REOLOGIA e MECCANISMI DEFORMATIVI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "REOLOGIA e MECCANISMI DEFORMATIVI"

Transcript

1 CORSO DI LAUREA IN SCIENZE GEOLOGICHE Corso di GEOLOGIA STRUTTURALE Docente: Antonio Funedda Proprietà meccaniche delle rocce: REOLOGIA e MECCANISMI DEFORMATIVI RAPPORTI STRESS-STRAIN Comportamento delle rocce sottoposte a stress Relazioni che intercorrono tra una roccia deformata e lo stress (sforzo) che causa tale deformazione e che descrivono il comportamento della roccia alla scala macroscopica Non esiste una teoria generale che consideri la deformazione delle rocce in base alle diverse variabili: Tipo di roccia Pressione idrostatica Temperatura Presenza di fluidi Quantità di deformazione accumulata in un intervallo di tempo (tasso di deformazione o strain rate) = e/t = l/(l 0 t) [s] -1 1 t n.b.: spesso nei testi lo strain rate è indicato con "e" o con un punto sopra => ė es: se il 30% di e è raggiunto in 1 ora (3600 s) => ė = 0,3/3600 = 8,3x10 5 /s, in 1 giorno => ė = 0,3/86400 = 3,47x10 6 /s. Lo strain rate dello spostamento durante il Quaternario della faglia di San Andreas è dell'ordine di /s 1

2 Modello di comportamento di materiali ideali Reologia: relazioni che descrivono il comportamento di una roccia ideale a scala macroscopica, supponendo che la roccia sia un materiale continuo, cioè senza discontinuità o vuoti all interno, e omogeneo, cioè le proprietà fisiche sono costanti in ogni punto della roccia. Comportamenti che per determinati intervalli di condizioni fisiche sono assimilabili a quelli delle rocce: Deformazioni reversibili ed irreversibili: Comportamento elastico Comportamento viscoso Comportamento plastico Possiamo rappresentare il comportamento di un materiale sottoposto a stress con dei diagrammi: strain / stress, tempo / stress, tempo / strain Comportamento elastico Il materiale si deforma istantaneamente in modo proporzionale allo stress applicato. Se si toglie lo stress, il corpo ritorna nel suo stato iniziale indeformato, quindi la deformazione è reversibile. La relazione stress strain èlineare e l estensione (e) èdirettamente proporzionale allo stress applicato Relazione lineare tra stress e strain Risposta istantanea allo stress Deformazione non permanente In genere hanno un comportamento elastico campioni di roccia caricati assialmente in condizioni di bassa P. idrostatica, bassa Temperatura e alti Tassi di strain (10 3, 10 4 s 1 ) Un analogo meccanico è rappresentato da una molla e 2

3 Comportamento elastico La deformazione è reversibile quando non si ha rottura di legami atomici, ma solo un loro allungamento, raccorciamento o piegamento. In una situazione stabile, la distanza tra due ioni di carica opposta (lunghezza del legame r) ètale per cui l energia potenziale è minima. L energia potenziale (U) èla somma delle forze di attrazione (i due ioni hanno cariche opposte) e di repulsione (degli elettroni). Se a seguito di una deformazione la lunghezza r del legame tra i due ioni cambia, si ha un aumento in energia Somma delle 2 curve lunghezza del legame al valore minimo di energia potenziale (U) potenziale, chiamata energia elastica. Questa energia potenziale torna ad un valore minimo quando gli atomi ritornano nella loro posizione iniziale o quando alcuni legami vengono rotti e viene ristabilita una situazione di equilibrio. Nel primo caso si ha un comportamento elastico, nel secondo si produce una deformazione permanente. N.B. La repulsione dovuta agli elettroni agisce solo su distanze molto piccole, ma èmolto forte. L'attrazione è più debole, ma agisce su distanze maggiori. Quindi è più difficile avvicinare due ioni piuttosto che allontanarli, infatti anche in natura si osserva che: le rocce sono più resistenti alla compressione che alla trazione Comportamento elastico 1) Tra Sforzo e deformazione esiste una relazione lineare detta Legge di Hooke = E e [Pa=kg/m s -2 ] dove E = Modulo di Young nel caso di una compressione uniassiale. Nel caso di una compressione per taglio avrò: = 2 e (in alcuni casi indicato con G ) dove = Modulo di taglio. oppure come variazione di volume = K [(V V 0 )/V 0 ] per cui = tg -1 E 1/K indica la compressibilità. e 2) Nel caso di estensione e raccorciamento contemporanei si definisce il Coefficiente (o Rapporto) di Poisson = 1 / 3 (sempre < 0,5 nelle rocce ; 0,5 = materiali completamente non comprimibili) 1 = ( ) > 1 = 2 3 > 0,5 1 = 3 Si definisce come il rapporto tra l'estensione ortogonale ad uno sforzo compressivo applicato e l estensione parallela allo stesso sforzo, in altre parole, il rapporto tra l estensione laterale e l estensione assiale. 3

4 Comportamento elastico Una roccia con un modulo di Young E basso è una roccia meccanicamente debole, che si deforma più facilmente. Tre tipi diversi di comportamento elastico da Fossen, 2010 Comportamento viscoso Se un corpo sottoposto a stress si deforma e non riacquista la sua forma originaria quando lo stress èrimosso, si tratta di una deformazione irreversibile. Un comportamento viscoso ideale è un comportamento newtoniano, tipico di materiali con struttura interna semplice. e dove = coeff. di viscosità. Unità di misura: Pa s Deformazione irreversibile Quantità di deformazione proporzionale allo stress applicato Relazione lineare tra stress e tasso di strain Risposta non istantanea allo stress Deformazione permanente ml t 1 1 e e t l inclinazione della curva èla viscosità ed èla resistenza di un materiale a fluire Mantello Acqua

5 Comportamento viscoso L elongazione e èun numero puro, essendo un rapporto tra lunghezze. La costante èil coefficiente di viscosità e intuitivamente può essere considerato una misura della resistenza del materiale a deformarsi. Un materiale con un alta viscosità si deforma molto lentamente, uno con bassa viscosità più velocemente. La differenza fondamentale tra comportamento elastico e comportamento viscoso èche il primo è indipendente rispetto al tempo, al contrario del secondo nel quale lo strain non è istantaneo ma si accumula nel tempo. F Un analogo meccanico èun pistone poroso o con fori che si muove in un cilindro riempito con fluido. e Molti autori hanno assunto un comportamento viscoso per il materiale della parte superiore del mantello, deformato ad alta temperatura ( C) e a basso tasso di strain (10 12, s 1 ) Comportamento viscoso 5

6 Comportamento plastico Un corpo che si deforma in modo plastico non acquista alcuna deformazione permanente fino a che lo stress applicato non raggiunge una soglia ( ), detta limite di plasticità (yield stress). Raggiunta questa soglia lo stress non può aumentare, mentre cresce la velocità di deformazione (caso di un corpo perfettamente plastico o modello di Saint Venant). Deformazione a stress costante oltre la soglia Stress costante rispetto al tasso di strain Deformazione permanente L analogo meccanico di questo comportamento èun corpo sopra una superficie piana orizzontale scabra con un coefficiente di attrito relativo. A scala microscopica implica scivolamento su piano reticolari raggiunto un certo stress. Comportamento elastico-plastico Applicando lo stress il corpo si deforma inizialmente in modo elastico, superato il limite di plasticità si deforma in modo plastico. Cessato lo stress scompare la deformazione elastica mentre rimane permanentemente quella plastica. Elastico, quindi plastico, relazione stress strain Risposta istantanea allo stress Deformazione permanente + non permanente Un analogo meccanico èun corpo sopra una superficie piana orizzontale scabra a cui è applicata in serie una molla. 6

7 Comportamento elastico-plastico Curve per deformazione elasto plastica da Fossen, 2010 Comportamento visco-plastico (o "Bingham") Applicando lo stress il corpo assume un comportamento "viscoso", cioè si deforma in maniera irreversibile, solo dopo aver superato una soglia di stress critico. Comportamento viscoso lineare oltre la soglia di plasticità Nessuna risposta allo stress fino alla soglia, quindi dipende dal tempo di applicazione dello stress Deformazione permanente Comportamento tipico delle pitture per parete o, da un punto di vista propriamente geologico, di un duomo lavico. Un analogo meccanico èun corpo che scorre sopra una superficie piana orizzontale scabra e un pistone poroso applicati in parallelo. 7

8 Comportamento elastico-viscoso (Maxwell) In caso di viscosità bassa il materiale si comporta come un corpo viscoso e la deformazione viene acquisita appena si applica lo stress. Nel caso di viscosità alta il materiale si comporta in modo elastico se vengono applicate delle forze istantanee mentre ha un comportamento viscoso se vengono applicate forze per un periodo lungo. Con sforzo costante la def. elastica è gradualmente convertita in def. viscosa. E' utile èper "modellizzare" il comportamento della crosta terrestre sottoposta a onde sismiche e poi a carico litosferico... ė = /E + / Elastico e quindi viscoso sopra la soglia Risposta elastica istantanea allo stress, quindi dipendente dal tempo Strain rate controllato dalla viscosità Deformazione permanente + non permanente Un analogo meccanico è un pistone poroso in un cilindro a cui è applicata in serie una molla Comportamento firmo-viscoso (visco-elastico) (o di "Kelvin") Applicando lo stress le componenti elastica e viscosa agiscono insieme. La velocità di deformazione diminuisce gradualmente nel tempo anche se lo stress ècostante. Quando lo stress viene rimosso la deformazione diminuisce gradualmente fino ad essere completamente annullata. = E e + ė Elastico e viscoso allo stesso tempo Risposta istantanea allo stress Strain rate controllato dalla viscosità Deformazione non permanente Un analogo meccanico è l'ammortizzatore di un'automobile. In pratica la molla ed il pistone reagiscono immediatamente alla forza, ma il pistone ritarda l'allungamento della molla 8

9 Comportamento lineare Elastico, viscoso oltre la soglia di plasticità Risposta istantanea allo stress Strain rate controllato dalla viscosità Deformazione non permanente Comportamento non lineare La viscosità cambia al cambiare dello strain rate e = A σ n exp( E*/RT) da Fossen, 2010 da Van del Pluijm & Marschak Meccanismi deformativi L insieme dei processi materiali attivi in una roccia che si deforma definiscono un meccanismo deformativo e producono microstrutture caratteristiche nella roccia. Il modo in cui una roccia sottoposta a stress si deforma è funzione di numerosi fattori: parametri esterni pressione, temperatura, stress applicato, presenza e natura dei fluidi, ecc.; parametri propri della roccia composizione mineralogica, dimensioni dei granuli, porosità, permeabilità, ecc. L identificazione del meccanismo deformativo operante durante una defomazione si basa perciò sul riconoscimento delle microstrutture che questo produce. (N.B. studio che non rientra negli obiettivi di questo corso breve) 9

10 Meccanismi deformativi I meccanismi deformativi che possono operare in rocce sono: 1. cataclasi, in cui si ha fratturazione, perdita di coesione e scivolamento tra i granuli; 2. plasticità, con deformazione intracristallina per movimento di dislocazioni o per geminazione; 3. scivolamento viscoso, in cui lo strain è accomodato da diffusione di materia; 4. dissoluzione e riprecipitazione (pressure solution), con diffusione e trasporto di materia assistito dalla presenza di fluidi intergranulari. Il meccanismo deformativo di cataclasi porta ad un flusso con scivolamento relativo dei grani (frictional flow) fortemente dipendente dalla pressione; i meccanismi deformativi di plasticità, scivolamento viscoso e dissoluzione e riprecipitazione portano ad un flusso viscoso (viscous flow) attivato soprattutto dalla temperatura. Cataclasi La deformazione avviene per fratturazione della roccia Influenza dalle condizioni di pressione presente (come evidente negli esperimenti di deformazione con Pressione di confinamento variabile). Aumento di volume Riduzione di grana Non cambia la struttura cristallografica Secondo il criterio di Coulomb la fratturazione avviene quando lo stress di taglio s t raggiunge un valore pari a: t = c 0 + n tg Dove t = componente di taglio dello stress, c 0 = coesione del materiale (N/m 3 ), se la roccia è già fratturata c 0 = 0 n = componente normale dello stress, = angolo di attrito interno. 10

11 Cataclasi t = c 0 + n tg Questa relazione può essere evidenziata utilizzando la costruzione del cerchio di Mohr (b) utilizzando le grandezze indicate in (a) N = / cos2 t = 1 2 / 2 sen2 hanno la stessa forma delle equazioni parametriche del cerchio: e = / 2 => coordinate del centro del cerchio r = 1 2 / 2 => raggio del cerchio x = e + cos ; y = r sen Praticamente traccio un cerchio la cui distanza dall'origine del nostro sistema di riferimento, in cui sull'asse delle ascisse rappresento lo stress normale e su quello delle ordinate lo stress di taglio, sia e e la cui apertura sia r. L'intersezione della circonferenza con l'asse delle ascisse ci indica il 1 ed il 2. Cataclasi Aumento di volume (dilatanza ), scivolamento tra i grani lungo le fratture e rotazione passiva tra i grani o i frammenti di grani. Diminuzione della grana e del grado di selezionamento della roccia, con un ampio spettro delle dimensioni dei granuli. Può avvenire solo con pressioni non elevate. Per questo motivo la deformazione fragile èmolto comune in superficie, dove la pressione èminore e la roccia ha la possibilità di aumentare di volume. La Temperatura non èimportante 11

12 Cataclasi Il meccanismo deformativo per cataclasi può essere attivo in una deformazione localizzata in fasce ristrette, ad esempio lungo faglie o in zone di taglio. In questo caso lo spessore della cataclasite èmolto inferiore rispetto alle dimensioni della faglia o della zona di taglio. La cataclasi può operare anche in deformazioni non localizzate, con uno strain distribuito in un ampia fascia. In questo caso si parla di deformazione per flusso cataclastico. Processi di tipo viscoso Insieme di processi attivati dalla variazione della temperatura, durante i quali non avviene fratturazione da Ramsay & Huber,

13 Plasticità E' un meccanismo deformativo durante il quale si ha rottura e formazione di nuovi legami atomici secondo diverse modalità a causa della presenza all interno di reticoli cristallini di difetti. La deformazione è intergranulare ed èlegata a variazioni interne al cristallo. Il procedere dei movimenti dei difetto porta alla ricristallizzazione dinamica con formazione di cristalli allungati. La rottura e la formazione dei legami atomici sono favoriti dall'elevata temperatura. Temperature di transizione tra cataclasi e plasticità per diversi minerali MINERALE ANIDRITE CALCITE QUARZO FELDSPATI OLIVINA TEMPERATURA ( C) Plasticità Difetti puntiformi Siti reticolari vacanti (a); atomi con posizioni non reticolari (b) impurità sostituzionali (c); ioni interstiziali nel reticolo (d). In un cristallo con siti reticolari vacanti (v), se si applica uno stress s 1, i siti vacanti si muovono nella direzione di s 1 modificando al forma esterna del cristallo 13

14 Plasticità Difetti unidimensionali o lineari Dislocazioni (esempio del tappeto o del bruco) Plasticità Difetti bidimensionali o planari Deformation band, deformation lamellae, rotazione di sub grani, migrazione dei margini dei grani, geminazioni Particolare di cristalli geminati, le frecce rosse indicano le parti geminate, in blu la parte del cristallo non geminata. (Marmo di Carrara, sez. sottile, nicol incrociati) 14

15 Pressure solution (Dissoluzione) Questo meccanismo implica il trasporto di materia mediante una fase fluida intragranulare in cui del materiale può entrare in soluzione e da cui successivamente può ricristallizzare. La dissoluzione avviene in quella parte della superficie dei grani su cui agisce 1. Gli atomi si diffondono nella fase fluida, vengono trasportati lungo i limiti tra i grani e quindi riprecipitano in zone a basso stress. da Allmendinger Dissoluzione e riprecipitazione sono: particolarmente efficienti se la grana della roccia è piccola; fortemente influenzati dalla presenza e composizione della fase fluida; dalla composizione e permeabilità della roccia. Pressure solution (Dissoluzione) Dissoluzione e riprecipitazione sono: particolarmente efficienti se la grana della roccia èpiccola; fortemente influenzati dalla presenza e composizione della fase fluida; dalla composizione e permeabilità della roccia. da Allmendinger Meccanismo di deformazione molto diffuso in rocce in condizioni di bassa temperatura e bassa pressione, ma generalmente non può accomodare una grande quantità di strain Superfici di dissoluzione (A) e vene di estensione (B) in un calcare. Le superfici di dissoluzione (stiloliti) sono orientate ortogonalmente al s 1 applicato e contemporaneamente si sviluppano vene di estensione ortogonali, in cui si ha riprecipitazione del materiale dissolto. 15

16 Scivolamento viscoso Questo meccanismo deformativo (assieme a quello di dissoluzione e riprecipitazione) diventa importante nella deformazione di una roccia se le dimensioni iniziali dei grani sono abbastanza piccole da permettere ai processi di trasferimento di materia di procedere, e perciò di accomodare strain, con una velocità maggiore rispetto al meccanismo di plasticità, legato quest ultimo alla velocità di movimento delle dislocazioni nel cristallo. Ad alte temperature e basso stress la diffusione avviene all interno del cristallo (Nabarro Herring creep); a basse temperature la diffusione èinvece limitata ad una zona in corrispondenza del limite del cristallo (Coble creep). Caratteri tipici di questo meccanismo deformativo, oltre alla grana ridotta della roccia, sono la debole orientazione preferenziale di forma e cristallografica dei cristalli (superplasticità). Deformazione sperimentale di rocce Campioni cilindrici di roccia, di dimensioni da 2 a 15 mm in diametro e da 6 a 300 mm in altezza. Il carico è applicato alle facce del cilindro mediante un pistone, mentre la pressione laterale è applicata mediante fluidi o solidi. Lo stress applicato dal pistone = stress assiale. Lo stress laterale = pressione di confinamento. 16

17 Deformazione sperimentale di rocce Stati di stress e deformazioni sperimentali: a) compressione assiale: lo stress assiale è maggiore della pressione confinante: 1 > 2 = (fig. a). b) estensione assiale: la pressione confinante è maggiore dello stress assiale, 1 = 2 > 3 > 0 (fig. b). c) torsione semplice: gli assi principali dello stress a 45 (fig. c). Stress e strain variano dal centro all esterno del campione. d) torsione di un cilindro vuoto: ha il vantaggio di eliminare la variazione di stress e strain tra centro ed esterno del campione, difficile da realizzare (fig. d). e) torsione e compressione di un cilindro: rotazione e compressione assiale e una pressione di confinamento che, nel caso di un cilindro vuoto, agisce anche all interno del cilindro (fig. d) f) taglio semplice: Bassi valori di strain (fig. e). Curve / nella deformazione sperimentale Durante la deformazione di un campione di roccia in laboratorio le grandezze che si possono misurare sono: la temperatura (T), la pressione di confinamento (P c ), la forza applicata al pistone (F) e lo spostamento del pistone (l). Stress, strain e velocità di deformazione devono invece essere calcolate: La rappresentazione più comune dei dati èquella in un grafico stress/strain. 17

18 Curve / nella deformazione sperimentale (d) (e) (c) (f) (b) (g) (a) a) chiusura di tutte le microfratture non accade se si applica inizialmente un alta P. di confinamento; b) comportamento elasticoreversibile; c) carico di snervamento; d) work hardening (o strain hardening), in cui cioè la roccia si deforma sempre più difficilmente. Se la temperatura è sufficientemente alta, si raggiunge invece lo stato di equilibrio (steady state) in cui la roccia si deforma a stress costante; e) resistenza di picco, che èil massimo valore di stress raggiunto durante tutto l esperimento; f) carico di rottura (fracture strength), rottura improvvisa del campione, con forte emissione acustica. A questo punto si ha un improvvisa caduta dello stress; g) resistenza allo scorrimento o residual strength, sforzo necessario per avere scivolamento lungo le fratture appena formate. Curve / nella deformazione sperimentale da Fossen,

19 COMPORTAMENTO DELLE ROCCE al variare della Pressione di confinamento Provino di roccia sottoposto a stress biassiale a bassa Temperatura 1) Comportamento elastico e frattura => Fratture di estensione (Tension Gashes); 2) Comportamento come in (1) ma a strain maggiore => Fratture di estensione e Fratture di taglio a 45 rispetto a 1 ; 3) Deformazione duttile precedente alla fratturazione; scompaiono le fratture di estensione; 4) Dopo il comportamento elastico e il comportamento elastico plastico come in (3) non si raggiunge il punto di rottura, ma si ha un comportamento plastico concentrato in zone ristrette; 5) Non appaiono fratture fino ad una estensione longitudinale del 10 30%. La deformazione duttile (c. elastico plastico) èripartita omogeneamente su tutto il provino. Elementi Geologia di Strutturale COMPORTAMENTO DELLE ROCCE al variare della Pressione di confinamento Le rocce assumono un comportamento approssimativamente elastico o plastico per determinati intervalli di stress. La soglia di rottura e la soglia di plasticità ( y) variano al variare della P. di confinamento Il comportamento non è idealmente plastico, ma elastico plastico Per raggiungere un certo valore di strain èrichiesto uno stress sempre maggiore se si aumenta la pressione idrostatica (o di confinamento) 19

20 COMPORTAMENTO DELLE ROCCE al variare della Temperatura In tutte le rocce, a qualsiasi P. di confinamento, l aumento della temperatura abbassa la soglia di plasticità ( y) e aumenta la capacità del materiale a fluire senza fratturarsi, cioè aumenta la sua duttilità. Il comportamento elastico è maggiormente sviluppato a basse temperature. La soglia di plasticità si abbassa all aumentare della temperatura (2kbar a 330 C nel marmo di Yule). Nel marmo a 800 C la tg alla curva è0 e quindi si deforma quasi come un corpo plastico ideale. L eccezione alla regola che l aumento di temperatura, come anche della P. idrostatica, favoriscano una deformazione di tipo duttile è rappresentato dalla Dolomia, che anche a 800 C ha un comportamento fragile. Elementi Geologia di Strutturale COMPORTAMENTO DELLE ROCCE al variare della Temperatura Il gesso a 138 C comincia a disidratarsi e superata la soglia di plasticità si deforma senza che sia necessario aumentare il carico => significato strutturale dei livelli evaporitici. La serpentina oltre i 650 C si trasforma in forsterite + talco, che hanno caratteristiche meccaniche completamente diverse. Fino a 650 C => comportamento duttile, oltre i 650 C => comportamento fragile, in questo caso dovuto ad un cambiamento di fase mineralogica. 20

21 COMPORTAMENTO DELLE ROCCE in presenza di FLUIDI E una variabile che può influenzare il comportamento meccanico di una roccia in due modi differenti e opposti. Uno alla scala del reticolo cristallino ed uno alla scala della porosità della roccia. In genere si tratta di soluzioni saline o, a grandi profondità, di CO 2, generati anche durante le variazioni di fase mineralogiche tipiche delle reazioni metamorfiche. 1) In un ambiente deformativo dove non vi sia ricristallizzazione cioè in dominio non metamorfico la presenza di fluidi favorisce un comportamento fragile, abbassa la soglia di plasticità ed innalza quella di rottura in quanto: P eff = P idrost P fluidi 0< <1 (dipende dalla permeabilità, caratteristiche dei fluidi, ecc.) Nella crosta la Pressione dei fluidi èalmeno uguale alla Pressione idrostatica, spesso vicino al valore della Pressione litostatica. P lit = gh ( densità della roccia; g accelerazione di gravità; h profondità) Se esistono stress di taglio (alti livelli strutturali) P idrost = 2 = 3 = ( ) 1 ( coeff. Poisson; 1 = gh) perciò => P lit > P idrost Se sono azzerati gli stress di taglio (bassi livelli strutturali) => P lit = P idrost = gh La presenza di fluidi permette una tettonica fragile anche ad elevate profondità. Il taglio può avvenire lungo livelli ricchi in fluidi. COMPORTAMENTO DELLE ROCCE in presenza di FLUIDI La presenza di fluidi permette una tettonica fragile anche ad elevate profondità. Il taglio può avvenire lungo livelli ricchi in fluidi. 2) Al contrario in un dominio metamorfico i fluidi favoriscono la mobilità degli ioni e quindi i processi di ricristallizzazione. I fluidi indeboliscono i legami molecolari all interno dei cristalli inducendo un effetto simile a quello della temperatura. A tassi di strain ė = s 1 la roccia ha un comportamento duttile di almeno 5 volte maggiore. Comportamento di cristalli isolati di Quarzo in presenza di H 2 O 21

22 PROVE SPERIMENTALI Si realizzano: Prove a velocità di deformazione costante. Si applica uno stress assiale e si controlla che la velocità di deformazione rimanga costante durante tutto l esperimento (è probabile che sia necessario aumentare o diminuire il carico sul campione). Prove a stress costante (creep test). Si applica uno stress assiale costante al campione e si misura il raccorciamento (strain) che subisce nel corso del tempo. Creep: definisce la deformazione a basso tasso di deformazione interna (strain rate). Creep plastico o duttile: deformazione plastica di un materiale che èsottoposto a uno sforzo costante e persistente nel tempo quando il materiale èad elevata temperatura elevata. I tassi di deformazione a cui vengono condotti gli esperimenti sono generalmente compresi tra 10 4 e 10 5 s 1, solo raramente si scende sotto i 10 7 s 1. Per raccorciare un campione di 1 cm di altezza fino a 9 mm : strain rate di 10 7 s 1 =>11 giorni di 10 8 s 1 => 4 mesi. Processi geologici => strain rate s 1. CONFRONTO NELLE PROVE SPERIMENTALI I comportamenti duttili di differenti materiali possono essere confrontati tra loro se sono stati realizzati alla stessa temperatura omologa T m, definita dal rapporto T/ T f, dove T èla temperatura del materiale e T f la sua temperatura di fusione, entrambe espresse in gradi Kelvin ( K). La temperatura di fusione ci fornisce approssimativamente un indicazione sulla forza dei legami all interno del materiale, perciò materiali diversi mostrano comportamento simile quando sono alla stessa temperatura omologa, anche se la temperatura di fusione èmolto diversa. Per esempio per una T m = 0,95 olivina e ghiaccio mostrano lo stesso comportamento, (per il ghiaccio 259 K [ 14 C], per l olivina circa 2017 K [1744 C]). 22

23 PROVE SPERIMENTALI A STRESS COSTANTE Per esperimenti realizzati a basse temperature omologhe (T m < 0,5) (Fig. a) la curva mostra una costante diminuzione della velocità di deformazione (work hardening, strain hardening), cioè nel corso dell esperimento diventa sempre più difficile deformare il materiale. PROVE SPERIMENTALI A STRESS COSTANTE Per elevate temperature omologhe (T m > 0,5) (Fig. b) si ha: 1. inizialmente si ha uno strain elastico istantaneo appena si carica il campione (tratto 0, comportamento elastico); 2. se il carico applicato èmaggiore della soglia di plasticità il campione inizia a deformarsi in modo duttile. La velocità di deformazione è relativamente alta, e diminuisce progressivamente mentre l esperimento procede. Questo tratto della curva ( 1 ) è detto flusso primario o primary creep e il fenomeno della diminuzione della velocità di deformazione a stress costante è chiamato work hardening o strain hardening. 23

24 PROVE SPERIMENTALI A STRESS COSTANTE 3. ad un certo istante la velocità di deformazione diventa costante e la curva una retta. Il tratto 2 è detto flusso secondario o steady state creep. E questa la parte più interessante, perché a stress costante la deformazione può continuare indefinitamente e questo approssima i processi naturali, in cui si ha deformazione per periodi di tempo molto lunghi. 4. in molti esperimenti si può infine avere un ultima fase (flusso terziario o tertiary creep, 3 in Figura b), in cui la velocità di deformazione aumenta, e che precede la rottura del campione. PROVE SPERIMENTALI A STRAIN COSTANTE Per esperimenti realizzati a basse temperature omologhe (T m < 0,5 ) (Fig. c) la curva mostra un costante aumento dello stress necessario per mantenere la velocità di deformazione costante (work hardening, strain hardening), cioè nel corso dell esperimento diventa sempre più difficile deformare il materiale. Per elevate temperature omologhe (T m > 0,5 ) (Fig. d) èpossibile registrare una curva lungo la quale sono individuabili le solite quattro parti caratteristiche. 24

25 PROVE SPERIMENTALI A STRAIN COSTANTE 1. si ha una prima parte ( 0 in Figura d) in cui si ha un comportamento elastico e in cui lo stress aumenta molto velocemente; 2. raggiunto il limite di plasticità ( y ) il campione inizia a deformarsi in modo duttile, lo stress aumenta progressivamente ma lo stress incrementale diminuisce fino a zero. Questo èil flusso primario o primary creep ( 1 nella curva) ed esprime work hardening; PROVE SPERIMENTALI A STRAIN COSTANTE 3. quando lo stress ha raggiunto un valore costante si ha un flusso secondario o steady statecreep ( 2 nella curva), la deformazione nel campione continua anche senza aumentare lo stress; 4. il tratto finale della curva ( 3 ) esprime il flusso terziario o tertiary creep in cui lo stress diminuisce e precede la rottura. 25

26 PROVE SPERIMENTALI Con steady state creep (flusso duttile in stato di equilibrio) si intende una deformazione duttile (flusso) a stress e velocità di deformazione costante. Queste condizioni si hanno a temperature omologhe T m > 0,5 e quindi nella realtà a profondità comprese tra i 15 ed i 20 km. Poiché questo tipo di deformazione può accomodare grandi quantità di strain, si suppone che esso approssimi il comportamento duttile in natura. La velocità di deformazione in uno stadio steady state èfunzione dello stress applicato, temperatura, dimensioni dei cristalli che costituiscono la roccia e composizione. COMPORTAMENTO DELLE ROCCE Comportamento di un campione di marmo di Yule esteso: (a) normalmente e (b) parallelamente alla foliazione. (c) Curve stress/strain per diversi tassi di strain. da Fossen,

27 COMPORTAMENTO DELLE ROCCE Influenza dell'orientazione cristallografica Diagramma Sforzo tasso di strain per un singolo cristallo anidro di olivina compresso secondo tre differenti direzioni cristallografiche. Per ogni tasso di strain la deformazione è più facile per cristalli raccorciati nella direzione [110], a causa della minore resistenza del sistema di scivolamento (010)[100]. da Fossen, 2010 Comportamento fragile e duttile Una deformazione può portare alla rottura della roccia, con la formazione di una o più fratture che attraversano completamente la roccia. Questo tipo di comportamento èdetto comportamento fragile. Al contrario esistono altri eventi deformativi che producono una deformazione permanente nella roccia (strain) senza lo sviluppo di fratture. La roccia si deforma in modo diffuso e continuo, cioè senza lo sviluppo di discontinuità. Questo tipo di comportamento èdetto comportamento duttile. PROBLEMA!!! La scala di osservazione. 27

28 Comportamento fragile e duttile PROBLEMA!!! La scala di osservazione da Fossen, 2010 Comportamento fragile e duttile Deformazione fragile Il termine fragile riferito ad una deformazione ha un preciso significato meccanico e definisce un tipo di deformazione in cui si ha formazione di fratture e in cui lo strain viene accomodato da scivolamento dei grani lungo esse. E una deformazione di tipo non continuo, ed una roccia che ha un comportamento simile perde coesione e si frammenta Deformazione duttile Non esiste una definizione altrettanto chiara dal punto di vista meccanico per il termine duttile. Per duttilità si intende la capacità di un materiale di deformarsi in modo diffuso e uniforme. Una certa deformazione però può essere uniforme ad una certa scala di osservazione e non esserlo più ad un altra scala. da Fossen,

29 Comportamento fragile e duttile Comportamento fragile e duttile 29

REOLOGIA e MECCANISMI DEFORMATIVI

REOLOGIA e MECCANISMI DEFORMATIVI CORSO DI LAUREA IN SCIENZE GEOLOGICHE Corso di GEOLOGIA STRUTTURALE Docente: Antonio Funedda Proprietà meccaniche delle rocce: REOLOGIA e MECCANISMI DEFORMATIVI Dipartimento di Scienze chimiche e geologiche

Dettagli

RELAZIONI FRA STRESS E STRAIN

RELAZIONI FRA STRESS E STRAIN RELAZIONI FRA STRESS E STRAIN Il comportamento dei materiali varia in funzione del tipo di materiale, delle sue caratteristiche e delle condizioni esistenti al momento della deformazione. I materiali possono

Dettagli

Caratteristiche di materiali

Caratteristiche di materiali Caratteristiche di materiali Caratteristiche macroscopiche Lavorazione Microstruttura Formula chimica Legami chimici Struttura atomica Meccaniche Materiale Fisiche Elettriche Megnetiche Termiche Meccaniche

Dettagli

PROPRIETÀ MECCANICHE DEI MATERIALI

PROPRIETÀ MECCANICHE DEI MATERIALI PROPRIETÀ MECCANICHE DEI MATERIALI Il comportamento meccanico di un materiale rappresenta la risposta ad una forza o ad un carico applicato 1. Comportamento elastico 2. Comportamento plastico 3. Comportamento

Dettagli

Proprietà meccaniche. Proprietà dei materiali

Proprietà meccaniche. Proprietà dei materiali Proprietà meccaniche Proprietà dei materiali Proprietà meccaniche Tutti i materiali sono soggetti a sollecitazioni (forze) di varia natura che ne determinano deformazioni macroscopiche. Spesso le proprietà

Dettagli

Cenni sulle proprietà elastiche dei solidi

Cenni sulle proprietà elastiche dei solidi Cenni sulle proprietà elastiche dei solidi La nozione di corpo rigido deriva dal fatto che i corpi solidi sono caratterizzati dall avere una forma ed un volume non facilmente modificabili. Nella realtà

Dettagli

Caratteristiche di materiali

Caratteristiche di materiali Caratteristiche di materiali Caratteristiche macroscopiche Lavorazione Microstruttura Formula chimica Legami chimici Struttura atomica Meccaniche Materiale Fisiche Elettriche Megnetiche Termiche Meccaniche

Dettagli

DEFORMAZIONE SEMI-FRAGILE E/O SEMI-DUTTILE

DEFORMAZIONE SEMI-FRAGILE E/O SEMI-DUTTILE DEFORMAZIONE SEMI-FRAGILE E/O SEMI-DUTTILE Molte zone di taglio hanno caratteristiche intermedie tra quelle della deformazione fragile e quella della deformazione duttile. Alcune rocce possono infatti

Dettagli

Sforzo e Deformazione nei Metalli

Sforzo e Deformazione nei Metalli Sforzo e Deformazione nei Metalli I metalli vanno incontro a deformazione sotto l azione di una forza assiale a trazione Deformazione elastica: il metallo ritorna alla sua dimensione iniziale quando la

Dettagli

Deformazioni Lecture 2 Deformazioni: microstruttura e difetti

Deformazioni Lecture 2 Deformazioni: microstruttura e difetti Lecture 2 : microstruttura e difetti Introduzione In meccanica del continuo, le relazioni costitutive (dette anche equazioni costitutive, leggi costitutive o legami costitutivi) sono relazioni matematiche

Dettagli

CORSO DI LAUREA IN SCIENZE GEOLOGICHE A.A Corso di GEOLOGIA STRUTTURALE. Docente: Antonio Funedda PIEGHE-2 PIEGAMENTI SOVRAPPOSTI

CORSO DI LAUREA IN SCIENZE GEOLOGICHE A.A Corso di GEOLOGIA STRUTTURALE. Docente: Antonio Funedda PIEGHE-2 PIEGAMENTI SOVRAPPOSTI CORSO DI LAUREA IN SCIENZE GEOLOGICHE A.A. 2017-2018 Corso di GEOLOGIA STRUTTURALE Docente: Antonio Funedda PIEGHE-2 Possono esistere diversi motivi per cui si osservano dei piegamenti sovrapposti: 1.

Dettagli

Comportamento meccanico dei materiali

Comportamento meccanico dei materiali Comportamento meccanico dei materiali Riferimento: capitolo 2 del Kalpakjian Importante per comprendere il comportamento dei materiali durante le lavorazioni Introduzione Tensione e compressione Torsione

Dettagli

Lezione 4 GEOTECNICA. Docente: Ing. Giusy Mitaritonna

Lezione 4 GEOTECNICA. Docente: Ing. Giusy Mitaritonna Lezione 4 GEOTECNICA Docente: Ing. Giusy Mitaritonna e-mail: g.mitaritonna@poliba.it - Lezione 4 A. Cenni sul moto di filtrazione nelle terre B. Tensioni efficaci in presenza di forze di filtrazione C.

Dettagli

PROPRIETÀ MECCANICHE DEI POLIMERI. Proprietà meccaniche

PROPRIETÀ MECCANICHE DEI POLIMERI. Proprietà meccaniche PROPRIETÀ MECCANICHE DEI POLIMERI Informazioni necessarie per la progettazione di componenti in materiale polimerico: MODULO DI YOUNG (RIGIDEZZA) RESISTENZA ULTIMA DUTTILITÀ / FRAGILITÀ Ricavate da curve

Dettagli

Metallurgia e Materiali non Metallici. Prova di trazione. Marco Colombo.

Metallurgia e Materiali non Metallici. Prova di trazione. Marco Colombo. Metallurgia e Materiali non Metallici Prova di trazione Marco Colombo marco1.colombo@polimi.it 16/03/2016 La prova di trazione uniassiale Una delle più comuni e importanti prove distruttive, si ricavano

Dettagli

Insegnamento di GEOLOGIA STRUTTURALE

Insegnamento di GEOLOGIA STRUTTURALE CORSO DI LAUREA IN SCIENZE GEOLOGICHE A.A. 2017-2018 Insegnamento di GEOLOGIA STRUTTURALE Docente: Antonio Funedda Lineazioni LINEAZIONI Le lineazioni sono strutture lineari a piccola scala che interessano

Dettagli

Proprietà meccaniche. Prove meccaniche. prova di trazione prova di compressione prova di piegamento prova di durezza prova di fatica prova di creep

Proprietà meccaniche. Prove meccaniche. prova di trazione prova di compressione prova di piegamento prova di durezza prova di fatica prova di creep Proprietà meccaniche Prove meccaniche prova di trazione prova di compressione prova di piegamento prova di durezza prova di fatica prova di creep Prova di trazione provini di dimensione standard deformazione

Dettagli

Concetti di base. Sistemi ideali Sistemi reali SOLIDI CORPI LIQUIDI/GASSOSI (FLUIDI) SOLIDI DEFORMAZIONE ELASTICA

Concetti di base. Sistemi ideali Sistemi reali SOLIDI CORPI LIQUIDI/GASSOSI (FLUIDI) SOLIDI DEFORMAZIONE ELASTICA Reologia Concetti di base CORPI SOLIDI LIQUIDI/GASSOSI (FLUIDI) Sistemi ideali Sistemi reali SOLIDI DEFORMAZIONE ELASTICA FLUIDI DEFORM. IRREVERSIBILI (SCORRIMENTO) SOLIDI DEFORMAZIONI PERMANENTI FLUIDI

Dettagli

COMPORTAMENTO PLASTICO DEI MATERIALI METALLICI

COMPORTAMENTO PLASTICO DEI MATERIALI METALLICI COMPORTMENTO PLSTICO DEI MTERILI METLLICI 1 1. Prove sperimentali per la caratterizzazione del comportamento plastico dei materiali metallici 2. Modelli reologici 3. Effetto Bauschinger 4. Condizioni di

Dettagli

Propagazione delle onde sismiche

Propagazione delle onde sismiche Capitolo 8B I terremoti Propagazione delle onde sismiche Lezione 20B 2 8.1 Il terremoto Il terremoto, detto anche scossa tellurica o sisma, consiste in rapidi movimenti del terreno prodotti, di solito,

Dettagli

Modulo di Tecnologia dei Materiali. Docente: Dr. Giorgio Pia

Modulo di Tecnologia dei Materiali. Docente: Dr. Giorgio Pia Modulo di Tecnologia dei Materiali Docente: Dr. Giorgio Pia Modulo di Tecnologia dei Materiali La Diffusione Diffusione atomica nei solidi Diffusione per meccanismo interstiziale Gli atomi si muovono da

Dettagli

Corso di Geologia Applicata

Corso di Geologia Applicata Scienze e Tecnologie per i Beni Culturali Corso di Geologia Applicata Dott. Maria Chiara Turrini Stress Sforzo Ancora un piccolo sforzo e poi al ferro vecchio! Ancora 20 km e poi siamo arrivati. Resistete!

Dettagli

LA PROVA DI TRAZIONE. Prof. Michele Burgarelli

LA PROVA DI TRAZIONE. Prof. Michele Burgarelli Prof. Michele Burgarelli LA TRAZIONE Rappresenta il più importante test convenzionale Tensione convenzionale LA TRAZIONE LE DEFORMAZIONI Ritorno elastico LA DEFORMAZIONE ELASTICA LA DEFORMAZIONE ELASTICA

Dettagli

a) determinare le fasi presenti, la loro quantità (percentuale) e la loro composizione in una lega Pb30% - Sn a 300, 200 e 184, 180 e 20 C.

a) determinare le fasi presenti, la loro quantità (percentuale) e la loro composizione in una lega Pb30% - Sn a 300, 200 e 184, 180 e 20 C. ESERCIZIO 1 E dato il diagramma di stato del sistema Pb-Sn (figura). a) determinare le fasi presenti, la loro quantità (percentuale) e la loro composizione in una lega Pb30% - Sn a 300, 200 e 184, 180

Dettagli

Corso di Tecnologia dei Materiali ed Elementi di Chimica. Docente: Dr. Giorgio Pia

Corso di Tecnologia dei Materiali ed Elementi di Chimica. Docente: Dr. Giorgio Pia Corso di Tecnologia dei Materiali ed Elementi di Chimica Docente: Dr. Giorgio Pia La Scienza dei Materiali Corso di Tecnologia dei Materiali e Chimica Applicata Proprietà meccaniche dei metalli I metalli

Dettagli

Meccanica (4) Applicazioni delle legge di Newton Lezione 5, 15/10/2018, JW

Meccanica (4) Applicazioni delle legge di Newton Lezione 5, 15/10/2018, JW Meccanica (4) Applicazioni delle legge di Newton Lezione 5, 15/10/2018, JW 6.1-6.5 1 1. Forze di attrito L attrito è causato dalle irregolarità microscopiche delle superfici: Non esiste una "legge di natura"

Dettagli

a.a. 2005/2006 Laurea Specialistica in Fisica Corso di Fisica Medica 1 Proprietà elastiche 28/2/2006

a.a. 2005/2006 Laurea Specialistica in Fisica Corso di Fisica Medica 1 Proprietà elastiche 28/2/2006 a.a. 2005/2006 Laurea Specialistica in Fisica Corso di Fisica Medica 1 Proprietà elastiche 28/2/2006 Deformazione dei materiali Un asta di acciaio posta su due appoggi si flette sotto l azione del suo

Dettagli

UNIVERSITA DI FERRARA DIPARTIMENTO DI INGEGNERIA

UNIVERSITA DI FERRARA DIPARTIMENTO DI INGEGNERIA DIPARTIMENTO DI INGEGNERIA INGEGNERIA CIVILE [1227] Classe LM23 CORSO DI FONDAZIONI [012388] --- AA 2017-2018 PROF. ING. CLAUDIO COMASTRI mail claudio.comastri@unife.it ing.comastri@studiothesis.it tel.

Dettagli

TECNOLOGIA DELL ARCHITETTURA 2009/10 PROF. SERGIO RINALDI

TECNOLOGIA DELL ARCHITETTURA 2009/10 PROF. SERGIO RINALDI SISTEMI STRUTTURALI PRINCIPALI NELLA STORIA DELL ARCHITETTURA Esiste una stretta relazione tra il sistema strutturale e i materiali scelti per la costruzione sistema a telaio sistema trilitico sistema

Dettagli

LA SCATOLA DI TAGLIO DIRETTO

LA SCATOLA DI TAGLIO DIRETTO PROVA DI TAGLIO DIRETTO PROF.SSA ANNA SCOTTO DI SANTOLO Indice 1 LA SCATOLA DI TAGLIO DIRETTO ----------------------------------------------------------------------------------- 3 2 INTERPRETAZIONE DELLA

Dettagli

La sinterizzazione rappresenta il processo che porta dalle polveri ad un compatto in genere più denso, meno poroso e più resistente (è il passaggio

La sinterizzazione rappresenta il processo che porta dalle polveri ad un compatto in genere più denso, meno poroso e più resistente (è il passaggio La sinterizzazione rappresenta il processo che porta dalle polveri ad un compatto in genere più denso, meno poroso e più resistente (è il passaggio da una situazione incoerente ad una coerente). Si parla

Dettagli

CORSO DI LAUREA IN SCIENZE GEOLOGICHE A.A Corso di GEOLOGIA STRUTTURALE Docente: Antonio Funedda. Cenni di Meccanica delle rocce:

CORSO DI LAUREA IN SCIENZE GEOLOGICHE A.A Corso di GEOLOGIA STRUTTURALE Docente: Antonio Funedda. Cenni di Meccanica delle rocce: CORSO DI LURE IN SCIENZE GEOLOGICHE.. 01-013 Corso di GEOLOGI STRUTTURLE Docente: ntonio Funedda Cenni di Meccanica delle rocce: LO SFORZO (STRESS) STRESS = SFORZO Lo Stress è la causa della deformazione

Dettagli

Proprietà meccaniche. Risposta ad una forza o ad un carico applicato

Proprietà meccaniche. Risposta ad una forza o ad un carico applicato Proprietà meccaniche Come vengono misurate le proprietà meccaniche di un materiale e cosa rappresentano? Qual è la loro relazione con la lavorazione del materiale e con la sua struttura? Note le proprietà

Dettagli

Tecnologia dei Materiali e Chimica Applicata Soluzione Esercitazione IV Prof. Dott. Bernhard Elsener

Tecnologia dei Materiali e Chimica Applicata Soluzione Esercitazione IV Prof. Dott. Bernhard Elsener Tecnologia dei Materiali e Chimica Applicata Soluzione Esercitazione IV ESERCIZIO 4.1 E dato il diagramma di stato del sistema Pb-Sn (figura 1). Figura 1 Diagramma di stato Pb-Sn 1. Determinare le fasi

Dettagli

Unità didattica 3. Terza unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 3. Terza unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 3 Elasticità dei materiali Deformazione di un solido..2 Legge di Hooke.. 3 Forza elastica.. 4 Deformazione elastica di una molla... 5 Accumulo di energia attraverso la deformazione elastica..6

Dettagli

Proprietà dei materiali

Proprietà dei materiali meccaniche Proprietà dei materiali modulo elastico carico di snervamento resistenza a trazione durezza tenacità tenacità a frattura resistenza a fatica resilienza modulo di creep tempo di rilassamento

Dettagli

Meccanica Vettori, Principio di Saint Venant, Legge di Hooke, fatica

Meccanica Vettori, Principio di Saint Venant, Legge di Hooke, fatica Meccanica Vettori, Principio di Saint Venant, Legge di Hooke, fatica Grandezze scalari e vettoriali Grandezza scalare: numero reale, in fisica associato ad una unità di misura (senza direzione né verso)

Dettagli

Lezione Il calcestruzzo armato I

Lezione Il calcestruzzo armato I Lezione Il calcestruzzo armato I Sommario Il calcestruzzo armato Il comportamento a compressione Il comportamento a trazione Il calcestruzzo armato Il cemento armato Il calcestruzzo armato Il calcestruzzo

Dettagli

Temperatura di transizione vetrosa Tg

Temperatura di transizione vetrosa Tg Temperatura di transizione vetrosa Tg Ci sono due modi nei quali un polimero termoplastico compie la transizione dallo stato liquido a quello solido. Il comportamento è diverso a seconda che: il polimero

Dettagli

La risposta ad ogni quesito è scritta in carattere normale, ulteriori spiegazioni saranno scritte in corsivo.

La risposta ad ogni quesito è scritta in carattere normale, ulteriori spiegazioni saranno scritte in corsivo. La risposta ad ogni quesito è scritta in carattere normale, ulteriori spiegazioni saranno scritte in corsivo. ESERCIZIO 1 a) Dall osservazione del diagramma si evince che ad un elevata temperatura di fusione

Dettagli

Tecnologia dei Materiali e Chimica Applicata Soluzione Esercitazione IV Prof. Dott. Bernhard Elsener

Tecnologia dei Materiali e Chimica Applicata Soluzione Esercitazione IV Prof. Dott. Bernhard Elsener Tecnologia dei Materiali e Chimica Applicata Soluzione Esercitazione IV ESERCIZIO 4.1 E dato il diagramma di stato del sistema Pb-Sn (figura 1). Figura 1 Diagramma di stato Pb-Sn 1. Determinare le fasi

Dettagli

Statica ed equilibrio dei corpi

Statica ed equilibrio dei corpi Statica ed equilibrio dei corpi Avendo stabilito le leggi che regolano il moto dei corpi è possibile dedurre le leggi che regolano il loro equilibrio in condizioni statiche, cioè in assenza di movimento.

Dettagli

Immagini e fotografie tratte da:

Immagini e fotografie tratte da: Immagini e fotografie tratte da: - Alvarez W., Engelder T., Geiser, P.A., 1978. Classification of solution cleavage in pelagic limestones. Geology, 6, 263 266. - Deiana G., 2004. Elementi di tettonica.

Dettagli

Le proprietà meccaniche

Le proprietà meccaniche Antonio Licciulli, Antonio Greco Corso di scienza e ingegneria dei materiali Le proprietà meccaniche Proprietà meccaniche L effetto delle forze è di indurre delle deformazioni nei materiali Le relazioni

Dettagli

Sollecitazioni delle strutture

Sollecitazioni delle strutture Sollecitazioni delle strutture I pilastri e i muri portanti sono tipicamente sollecitati a compressione Le travi e i solai sono sollecitati a flessione L indeformabilità di questi elementi costruttivi

Dettagli

LEZIONE 7 CRITERI DI RESISTENZA

LEZIONE 7 CRITERI DI RESISTENZA LEZIONE 7 CRITERI DI RESISTENZA La resistenza di un materiale e definita dallo stato tensionale ultimo che esso puo sopportare prima della rottura. Un CRITERIO DI RESISTENZA (o di ROTTURA) e una relazione

Dettagli

La Meccanica dei Materiali si occupa del comportamento di corpi solidi sottoposti all azione di forze e momenti.

La Meccanica dei Materiali si occupa del comportamento di corpi solidi sottoposti all azione di forze e momenti. Stato di sforzo La Meccanica dei Materiali si occupa del comportamento di corpi solidi sottoposti all azione di forze e momenti. Questo comportamento include deformazioni, fratture e separazione di parti,

Dettagli

LE FORZE. Il mondo che ci circonda è costituito da oggetti che esercitano azioni gli uni sugli altri Queste azioni sono dette forze

LE FORZE. Il mondo che ci circonda è costituito da oggetti che esercitano azioni gli uni sugli altri Queste azioni sono dette forze LE FORZE Il mondo che ci circonda è costituito da oggetti che esercitano azioni gli uni sugli altri Queste azioni sono dette forze Le forze possono agire: Per contatto a distanza Effetto delle forze Le

Dettagli

Proprietà meccaniche. Prove meccaniche. prova di trazione prova di compressione prova di piegamento prova di durezza prova di fatica prova di creep

Proprietà meccaniche. Prove meccaniche. prova di trazione prova di compressione prova di piegamento prova di durezza prova di fatica prova di creep Proprietà meccaniche Prove meccaniche prova di trazione prova di compressione prova di piegamento prova di durezza prova di fatica prova di creep Prova di trazione provini di dimensione standard deformazione

Dettagli

CORSO DI LAUREA TRIENNALE IN SCIENZE GEOLOGICHE (8015) CORSO: PRINCIPI DI MECCANICA DELLE TERRE E DELLE ROCCE L ACQUA NEL MEZZO POROSO.

CORSO DI LAUREA TRIENNALE IN SCIENZE GEOLOGICHE (8015) CORSO: PRINCIPI DI MECCANICA DELLE TERRE E DELLE ROCCE L ACQUA NEL MEZZO POROSO. CORSO DI LAUREA TRIENNALE IN SCIENZE GEOLOGICHE (8015) CORSO: PRINCIPI DI MECCANICA DELLE TERRE E DELLE ROCCE L ACQUA NEL MEZZO POROSO Docente: Alessandro Gargini (E-mail: alessandro.gargini@unibo.it)

Dettagli

Università degli Studi di Catania

Università degli Studi di Catania Università degli Studi di Catania Dipartimento di Metodologie Fisiche e Chimiche per l Ingegneria Corso di Tecnologie di Chimica Applicata 6. Resistenza allo SNERVAMENTO Resistenza alla TRAZIONE DUREZZA

Dettagli

1. I fluidi e le loro caratteristiche. 2. La pressione in un fluido.

1. I fluidi e le loro caratteristiche. 2. La pressione in un fluido. UNITÀ 8 LA MECCANICA DEI FLUIDI 1. I fluidi e le loro caratteristiche. 2. La pressione in un fluido. 3. La pressione atmosferica. 4. La legge di Stevino. 5. La legge di Pascal. 6. La forza di Archimede.

Dettagli

3.Dinamica e forze. La dinamica è quella parte della meccanica che studia il moto di un corpo facendo riferimento alle cause esterne che lo generano.

3.Dinamica e forze. La dinamica è quella parte della meccanica che studia il moto di un corpo facendo riferimento alle cause esterne che lo generano. 3.Dinamica e forze La dinamica è quella parte della meccanica che studia il moto di un corpo facendo riferimento alle cause esterne che lo generano. Le due grandezze fondamentali che prendiamo in considerazione

Dettagli

MATERIALI STRUTTURALI PER L EDILIZIA: ACCIAIO, LATERIZIO E VETRO STRUTTURALE

MATERIALI STRUTTURALI PER L EDILIZIA: ACCIAIO, LATERIZIO E VETRO STRUTTURALE MATERIALI PER L EDILIZIA Prof. L. Coppola MATERIALI STRUTTURALI PER L EDILIZIA: ACCIAIO, LATERIZIO E VETRO STRUTTURALE Coffetti Denny PhD Candidate Dipartimento di Ingegneria e Scienze Applicate Università

Dettagli

Corso di Macromolecole LO STATO VETROSO

Corso di Macromolecole LO STATO VETROSO LO STATO VETROSO er studiare lo stato fisico del sistema ed introdurre quindi la discussione sullo stato vetroso si può descrivere come esso varia al variare della temperatura. Ø partendo dal cristallo

Dettagli

Strutture Elastoplastiche sotto carichi ripetuti

Strutture Elastoplastiche sotto carichi ripetuti Strutture Elastoplastiche sotto carichi ripetuti Si possono verificare i seguenti casi: -adattamento in campo elastico o shakedown -collasso incrementale o ratchetting - Plasticità alternata, o fatica

Dettagli

EQUAZIONI COSTITUTIVE

EQUAZIONI COSTITUTIVE QUAZIONI COSTITUTIV Macchina per Prova di trazione P P quazioni costitutive Prova di trazione di una barra di acciaio dolce, normalmente utiliato nelle costruzioni civili. Registriamo i valori simultanei

Dettagli

Comportamento meccanico dei terreni

Comportamento meccanico dei terreni Comportamento meccanico dei terreni Terreni non coesivi Metodi di analisi Non è possibile raccogliere campioni indisturbati di terreni non coesivi Si ricorre a prove in sito per la determinazione delle

Dettagli

4 SOLLECITAZIONI INDOTTE. 4.1 Generalità

4 SOLLECITAZIONI INDOTTE. 4.1 Generalità 4 SOLLECITAZIONI INDOTTE 4.1 Generalità Le azioni viste inducono uno stato pensionale interno alla struttura e all edificio che dipende dalla modalità con cui le azioni si esplicano. Le sollecitazioni

Dettagli

SOLUZIONE ESERCIZIO 1.1

SOLUZIONE ESERCIZIO 1.1 SOLUZIONE ESERCIZIO 1.1 La temperatura di fusione ed il coefficiente di espansione termica di alcuni metalli sono riportati nella tabella e nel diagramma sottostante: Metallo Temperatura di fusione [ C]

Dettagli

NYLON-CARBON DUREZZA & TRAZIONE

NYLON-CARBON DUREZZA & TRAZIONE NYLON-CARBON DUREZZA & TRAZIONE D R. F L A V I A N A C A L I G N A NO D R. M A S S I M O L O R U S S O D R. I G N A Z I O R O P P O L O N Y LO N - C A R BON PROVE DI DUREZZA E DI TRAZIONE INTRODUZIONE

Dettagli

Anche le proprietà meccaniche dipendono sostanzialmente dai legami chimici presenti nel materiale. La curva che esprime la forza agente tra due atomi

Anche le proprietà meccaniche dipendono sostanzialmente dai legami chimici presenti nel materiale. La curva che esprime la forza agente tra due atomi Anche le proprietà meccaniche dipendono sostanzialmente dai legami chimici presenti nel materiale. La curva che esprime la forza agente tra due atomi contiene le informazioni fondamentali per l elasticità

Dettagli

I materiali metallici sono perfetti?

I materiali metallici sono perfetti? I materiali metallici sono perfetti? Difetti nei solidi cristallini (a) difetti di punto (b) difetti di linea o 1-D (c) difetti di superficie o 2-D (a) Difetti di punto (1) vacanze(posizioni reticolari

Dettagli

Formulazione dell equazione del moto. Prof. Adolfo Santini - Dinamica delle Strutture 1

Formulazione dell equazione del moto. Prof. Adolfo Santini - Dinamica delle Strutture 1 Formulazione dell equazione del moto Prof. Adolfo Santini - Dinamica delle Strutture 1 Sistema a un grado di libertà In alcuni sistemi strutturali la massa, lo smorzamento e la rigidezza sono concentrati

Dettagli

Il dimensionamento di una struttura e, conseguentemente, i costi ed i rischi connessi alla sua realizzazione, dipendono dalla MISURA DELLA SICUREZZA

Il dimensionamento di una struttura e, conseguentemente, i costi ed i rischi connessi alla sua realizzazione, dipendono dalla MISURA DELLA SICUREZZA LEZIONE 9 LE VERIFICHE DI SICUREZZ Il dimensionamento di una struttura e, conseguentemente, i costi ed i rischi connessi alla sua realizzazione, dipendono dalla MISUR DELL SICUREZZ Un aspetto importante

Dettagli

Corso di Geologia Applicata

Corso di Geologia Applicata Tecnologie per i Beni Culturali Corso di Geologia Applicata Dott. Maria Chiara Turrini Applicando uno sforzo (stress carico - pressione) crescente al mattone questo, superata una certa soglia di carico

Dettagli

IL LEGNO COME MATERIALE STRUTTURALE E LE SUE PROPRIETA MECCANICHE

IL LEGNO COME MATERIALE STRUTTURALE E LE SUE PROPRIETA MECCANICHE Corso di formazione: SISTEMI COSTRUTTIVI DI COPERTURA IN LEGNO LAMELLARE Ordine degli Ingegneri di Napoli 5 e 6 maggio 2014 IL LEGNO COME MATERIALE STRUTTURALE E LE SUE PROPRIETA MECCANICHE Parte 2: IL

Dettagli

EFFETTO DELL ATTRITO LATERALE NELLA PROVA DI COMPRESSIONE EDOMETRICA

EFFETTO DELL ATTRITO LATERALE NELLA PROVA DI COMPRESSIONE EDOMETRICA EFFETTO DELL ATTRITO LATERALE NELLA PROVA DI COMPRESSIONE EDOMETRICA luigi.mongiovi.ing@gmail.com Sommario Nella prova di compressione edometrica la principale causa di errore sperimentale è l attrito

Dettagli

FISICA. STATICA Le forze. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

FISICA. STATICA Le forze. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica FISICA STATICA Le forze Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica L EFFETTO DELLE FORZE Una forza applicata a un oggetto fermo può fare aumentare la sua velocità; mentre applicata

Dettagli

F, viene allungata o compressa di un tratto s rispetto alla sua posizione di equilibrio.

F, viene allungata o compressa di un tratto s rispetto alla sua posizione di equilibrio. UNIÀ 4 L EQUILIBRIO DEI SOLIDI.. La forza elastica di una molla.. La costante elastica e la legge di Hooke. 3. La forza peso. 4. Le forze di attrito. 5. La forza di attrito statico. 6. La forza di attrito

Dettagli

Tecnologia dei Materiali e Chimica Applicata Soluzione Esercitazione IV Prof. Dott. Bernhard Elsener

Tecnologia dei Materiali e Chimica Applicata Soluzione Esercitazione IV Prof. Dott. Bernhard Elsener ESERCIZIO 4.1 E dato il diagramma di stato del sistema Pb-Sn (figura 1). Figura 1 Diagramma di stato Pb-Sn 1. Determinare le fasi presenti, la loro quantità in percentuale e la loro composizione in una

Dettagli

Compito di Fisica Generale (Meccanica) 13/01/2014

Compito di Fisica Generale (Meccanica) 13/01/2014 Compito di Fisica Generale (Meccanica) 13/01/2014 1) Un punto materiale inizialmente in moto rettilineo uniforme è soggetto alla sola forza di Coriolis. Supponendo che il punto si trovi inizialmente nella

Dettagli

Cenni di resistenza dei materiali

Cenni di resistenza dei materiali Università degli Studi di Bergamo Corso di Laurea in Ingegneria Tessile Corso di Elementi di Meccanica Cenni di resistenza dei materiali Un corpo soggetto a dei carichi presenta modificazioni più o meno

Dettagli

Dall idrostatica alla idrodinamica. Fisica con Elementi di Matematica 1

Dall idrostatica alla idrodinamica. Fisica con Elementi di Matematica 1 Dall idrostatica alla idrodinamica Fisica con Elementi di Matematica 1 Concetto di Campo Insieme dei valori che una certa grandezza fisica assume in ogni punto di una regione di spazio. Esempio: Consideriamo

Dettagli

DINAMICA 2. Quantità di moto e urti Attrito tra solidi Attrito viscoso Forza elastica Proprietà meccaniche dei solidi Forza centripeta

DINAMICA 2. Quantità di moto e urti Attrito tra solidi Attrito viscoso Forza elastica Proprietà meccaniche dei solidi Forza centripeta DINAMICA 2 Quantità di moto e urti Attrito tra solidi Attrito viscoso orza elastica Proprietà meccaniche dei solidi orza centripeta 2 Seconda Legge di Newton: quantità di moto Dalla seconda Legge di Newton

Dettagli

ELEMENTI DI PROGETTAZIONE INGEGNERIA INDUSTRIALE

ELEMENTI DI PROGETTAZIONE INGEGNERIA INDUSTRIALE ELEMENTI DI PROGETTAZIONE INGEGNERIA INDUSTRIALE SOLUZIONI STANDARD PER PROBLEMI SEMPLICI La modellazione è parte della progettazione Nelle fasi iniziali di un progetto si usano modelli approssimati Con

Dettagli

Grandezze: Statiche Cinematiche Idrauliche

Grandezze: Statiche Cinematiche Idrauliche 1 Approccio Rigoroso Meccanica mezzi discontinui Solido particellare + Fluido continuo Approccio Ingegneristico Meccanica continuo Solido & Fluido = continui sovrapposti Grandezze: Forze interparticellari

Dettagli

GRANDEZZE SCALARI E VETTORIALI

GRANDEZZE SCALARI E VETTORIALI GRANDEZZE SCALARI E VETTORIALI Una grandezza scalare è definita da un numero reale con dimensioni. (es.: massa, tempo, densità,...) Una grandezza vettoriale è definita da un modulo (numero reale non negativo

Dettagli

GRANDEZZE SCALARI E VETTORIALI

GRANDEZZE SCALARI E VETTORIALI GRANDEZZE SCALARI E VETTORIALI Una grandezza scalare è definita da un numero reale con dimensioni. (es.: massa, tempo, densità,...) Una grandezza vettoriale è definita da un modulo (numero reale non negativo

Dettagli

LEZIONI PER IL CORSO DI MECCATRONICA LA PROVA DI TRAZIONE- 01

LEZIONI PER IL CORSO DI MECCATRONICA LA PROVA DI TRAZIONE- 01 LEZIONI PER IL CORSO DI MECCATRONICA LA PROVA DI TRAZIONE- 01 PROF. FEDERICO GRUBISSA ITT ENRICO FERMI VENEZIA CARATTERISTICHE DEI MATERIALI Ogni corpo materiale, sottoposto a delle forze, subisce delle

Dettagli

QUESTE DISPENSE SONO DESTINATE ESCLUSIVAMENTE AGLI STUDENTI DELLA LAUREA IN SCIENZE DELLA TERRA A.A. 2007-2008 CHE SEGUONO IL CORSO DI

QUESTE DISPENSE SONO DESTINATE ESCLUSIVAMENTE AGLI STUDENTI DELLA LAUREA IN SCIENZE DELLA TERRA A.A. 2007-2008 CHE SEGUONO IL CORSO DI Corso di ELEMENTI DI GEOLOGIA STRUTTURALE Docente: Antonio Funedda sito web per scaricare le dispense: http://www.unica.it/antoniofunedda/didat_ita.html 24 ore frontali lezioni ed esercitazioni + 12 ore

Dettagli

Corso di GEOLOGIA STRUTTURALE

Corso di GEOLOGIA STRUTTURALE Università degli Studi di Cagliari Dipartimento di Scienze Chimiche e Geologiche Facoltà di Scienze Via Trentino, 51 09127 Cagliari LAUREA IN SCIENZE GEOLOGICHE A.A. 2017-2018 Corso di GEOLOGIA STRUTTURALE

Dettagli

Traslazioni. Debora Botturi ALTAIR. Debora Botturi. Laboratorio di Sistemi e Segnali

Traslazioni. Debora Botturi ALTAIR.  Debora Botturi. Laboratorio di Sistemi e Segnali Traslazioni ALTAIR http://metropolis.sci.univr.it Argomenti Velocitá ed accelerazione di una massa che trasla Esempio: massa che trasla con condizioni iniziali date Argomenti Argomenti Velocitá ed accelerazione

Dettagli

17/03/2014. Le prove meccaniche distruttive. Tipologie di deformazione. Sistemi di Produzione D. Antonelli, G. Murari C.L.U.T.

17/03/2014. Le prove meccaniche distruttive. Tipologie di deformazione. Sistemi di Produzione D. Antonelli, G. Murari C.L.U.T. Le prove meccaniche distruttive Le prove meccaniche distruttive Sistemi di Produzione D. Antonelli, G. Murari C.L.U.T. Editrice, 2008 capitolo 3 Tecnologia meccanica S. Kalpakjian, S. R. Schmid Pearson

Dettagli

La sinterizzazione rappresenta il processo che porta dalle polveri ad un compatto in genere più denso, meno poroso e più resistente (è il passaggio

La sinterizzazione rappresenta il processo che porta dalle polveri ad un compatto in genere più denso, meno poroso e più resistente (è il passaggio La sinterizzazione rappresenta il processo che porta dalle polveri ad un compatto in genere più denso, meno poroso e più resistente (è il passaggio da una situazione incoerente ad una coerente). Si parla

Dettagli

Caratterizzazione dei terreni a grana grossa

Caratterizzazione dei terreni a grana grossa Caratterizzazione dei terreni a grana grossa Caratterizzazione dei terreni incoerenti I terreni incoerenti non sono campionabili, ad eccezione dei casi in cui: le particelle sono cementate, esiste una

Dettagli

La resistenza dei materiali può essere misurata facendo ricorso a prove normalizzate.

La resistenza dei materiali può essere misurata facendo ricorso a prove normalizzate. La resistenza dei materiali può essere misurata facendo ricorso a prove normalizzate. Segui attentamente il video relativo ad una prova normalizzata di trazione LA PROVA DI TRAZIONE Molte sono le prove

Dettagli

Proprietà meccaniche dei polimeri

Proprietà meccaniche dei polimeri Proprietà meccaniche dei polimeri Le materie plastiche vanno incontro al rammollimento, cioè la variazione di durezza e resistenza meccanica a caldo. Molte materie plastiche, essendo costituite da polimeri

Dettagli

LEGAME COSTITUTIVO. ) e mondo cinematico (deformazioni ε ij

LEGAME COSTITUTIVO. ) e mondo cinematico (deformazioni ε ij LGAM COSTITUTIVO Crea un legame matematico tra mondo statico (sforzi ij ) e mondo cinematico (deformazioni ij ); Si tratta di un modello fenomenologico, che coglie il comportamento del materiale alla macroscala;

Dettagli

Presentazione dell edizione italiana

Presentazione dell edizione italiana Indice Presentazione dell edizione italiana Prefazione Nota sulle unita di misura Glossario dei simboli L alfabeto greco XIII XVII XIX XX XXIV 1 Introduzione all ingegneria geotecnica 1 1.1 Che cos e l

Dettagli

Scuola di Architettura Corso di Laurea Magistrale quinquennale c.u.

Scuola di Architettura Corso di Laurea Magistrale quinquennale c.u. Scuola di Architettura Corso di Laurea Magistrale quinquennale c.u. Scuola di Architettura Corso di Laurea: Magistrale Architettura c.u. Criteri di resistenza Sommario La misura del livello di sicurezza

Dettagli

RESISTENZA TEORICA AL TAGLIO

RESISTENZA TEORICA AL TAGLIO RESISTENZA TEORICA AL TAGLIO Deformazione plastica: variazione di forma del materiale spostamento permanente degli atomi dalle posizioni reticolari Scivolamento di piani reticolari di passo pari a multipli

Dettagli

GRANDEZZE SCALARI E VETTORIALI

GRANDEZZE SCALARI E VETTORIALI GRANDEZZE SCALARI E VETTORIALI Una grandezza scalare è definita da un numero reale con dimensioni (es.: massa, tempo, densità,...) Una grandezza vettoriale è definita da un modulo (numero reale non negativo

Dettagli

Immagini e fotografie tratte da:

Immagini e fotografie tratte da: Immagini e fotografie tratte da: - Alvarez W., Engelder T., Geiser, P.A., 1978. Classification of solution cleavage in pelagic limestones. Geology, 6, 263 266. - Deiana G., 2004. Elementi di tettonica.

Dettagli

Corso di Chimica Generale CL Biotecnologie

Corso di Chimica Generale CL Biotecnologie Corso di Chimica Generale CL Biotecnologie STATI DELLA MATERIA Prof. Manuel Sergi MATERIA ALLO STATO GASSOSO MOLECOLE AD ALTA ENERGIA CINETICA GRANDE DISTANZA TRA LE MOLECOLE LEGAMI INTERMOLECOLARI DEBOLI

Dettagli

Problema. caso uniassiale prova di trazione. caso multiassiale (carico generico)

Problema. caso uniassiale prova di trazione. caso multiassiale (carico generico) Criteri di Rottura Problema caso uniassiale prova di trazione caso multiassiale (carico generico)? criterio di rottura 1 Criteri di Rottura ASSUNZIONE BASE: Il collasso di un componente avviene quando

Dettagli

Università del Salento Facoltà di Ingegneria Costruzione di Macchine

Università del Salento Facoltà di Ingegneria Costruzione di Macchine Università del Salento Facoltà di Ingegneria Costruzione di Macchine Lezione 3 Prova di trazione a cura del prof. ing. Vito Dattoma e dell ing. Riccardo Nobile 1 Prove di caratterizzazione meccanica Prova

Dettagli

Le forze. La forza è una grandezza fisica che descrive l interazione tra due corpi o sistemi.

Le forze. La forza è una grandezza fisica che descrive l interazione tra due corpi o sistemi. LE FORZE Le forze La forza è una grandezza fisica che descrive l interazione tra due corpi o sistemi. Esistono due tipi di forze: forze di contatto che si manifestano solo quando i corpi vengono a contatto

Dettagli