e Laboratorio (A.A. 200708) Seconda Prova

Dettagli

20/03/2014 ANALISI VOLUMETRICA ACIDO-BASE PRECIPITAZIONE COMPLESSOMETRICA OSSIDO-RIDUZIONE REQUISITI PER UNA TITOLAZIONE

20/03/2014 ANALISI VOLUMETRICA ACIDO-BASE PRECIPITAZIONE COMPLESSOMETRICA OSSIDO-RIDUZIONE REQUISITI PER UNA TITOLAZIONE ANALISI VOLUMETRICA ACIDO-BASE PRECIPITAZIONE COMPLESSOMETRICA OSSIDO-RIDUZIONE In una titolazione l analita reagisce con un reagente addizionato sotto forma di una soluzione di concentrazione nota (soluzione

Dettagli