1 TEMPERATURA E CALORE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "1 TEMPERATURA E CALORE"

Transcript

1 1 TEMPERATURA E CALORE

2 Introduzione al Problema 2 PROBLEMA: studiare un sistema composto da un numero molto grande di particelle (atomi o molecole), come ad esempio le particelle contenute in una mole di gas (N ~ ). In questi casi è impossibile utilizzare solo le grandezze fisiche introdotte con lo studio della meccanica: v, a, F, m. In questi casi si rinuncia ad una descrizione di ogni singola particella e si introducono nuove grandezze fisiche che forniscono una descrizione complessiva del sistema di particelle.

3 Concetto di Temperatura 3 Quando spostiamo un corpo (acqua) da un ambiente freddo (frigorifero) ad un ambiente caldo (pentola su un fornello acceso) avvengono delle variazione di alcune sue caratteristiche e proprietà fisiche, ad esempio, l acqua evapora. In altre situazioni può: solidificarsi; espandersi; comprimersi, ecc Analoghe variazioni si possono avere considerando altri sistemi fisici (gas, solidi, ecc) ed altre proprietà (pressione, resistenza elettrica, ecc)

4 Concetto di Temperatura 4 Possiamo utilizzare le variazioni di queste proprietà per definire in modo preciso il concetto di TEMPERATURA. Ad esempio consideriamo come sistema fisico una sbarra di metallo (A). Come fenomeno fisico la dilatazione termica di A. Se lo strumento che rivela le variazioni di temperatura non è tarato si chiama TERMOSCOPIO (T) Cosa vuol dire che A e T sono in equilibrio termico tra loro? Vuol dire che: messi A e T in CONTATTO, nessuno dei due modifica le sue caratteristiche (quindi non si dilata, non evapora, non solidifica, ecc)

5 5 Principio ZERO della Termodinamica Se il termoscopio T è in equilibrio termico sia con il corpo A sia con il corpo B, allora A e B sono in equilibrio termico tra loro. In altri termini: ogni corpo possiede una temperatura, se due corpi sono in equilibrio termico tra loro, possiedono la stessa temperatura.

6 6 Misura della Temperatura Bisogna scegliere FENOMENI FISICI RIPRODUCIBILI per fissare una scala standard delle temperature. Si sceglie il cosiddetto punto triplo dell acqua, cioè lo stato in cui coesistono le tre fasi (solida, liquida e gassosa) dell H 2 O (ghiaccio, acqua e vapore) e gli si assegna la temperatura di T 3 =273,16 Kelvin.

7 Termometro a gas a volume costante 7 Il termometro a gas a volume constante viene utilizzato in laboratorio per stabilire alcune temperature di riferimento (punti fissi), ad esempio: Punto triplo dell idrogeno T H =13.81 K Ebollizione dell acqua T ebol =373,12 K

8 8 Scale termometriche Scale termometriche: Scala Celsius T C = T K - 273,15 Scala Farenheit T F =(9/5)T C +32 Importante: una differenza di temperature in scala Celsius e scala Kelvin ha lo stesso valore numerico Ovvero T = 20 C = 20 K

9 9 Scala Fahrenheit Scala Farenheit T F =(9/5)T C +32 Esempio: T C =20 C Qual è la corrispondente temperatura in scala Fahreneit? T F F

10 Dilatazione Termica 10 Supponiamo di avere una sbarra metallica molto sottile (sezione molto più piccola della lunghezza). Supponiamo che alla temperatura T 0 =0 C abbia lunghezza L 0. Alla temperatura T la sbarra avrà lunghezza: L=L 0 (1+T) Il coefficiente è detto di dilatazione termica ed è caratteristico del materiale. Nel caso di un solido aumenta il volume V=V 0 (1+T), con ~ 3

11 Alcuni Coefficienti di Dilatazione Termica 11 FERRO = C -1 ALLUM = C -1 ORO = C -1 PIOMBO = C -1 VETRO = C -1

12 Esempio Numerico sulla Dilatazione Termica 12 Dati numerici FERRO = C -1 I binari delle ferrovie sono lunghi 12 metri. Determinare lo spazio necessario tra un binario ed il successivo in modo che il treno non deragli tra le temperature 0 C --> 42 C. Soluzione Calcoliamo il valore della dilatazione L = L - L 0 nell intervallo considerato T. L=L 0 (1+T) L-L 0 = L = L 0 T = = 0,55 cm!!

13 13 Calorimetria

14 Calore 14 Le variazioni di temperatura di un sistema termodinamico e dell ambiente avvengono per mezzo di trasferimento di ENERGIA tra sistema termodinamico ed ambiente. Questa ENERGIA è detta TERMICA. E associata alle energie cinetiche e potenziali degli atomi/molecole che compongono il sistema TD e l ambiente. A questa energia trasferita si dà il nome di CALORE. Il CALORE è l energia che viene trasferita tra un sistema termodinamico ed il suo ambiente a causa della loro differenza di temperatura.

15 Conservazione dell Energia 15 In un sistema isolato i cui elementi sono a diverse temperature il calore passa dalla parte a temperatura più alta alla parte a temperatura più bassa. La parte di energia termica persa da una parte del sistema è uguale alla quantità di calore assorbita dall altra parte. In generale : Q ceduto = Q assorbito

16 16 Calore

17 Unità di misura del Calore 17 Unità di misura del Calore è il JOULE [J]. La vecchia unità di misura del calore è la caloria = quantità di calore necessaria a far passare 1 grammo di acqua da 14.5 C a 15.5 C Fattore di Conversione: 1 caloria = Joule

18 Trasferimento di Calore 18 E possibile cedere CALORE ad un sistema e la temperatura del sistema cresce oppure assorbire CALORE da un sistema e in tal caso la temperatura del sistema diminuisce Per convenzione: Q ced <0 Q ass >0 La variazione di temperatura del sistema dipende da: Quanto calore si cede al o si assorbe dal sistema; La sostanza di cui è composto il sistema; La massa del sistema.

19 Trasferimento del Calore 19 Sia Q il calore assorbito o ceduto: Q = cm(t F -T I ) con c = calore specifico Q = C(T F -T I ) con C =mc capacità termica m = massa, T F = temperatura finale T I = temperatura iniziale Queste equazioni valgono se il sistema NON subisce una trasformazione di fase (da liquido a solido o viceversa, oppure da liquido a vapore o viceversa, ecc)

20 Calori specifici ( a p = 1 atm, T = 20 C ) 20 Q = cm(t F -T I ) c = Q/[m(T F -T I )] Calore specifico c = quantità di calore che occorre scambiare con l unità di massa di una data sostanza, alla temperatura T, per farne variare la temperatura di 1 C (o di 1K). Esempio: c H20 = 4186 J/Kg C c ghiaccio = 2090 J/Kg C c argento = 230 J/Kg C c mercurio = 140 J/Kg C

21 Esercizio : T all equilibrio? 21 Calore ceduto dal tè = calore assorbito dalla tazza Q = cm(t F -T I ) con c = calore specifico m tè = 200g, m tazza = 150 g c tè = 4186 J/Kg C c tazzina = 840 J/Kg C Q tè = m tè c tè (T eq 95 C) Q tazza = m tazza c tazza (T eq 25 C) < 0! convenzione : Q ceduto > 0! convenzione : Q assorbito Q tè = Q tazza -> T = 86 C

22 Esempio 22 Sapendo che il calore specifico dell acqua a pressione atmosferica è 4186 J/ C, quanta energia bisogna fornire a 1 l di acqua per farla bollire? T f = 373,12 K 100 C e T i = 25 C Sia c = 4186 J/(Kg C) (pressione atmosferica) 1 l acqua -> 1 Kg Q = cm(t f -T i ) = 4186x1x(100-25) = 313,95 kj!!

23 Trasformazioni di stato 23 Come possiamo descrivere una trasformazione di stato di un sistema termodinamico? Esempio: un blocco di ghiaccio a temperatura iniziale T I = -40 C che assorbe calore trasformandosi in acqua a temperatura finale T F = +20 C?

24 Trasformazioni di stato 24 Sperimentalmente si osserva: Fase 1: il ghiaccio assorbe calore sino a raggiungere la temperatura di 0 C. Fase 2: il ghiaccio comincia a liquefarsi, alla temperatura costante T F = 0 C Fase 3: dopo essersi liquefatto completamente e trasformato in acqua, aumenta la temperatura sino a +20 C.

25 Trasformazioni di stato 25 Temperatura [ C] Q 1 Q 2 Q 3 calore assorbito

26 Trasformazioni di stato 26 Fase 1: il ghiaccio assorbe calore Q 1 Fase 2: la mistura ghiaccio-acqua assorbe calore Q 2 Fase 3: l acqua assorbe calore Q 3

27 Calore Latente 27 Fase 2: la mistura ghiaccio-acqua assorbe calore Q 2 Quanto vale Q 2? Q 2 = L F m, m = massa, L F = calore latente di fusione Il calore latente di fusione è spesso indicato anche con la lettera greca

28 28 Trasformazioni di stato

29 Ricapitolazione: esempio 29 Quanto calore è necessario fornire ad un blocco di ghiaccio di massa m=1kg a temperatura iniziale T iniziale = -40 C per trasformarsi in acqua a temperatura finale T finale = +20 C? Siano: c G = J/kg C L F = J/kg c H2O = J/kg C Q TOT = Q 1 + Q 2 + Q 3 Q TOT = c G m(t fusione -T iniziale )+L F m+ c A m(t finale -T fusione )= J Q 1 = c G m(t fusione -T iniziale ) = [0-(-40)]J = J Q 2 = L F m = J = J Q 3 = c H2O m(t finale -T fusione ) = [20-0]J = J

30 Riepilogo di calorimetria 30 Applicate la conservazione dell energia: Calore assorbito = Calore ceduto Se non ci sono trasformazioni di fase, il calore (ceduto o assorbito) è dato da: Q = mc(t fin -T iniz ) = massacalore specifico T Q = C(T fin -T iniz ) = capacità termicat All equilibrio T fin è la stessa per tutte le sostanze Le trasformazioni di fase avvengono a temperatura costante! Q=mL F = (massa che cambia fase) calore latente di fusione o evaporazione

31 Esercizio 1 31 Consideriamo un cubetto di ghiaccio di massa 3 g. Assumendo che esso, a partire dai -10 C del freezer, venga lasciato in una bibita a 35 C, determinare la quantità di calore assorbita dai 3g di ghiaccio fino all equilibrio termico (c ghiaccio = 2090 J/Kg C, L F = J/Kg). Soluzione Q = c G m(t fusione -T iniziale )+ L F m+ c A m(t finale -T fusione ) = = (0-(-10)) (35-0) = = = 1.5 kj

32 Esercizio 2 32 Un contenitore isolato contiene m H2O =239g di acqua alla temperatura T H2O =70 C. Per raffreddarlo viene aggiunto un cubetto di ghiaccio m ghiaccio =19.1 g alla temperatura T ghiaccio =-5 C. Calcolare la temperatura di equilibrio del sistema, ricordando che: Calore specifico acqua: c H2O = 4186 J/kg C Calore specifico ghiaccio c H2O = 2093 J/kg C Calore latente di fusione del ghiaccio: f = J/kg

33 Soluzione esercizio 2 33 Dati iniziali: T H2O = 70 C m H2O =0.239kg T gh =-5 C m gh = kg c H2O = 4186 J/kg C c gh = 2093 J/kg C f = J/kg T fus =0 C Il calore ceduto dall acqua deve essere uguale a quello assorbito dal ghiaccio Calore ceduto dall acqua : Q ced = m H2O c H2O (T eq -T H2O ) <0!!! Calore assorbito dal ghiaccio : Q ass = m gh c gh (T fus -T gh ) + m gh f + m gh c H2O (T eq -T fus ) Innalzamento temp Fusione ghiaccio Innalzamento temp

34 34 Il calore ceduto dall acqua deve essere uguale (in valore assoluto!) a quello assorbito dal ghiaccio Q Q ced ass m H 2OcH 2O ( TH 2O Teq ) mghcgh( Tfus Tgh) mgh f mghch 2O( Teq Tfus) L unica incognita è: T eq Risolvendo si trova: T eq = 58.7 C

35 Trasformazioni termodinamiche 35 Termodinamica si occupa delle trasformazioni tra le forme più organizzate di Energia (energia meccanica) con quelle meno organizzate come il calore, che è connesso in qualche modo al moto disordinato delle molecole. Come si descrivono quantitativamente gli scambi energetici in un sistema termodinamico?

36 Scambi di energia 36 Si sono viste le definizioni di: o Lavoro per il punto materiale o o L = S F i x i, F i costante lungo lo spostamento x i Quantità di calore (stessa unità di misura dell energia) Vari esperimenti condotti nel 800 hanno dimostrato l equivalenza tra calore e lavoro Esperimento di Joule Per descrivere completamente gli scambi energetici in un sistema termodinamico si deve introdurre il concetto di lavoro del sistema.

37 37 Espressione del lavoro in termodinamica

38 Scambi di energia di un sistema termodinamico 38 Il calore assorbito o ceduto da un sistema termodinamico corrisponde ad un scambio di energia tra il sistema stesso e l ambiente. L unità di misura è il Joule [J]. Il sistema può Assorbire calore Cedere calore Compiere lavoro Subire lavoro

39 Convenzioni sui segni 39 Stabiliamo le seguenti convenzioni sui segni: Assorbe calore: Q>0 Cede calore: Q<0 Compie lavoro: L>0 Subisce lavoro: L<0

40 Espressione del lavoro in termodinamica 40 Come possiamo schematizzare gli scambi di calore Q e lavoro L del Sistema Termodinamico con l Ambiente? Consideriamo come sistema fisico termodinamico un GAS, contenuto in un recipiente cilindrico dotato di un PISTONE MOBILE. Supponiamo che il gas si espanda nel cilindro, sollevando il pistone di una altezza x. x stato iniziale stato finale

41 Espressione del lavoro in termodinamica 41 La forza esercitata dal GAS sul pistone sia F = cost. La sezione del cilindro (= area del pistone) sia A. Il lavoro L = Fx = pax = pv, con V = variazione di volume del gas A stato iniziale A stato finale A x

42 Lavoro in termodinamica con F non costante 42 Diagramma di CLAPEYRON diagramma (p,v) p p INIZ p FIN V V INIZ V FIN

43 Lavoro in termodinamica con F non costante 43 p p i p INIZ p FIN Stato iniziale del Sistema TD: p INIZ, V INIZ, T INIZ. Stato finale del Sistema TD: p FIN, V FIN, T FIN. Se V FIN > V INZ si ha L>0 V INIZ V i V FIN V

44 Trasformazioni termodinamiche 44 Trasformazione termodinamica : variazione dello stato di un sistema termodinamico (es: pressione, temperatura, volume, etc.) dai valori iniziali di equilibrio p i, V i, T i, etc. ad altri valori p f, V f, T f, etc. in un nuovo stato di equilibrio Trasformazioni termodinamiche : Isobara ( a pressione costante ) Isocora ( a volume costante ) Isoterma ( a temperatura costante) Adiabatica (senza scambio di calore)

45 Trasformazioni a pressione costante: isobare 45 L p p V i i i p i V i p ( V V FIN INIZ ) p i = p INIZ = p FIN =p V INIZ V i V FIN V

46 Trasformazioni a volume costante: isocore 46 p V i = V INIZ = V FIN V V INIZ = V FIN

47 Trasformazioni a temperatura costante: isoterme 47 p T i =T INIZ = T FIN V

48 Trasformazioni generica 48 p V

49 Primo Principio della Termodinamica 49 Sperimentalmente si osserva che, sebbene Q ed L dipendono dalla particolare trasformazione del sistema termodinamico, la quantità Q-L dipende SOLO dallo stato iniziale e dallo stato finale del sistema termodinamico. La quantità Q-L rappresenta un cambiamento di una proprietà intrinseca del Sistema Termodinamico che chiamiamo ENERGIA INTERNA E INT. E INT =Q-L

50 50 Alcune osservazioni sul Primo Principio applicate a: - Trasformazioni adiabatiche - Trasformazioni isocore

51 Trasformazione Adiabatica 51 Trasformazione adiabiatica: Q=0 (non vi sono scambi di calore tra il sistema termodinamico e l ambiente). Dal I principio: Se Q= 0 --> E INT =-L Se L>0 il gas si sta espandendo E INT <0, ovvero l Energia Interna FINALE è MINORE dell Energia Interna INIZIALE Sperimentalmente si osserva che il gas si raffredda!

52 Trasformazione Isocore 52 Se V INIZ = V FIN si ha V =0 e quindi L = 0 e E INT = Q. Se il sistema termodinamico assorbe calore (Q>0) si ha E INT >0 Sperimentalmente si osserva che il sistema termodinamico si riscalda.

53 53 Definizioni dei meccanismi di trasmissione del Calore Conduzione: contatto diretto tra sorgente di calore e sistema termodinamico.

54 54 Definizioni dei meccanismi di trasmissione del Calore Convezione: un liquido, a contatto con una sorgente di calore si espande e, per il principio di Archimede, si muove verso l altro. Analogamente le parti fredde scendono, e così via (meccanismo di trasmissione di calore in una pentola piena d acqua su un fornello).

55 55 Definizioni dei meccanismi di trasmissione del Calore Irraggiamento: trasmissione del calore per mezzo di onde elettromagnetiche (Sole, Fuoco, forno a micro-onde, ecc)

56 Sintesi 56 Temperatura e calore Scambi energetici: Q, L In generale dipendono dal tipo di trasformazione: Trasformazioni termodinamiche (passaggio tra due stati di equilibrio): isocora, isobara, isoterma, adiabatica Primo principio della termodinamica E=Q-L Sistema nello stato iniziale Sistema in interazione Sistema nello stato finale Energia termica Energia meccanica

57 57 Gas Perfetti

58 Definizione di Gas Perfetto 58 Il gas perfetto è: 1) Formato da N corpuscoli puntiformi di massa m * 2) Il Volume dei corpuscoli è molto minore del volume occupato dal gas 3) I corpuscoli NON sono soggetti a forza di gravità 4) Non ci sono urti tra i corpuscoli ma solo tra i corpuscoli e le pareti del contenitore 5) Nell urto si conserva l energia cinetica (urto elastico)

59 Equazione di stato dei gas perfetti 59 pv = nrt pv= N N A RT=NkT n è il numero di moli N A = Numero di Avogadro = mol -1 k = costante di Boltzmann = J/K R = Costante dei Gas = J/mol K Teoria cinetica dei gas: la TEMPERATURA (grandezza macroscopica) rappresenta la misura della energia cinetica molecolare media (grandezza microscopica). <E K > = ½ m<v 2 >

60 Energia interna Energia interna gas perfetto monoatomico: E INT = 3 2 nrt Dipende solo dalla temperatura T Temperatura : manifestazione macroscopica del movimento microscopico delle molecole del gas perfetto N.B. Gas monoatomico = contenente un atomo per molecola

61 I Principio applicato ai gas perfetti Scambi energetici in sistemi termodinamici costituiti da gas perfetti sono descritti da : - E INT OK, E INT Non dipende dalla trasformazione - Q -> (dipende dalla trasformazione) - L -> (dipende dalla trasformazione) Q ed L devono essere stimati in base alla trasformazione termodinamica del gas

62 62 Trasformazioni termodinamiche possono essere Reversibili : trasformazione avviene in assenza di forze dissipative e attraverso stati di equilibrio Irreversibili : passa attraverso stati di non equilibrio o avviene in presenza di forze dissipative

63 Calori specifici dei gas 63 Il calore specifico dei gas, a differenza di quello dei solidi ed in parte anche dei liquidi, risente delle condizioni in cui avviene lo scambio termico. Per i gas perfetti si distinguono il calore specifico a pressione costante c p ed il calore specifico a volume costante c v, da cui segue : - Isobara : Q gas = nc p (T f -T i ) pressione costante - Isocora : Q gas = nc V (T f -T i ) volume costante

64 Gas Perfetti : Lavoro 64 Trasformazione isocora : L =0 E INT = Q => E INT =Q V cost =nc V T nc V T= 3/2nRT -> c V = 3/2 R p V i = V INIZ = V FIN V Trasformazione isobara : L = p V E INT = Q-L => c v = c p - R p p INIZ = p FIN Relazione Mayer : C p = C v +R V V INIZ V FIN

65 Gas Perfetti : Lavoro 65 Trasformazione isoterma : p = nrt/v => L = nrt ln(v f /V i ) p T i =T INIZ = T FIN V Trasformazione adiabatica : Q = 0; > E INT =-L

66 66 Cicli termodinamici

67 Trasformazione Cicliche 67 p Se Stato Iniziale = Stato Finale si ha: E INT = 0 e quindi Q = L. V

68 Lavoro nelle Trasformazione Cicliche 68 Se la Trasformazione ciclica è percorsa in senso ORARIO, si ha L>0, perché il lavoro nella fase di espansione è maggiore, in valore assoluto, di quello nella fase di compressione. p L > 0 V

69 Lavoro nelle Trasformazione Cicliche 69 p Se la Trasformazione ciclica è percorsa in senso ANTIORARIO, si ha L < 0. L < 0 V

70 Macchine termiche 70 Scopo : ottenere energia meccanica a partire da energia termica Si tratteranno macchine termiche che operano su cicli ripetitivi, ovvero macchine in cui il sistema ritorna sempre al punto di partenza e quindi può operare con continuità

71 Macchine Termiche 71 Le prima macchine termiche (a vapore) furono inventate nel 17 secolo. Intorno al 2000 la più recente innovazione sui motori termici: il COMMON RAIL per i Motori Diesel (dr. Ricco, laureato in Fisica all Università di Bari, Centro Ricerche Alimentazione Motori Elasis, FIAT di Bari).

72 Perché un ciclo chiuso? 72 Le macchine termiche lavorano in modo ciclico perché devono produrre LAVORO in modo continuativo. Ogni macchina termica contiene un fluido, detto fluido motore. Il fluido motore deve subire un ciclo di trasformazioni che lo riporti allo stato iniziale.

73 Rendimento di una Macchina Termica 73 Definizione: Rendimento di una macchina termica Energia ottenuta Energia Spesa Lavoro Calore Assorbito L Q A

74 Macchine Termiche 74 La macchine termiche sono dispositivi che scambiano calore con l ambiente e producono lavoro. Più precisamente: Una Macchina Termica è un sistema che compiendo un ciclo chiuso di trasformazioni, converte energia termica in energia meccanica.

75 75 Motori termici

76 Ciclo Frigorifero 76 Serve per trasferire calore dalla sorgente fredda (T B ) a quella calda (T A )

77 Ciclo Frigorifero 77 Al posto del rendimento si considera il coefficiente si resa C R = Calore estratto/ L L = lavoro per la rimozione del Q Analogamente al ciclo di Carnot, per un frigorifero IDEALE si ha che C R = T B /(T A -T B )

78 78 Pompa di Calore

79 Secondo Principio della Termodinamica 79 E impossibile realizzare una macchina termica che, lavorando ciclicamente, trasformi in lavoro meccanico il calore scambiato con un unica sorgente (Enunciato di Kelvin-Planck)

80 Secondo Principio della Termodinamica 80 E impossibile realizzare una macchina termica che, lavorando ciclicamente, dia come unico risultato il trasferimento di calore da un corpo a temperatura inferiore ad una altro a temperatura più elevata. (Enunciato di Clausius) I due enunciati sono equivalenti

Termodinamica: Temperatura e Calore. Temperatura e Calore 1

Termodinamica: Temperatura e Calore. Temperatura e Calore 1 Termodinamica: Temperatura e Calore Temperatura e Calore 1 Ricordiamo che: A. Pastore Fisica con Elementi di Matematica (O-Z) - 2 Farmacia - A.A. 2015-2016 Introduzione al Problema PROBLEMA: studiare un

Dettagli

Termodinamica: - cenni sui gas perfetti - macchine termiche - secondo principio. 18/12/2013 Macchine termiche e Secondo Principio della Termodinamica

Termodinamica: - cenni sui gas perfetti - macchine termiche - secondo principio. 18/12/2013 Macchine termiche e Secondo Principio della Termodinamica Termodinamica: - cenni sui gas perfetti - macchine termiche - secondo principio 1 Definizione di Gas Perfetto Un gas perfetto è un gas ideale il cui comportamento approssima quello dei gas reali a densità

Dettagli

TERMODINAMICA Fisica con elementi di matematica CdL Farmacia Corso (A - E) A.A. 2015/16

TERMODINAMICA Fisica con elementi di matematica CdL Farmacia Corso (A - E) A.A. 2015/16 TERMODINAMICA CdL Farmacia Corso (A - E) A.A. 2015/16 1 Dott.ssa Silvia Rainò Università di Bari Email: silvia.raino@ba.infn.it Ufficio: Dipartimento IA di Fisica, R77-080 544 3174 INTRODUZIONE Problema

Dettagli

Termodinamica: Temperatura e Calore. 05/12/2014 Temperatura e Calore 1

Termodinamica: Temperatura e Calore. 05/12/2014 Temperatura e Calore 1 Termodinamica: Temperatura e Calore 05/12/2014 Temperatura e Calore 1 Ricordiamo che: A. Pastore Fisica con Elementi di Matematica (O-Z) - 2 Farmacia - A.A. 2014-2015 Introduzione al Problema PROBLEMA:

Dettagli

Riepilogo di calorimetria

Riepilogo di calorimetria Riepilogo di calorimetria Applicate la conservazione dell energia: Calore assorbito = Calore ceduto Se non ci sono trasformazioni di fase: 1. Calore assorbito = massa x calore specifico x (T fin T iniz

Dettagli

Temperatura e Calore (parte 1) 07/05/15 Temperatura e Calore 1

Temperatura e Calore (parte 1) 07/05/15 Temperatura e Calore 1 Temperatura e Calore (parte 1) 07/05/15 Temperatura e Calore 1 Introduzione al Problema PROBLEMA: studiare un sistema composto da un numero molto grande di particelle (atomi o molecole), come ad esempio

Dettagli

L equilibrio dei gas. Lo stato di equilibrio di una data massa di gas è caratterizzato da un volume, una pressione e una temperatura

L equilibrio dei gas. Lo stato di equilibrio di una data massa di gas è caratterizzato da un volume, una pressione e una temperatura Termodinamica 1. L equilibrio dei gas 2. L effetto della temperatura sui gas 3. La teoria cinetica dei gas 4. Lavoro e calore 5. Il rendimento delle macchine termiche 6. Il secondo principio della termodinamica

Dettagli

GAS IDEALI E MACCHINE TERMICHE. G. Pugliese 1

GAS IDEALI E MACCHINE TERMICHE. G. Pugliese 1 GAS IDEALI E MACCHINE TERMICHE G. Pugliese 1 Proprietà dei gas 1. Non hanno forma né volume proprio 2. Sono facilmente comprimibili 3. Le variabili termodinamiche più appropriate a descrivere lo stato

Dettagli

SISTEMA TERMODINAMICO STATO TERMODINAMICO

SISTEMA TERMODINAMICO STATO TERMODINAMICO SISTEMA TERMODINAMICO Sistema macroscopico (gas, liquido, solido) chimicamente definito, composto da un grande numero di atomi o molecole. In una mole di sostanza: N 6,02 10 23 Isolato: non scambia né

Dettagli

EQUILIBRIO TERMODINAMICO

EQUILIBRIO TERMODINAMICO LA TERMODINAMICA EQUILIBRIO TERMODINAMICO TRASFORMAZIONI QUASISTATICHE Le trasformazioni quasistatiche Le trasformazioni termodinamiche si possono rappresentare sul piano pressione-volume ogni punto del

Dettagli

Programma svolto a.s. 2015/2016. Materia: fisica

Programma svolto a.s. 2015/2016. Materia: fisica Programma svolto a.s. 2015/2016 Classe: 4A Docente: Daniela Fadda Materia: fisica Dettagli programma Cinematica e dinamica: moto circolare uniforme (ripasso); moto armonico (ripasso); moto parabolico (ripasso);

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI MEDICINA VETERINARIA CORSO DI LAUREA IN TUTELA E BENESSERE ANIMALE Corso di FISICA MEDICA A.A. 2015 /2016 Docente: Chiucchi Riccardo mail:rchiucchi@unite.it

Dettagli

La temperatura. La materia può trovarsi in tre stati diversi di aggregazione diversi: solido, liquido e gassoso

La temperatura. La materia può trovarsi in tre stati diversi di aggregazione diversi: solido, liquido e gassoso 1 La temperatura La materia può trovarsi in tre stati diversi di aggregazione diversi: solido, liquido e gassoso Qualunque sia lo stato di aggregazione, le particelle (molecole o atomi) di cui è fatta

Dettagli

7. TERMODINAMICA. La termodinamica studia le proprietà dei sistemi di particelle da un punto di vista macroscopico.

7. TERMODINAMICA. La termodinamica studia le proprietà dei sistemi di particelle da un punto di vista macroscopico. 7. TERMODINAMICA 7.1 Grandezze termodinamiche La termodinamica studia le proprietà dei sistemi di particelle da un punto di vista macroscopico. In termodinamica, scienza nata con l invenzione delle macchine

Dettagli

Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 5 TERMODINAMICA

Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 5 TERMODINAMICA Anno Scolastico 2009/2010 Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 5 TERMODINAMICA Prof. Matteo Intermite 1 5.1 LEGGE DEI GAS I gas sono delle sostanze che in determinate condizioni di

Dettagli

2 Una sbarra ha l 0: se la sua varia di t, la diviene l = l 0 (1 + λ t), dove λ è una costante, detta coefficiente di, che dipende dal materiale.

2 Una sbarra ha l 0: se la sua varia di t, la diviene l = l 0 (1 + λ t), dove λ è una costante, detta coefficiente di, che dipende dal materiale. I concetti fondamentali 1 Nel Sistema Internazionale l unità di misura per la temperatura è il In questa scala, detta scala assoluta, la variazione di 1 è identica a quella di 1 Però la temperatura del

Dettagli

i tre stati di aggregazione

i tre stati di aggregazione Temperatura e Calore -temperatura -calore e calore specifico -lavoro in termodinamica -trasformazioni termodinamiche -trasformazioni di stato -energia interna 1 i tre stati di aggregazione solido Ordine

Dettagli

Fisica per scienze ed ingegneria

Fisica per scienze ed ingegneria Serway, Jewett Fisica per scienze ed ingegneria Capitolo 20 Fino a circa il 1850 su riteneva che la meccanica e la termodinamica fossero due scienze completamente distinte. La legge di conservazione dell

Dettagli

Il principio zero della termodinamica

Il principio zero della termodinamica Temperatura Unità SI: Kelvin (K) Celcius+273,15 o 0K = zero assoluto ambiente: ~290K = 26,85 o C l'universo: T~3K Come è definita la temperatura? Come si misura la temperatura? variano con la temperatura:

Dettagli

La misura della temperatura

La misura della temperatura Calore e temperatura 1. La misura della temperatura 2. La dilatazione termica 3. La legge fondamentale della termologia 4. Il calore latente 5. La propagazione del calore La misura della temperatura La

Dettagli

Calore, lavoro e trasformazioni termodinamiche (1)

Calore, lavoro e trasformazioni termodinamiche (1) Calore, lavoro e trasformazioni termodinamiche (1) Attraverso scambi di calore un sistema scambia energia con l ambiente. Tuttavia si scambia energia anche quando le forze (esterne e interne al sistema)

Dettagli

Fisica per scienze ed ingegneria

Fisica per scienze ed ingegneria Serway, Jewett Fisica per scienze ed ingegneria Capitolo 20 Fino a circa il 1850 su riteneva che la meccanica e la termodinamica fossero due scienze completamente distinte. La legge di conservazione dell

Dettagli

Main training FISICA. Lorenzo Manganaro. Lezione 10 Termodinamica III: Macchine Termiche

Main training FISICA. Lorenzo Manganaro. Lezione 10 Termodinamica III: Macchine Termiche Main training 2017-2018 FISICA Lorenzo Manganaro Lezione 10 Termodinamica III: Macchine Termiche Lezione 10 Macchine Termiche Lezione 10 Macchine Termiche 1. Trasformazioni cicliche 2. 2 principio, Macchine

Dettagli

Temperatura e calore. Principi della termodinamica Temperatura Calore Gas ideali

Temperatura e calore. Principi della termodinamica Temperatura Calore Gas ideali Temperatura e calore Principi della termodinamica Temperatura Calore Gas ideali Termodinamica Termodinamica branca della fisica che descrive le trasformazioni subite da un sistema in seguito a processi

Dettagli

Lez 14 16/11/2016. Lezioni in didattica_fisica/did_fis1617/ E. Fiandrini Fis Sper e Appl Did 1617

Lez 14 16/11/2016. Lezioni in   didattica_fisica/did_fis1617/ E. Fiandrini Fis Sper e Appl Did 1617 Lez 14 16/11/2016 Lezioni in http://www.fisgeo.unipg.it/~fiandrin/ didattica_fisica/did_fis1617/ E. Fiandrini Fis Sper e Appl Did 1617 1 Esperienza di Joule E. Fiandrini Fis. Sper. e 2 Esperienza di Joule

Dettagli

Tale errata concezione del calore fu abbandonata quando si intuì che il calore non è altro che una forma di energia.

Tale errata concezione del calore fu abbandonata quando si intuì che il calore non è altro che una forma di energia. CALORE Secondo la teoria fluidistica il calore era concepito come una sostanza imponderabile (fluido calorico o semplicemente calorico) permeante tutti i corpi. Mettendo a contatto due corpi a diversa

Dettagli

LCE Umberto I - Fisica Compito S 1

LCE Umberto I - Fisica Compito S 1 LCE Umberto I - Fisica Compito S 1 Cognome Nome Data Classe Scegliere le risposte corrette e poi scriverle nella riga in fondo al foglio 1 Quale è la definizione corretta di unità di massa atomica? A]

Dettagli

Macchine termiche: ciclo di Carnot

Macchine termiche: ciclo di Carnot Macchine termiche: ciclo di Carnot Una macchina termica (o motore termico) è un dispositivo che scambia calore con l ambiente (attraverso un fluido motore) producendo lavoro in modo continuo, tramite un

Dettagli

Lezione 9 Termodinamica

Lezione 9 Termodinamica Argomenti della lezione: Lezione 9 Termodinamica introduzione misura della temperatura dilatazione termica calore / capacità termica, calore specifico, calore latente calore e lavoro primo principio della

Dettagli

PRIMI ELEMENTI DI TERMODINAMICA. La termodinamica studia le leggi con cui i sistemi scambiano (cedono e ricevono) energia con l ambiente.

PRIMI ELEMENTI DI TERMODINAMICA. La termodinamica studia le leggi con cui i sistemi scambiano (cedono e ricevono) energia con l ambiente. PRIMI ELEMENTI DI TERMODINAMICA Un sistema è un insieme di corpi che possiamo immaginare avvolti da una superficie chiusa, ma permeabile alla materia e all energia. L ambiente è tutto ciò che si trova

Dettagli

TERMODINAMICA Per lo studio scientifico di un problema occorre separare idealmente una regione di spazio limitata ( sistema ) da tutto ciò che la

TERMODINAMICA Per lo studio scientifico di un problema occorre separare idealmente una regione di spazio limitata ( sistema ) da tutto ciò che la ERMODINAMICA Per lo studio scientifico di un problema occorre separare idealmente una regione di spazio limitata ( sistema ) da tutto ciò che la circonda e può influenzarne il comportamento ( ambiente

Dettagli

Temperatura e calore. Principi della termodinamica Temperatura Calore Gas ideali

Temperatura e calore. Principi della termodinamica Temperatura Calore Gas ideali Temperatura e calore Principi della termodinamica Temperatura Calore Gas ideali Termodinamica Termodinamica branca della fisica che descrive le trasformazioni subite da un sistema in seguito a processi

Dettagli

SECONDO PRINCIPIO DELLA TERMODINAMICA I DUE ENUNCIATI DEL SECONDO PRINCIPIO DELLA TERMODINAMICA

SECONDO PRINCIPIO DELLA TERMODINAMICA I DUE ENUNCIATI DEL SECONDO PRINCIPIO DELLA TERMODINAMICA SECONDO PRINCIPIO DELLA TERMODINAMICA I DUE ENUNCIATI DEL SECONDO PRINCIPIO DELLA TERMODINAMICA Enunciato di Clausius: È impossibile realizzare una trasformazione il cui unico risultato sia quello di fare

Dettagli

Lezione 10. Cenni di Termodinamica. Temperatura e calore Definizione e misura della temperatura Calore Principi della Termodinamica

Lezione 10. Cenni di Termodinamica. Temperatura e calore Definizione e misura della temperatura Calore Principi della Termodinamica Lezione 10 Cenni di Termodinamica Temperatura e calore Definizione e misura della temperatura Calore Principi della Termodinamica Trasporto del calore Fisica Generale per Architettura - G. Cantatore 1

Dettagli

T = t o (1.1) Nella scala kelvin il ghiaccio fonde a 273 K e l acqua bolle a 373 K. Un grado kelvin è uguale a un grado celsius

T = t o (1.1) Nella scala kelvin il ghiaccio fonde a 273 K e l acqua bolle a 373 K. Un grado kelvin è uguale a un grado celsius Termologia. La temperatura è la grandezza fisica che misura lo stato termico di un sistema fisico (un corpo). 2. Scale termometriche. - Scala Celsius ( o C). Proposta nel 742. 0 o C è la temperatura di

Dettagli

Fisica. Architettura (corso magistrale a ciclo unico quinquennale) Prof. Lanzalone Gaetano. Lezione 6 maggio 2013

Fisica. Architettura (corso magistrale a ciclo unico quinquennale) Prof. Lanzalone Gaetano. Lezione 6 maggio 2013 Fisica Facoltà di Ingegneria, Architettura e delle Scienze Motorie Lezione 6 maggio 2013 Architettura (corso magistrale a ciclo unico quinquennale) Prof. Lanzalone Gaetano Macchine Termiche Le macchine

Dettagli

Lez 15 22/11/2016. Lezioni in didattica_fisica/did_fis1617/ E. Fiandrini Fis Sper e Appl Did 1617

Lez 15 22/11/2016. Lezioni in  didattica_fisica/did_fis1617/ E. Fiandrini Fis Sper e Appl Did 1617 Lez 15 22/11/2016 Lezioni in http://www.fisgeo.unipg.it/~fiandrin/ didattica_fisica/did_fis1617/ E. Fiandrini Fis Sper e Appl Did 1617 1 Energia interna di un gas ideale E. Fiandrini Fis. Sper. e 2 Energia

Dettagli

b) Essendo p A V A = p C V C ne risulta T C = T A = 300 K.

b) Essendo p A V A = p C V C ne risulta T C = T A = 300 K. 2.00 moli di un gas perfetto di volume V 1 = 3.50 m 3 e T 1 = 300 K possono espandersi fino a V 2 = 7.00 m 3 e T 2 = 300 K. Il processo è compiuto isotermicamente. Determinare: a) Il lavoro fatto dal gas;

Dettagli

Macchina termica ideale (di Carnot)

Macchina termica ideale (di Carnot) Macchina termica ideale (di Carnot) La macchina di Carnot è formata da un ciclo in un gas perfetto, costituito da due trasformazioni isoterme (ab e dc in figura) e due adiabatiche (bc e da in figura).

Dettagli

Introduzione al primo principio della termodinamica. Liceo scientifico M. Curie Savignano s R.

Introduzione al primo principio della termodinamica. Liceo scientifico M. Curie Savignano s R. Introduzione al primo principio della termodinamica Liceo scientifico M. Curie Savignano s R. La termodinamica si basa sul concetto di sistema macroscopico (o sistema termodinamico). Lo stato di un sistema

Dettagli

Macchine termiche e frigoriferi

Macchine termiche e frigoriferi Macchine termiche e frigoriferi Una macchina termica grazie ad una sequenza di trasformazioni termodinamiche di una data sostanza, produce lavoro utilizzabile. Una macchina lavora su di un ciclo di trasformazioni

Dettagli

L ENERGIA CINETICA DELLE MOLECOLE DI UN GAS E LA TEMPERATURA Ogni molecola ha in media un'energia cinetica

L ENERGIA CINETICA DELLE MOLECOLE DI UN GAS E LA TEMPERATURA Ogni molecola ha in media un'energia cinetica Primo principio- 1 - TERMODINAMICA ENERGIA INTERNA DI UN SISTEMA Ad ogni sistema fisico possiamo associare varie forme di energia, l energia cinetica delle molecole di cui è formato, energia potenziale,

Dettagli

Macchine termiche: ciclo di Carnot

Macchine termiche: ciclo di Carnot Macchine termiche: ciclo di Carnot Una macchina termica (o motore termico) è un dispositivo che scambia calore con l ambiente (attraverso un fluido motore) producendo lavoro in modo continuo, tramite un

Dettagli

TERMODINAMICA. G. Pugliese 1

TERMODINAMICA. G. Pugliese 1 TERMODINAMICA G. Pugliese 1 Meccanica: La termodinamica Forze conservative, principio di conservazione dell energia meccanica. Forze non conservative: l energia meccanica totale, varia: ΔE = W nc Nei casi

Dettagli

Esercitazione 8. Soluzione Il rendimento di una macchina di Carnot in funzione delle temperature è: η = 1 T 2 T 1 = = 60%

Esercitazione 8. Soluzione Il rendimento di una macchina di Carnot in funzione delle temperature è: η = 1 T 2 T 1 = = 60% Esercitazione 8 Esercizio 1 - Macchina di arnot Una macchina di arnot assorbe una certa quantità di calore Q 1 da una sorgente a temperatura T 1 e cede calore Q 2 ad una seconda sorgente a temperatura

Dettagli

Fisica per Farmacia A.A. 2018/2019

Fisica per Farmacia A.A. 2018/2019 Fisica per Farmacia.. 2018/2019 Responsabile del corso: Prof. lessandro Lascialfari Tutor (16 ore: Matteo volio Lezione del 15/05/2019 2 h (13:30-15:30, ula G10, Golgi ESERCITZIONI TERMODINMIC Esercizio

Dettagli

Università Politecnica delle Marche, Facoltà di Agraria. C.d.L. Scienze e Tecnologie Agrarie, A.A. 2015/2016, Fisica TERMODINAMICA

Università Politecnica delle Marche, Facoltà di Agraria. C.d.L. Scienze e Tecnologie Agrarie, A.A. 2015/2016, Fisica TERMODINAMICA TERMODINAMICA Temperatura: - è una grandezza macroscopica correlata al nostro senso di caldo e di freddo; - due persone diverse possono definire caldo o freddo lo stesso oggetto. - è quella grandezza che

Dettagli

COMPITO A. 4) Primo principio della termodinamica per sistemi chiusi ed aperti. 5)Teoremi di Carnot: enunciati ed esempi

COMPITO A. 4) Primo principio della termodinamica per sistemi chiusi ed aperti. 5)Teoremi di Carnot: enunciati ed esempi COMPITO A 1)In un vaso di alluminio, di massa m1, è contenuta la massa m2 di acqua di cui non si conosce la temperatura. Nell acqua si immerge un pezzo di rame di massa m3, riscaldato a t1 C e con ciò

Dettagli

Termodinamica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Termodinamica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico Termodinamica Studia sistemi estesi caratterizzati da pressione, volume e temperatura Si basa sulla definizione della temperatura e su tre principi Il primo principio riguarda la conservazione dell energia

Dettagli

PDF Compressor Pro. Temperatura e calore. Prof Giovanni Ianne

PDF Compressor Pro. Temperatura e calore. Prof Giovanni Ianne Temperatura e calore Prof Giovanni Ianne LA TEMPERATURA La temperatura è la grandezza fisica che si misura con il termometro. La temperatura nel Sistema Internazionale si misura in gradi Kelvin (simbolo

Dettagli

Fisica per scienze ed ingegneria

Fisica per scienze ed ingegneria Serway, Jewett Fisica per scienze ed ingegneria Capitolo 19 Temperatura e principio zero della termodinamica I nostri sensi non sono affidabili per definire lo stato termico dei corpi. Ocorre un metodo

Dettagli

Termodinamica(3) Fabrizio Margaroli

Termodinamica(3) Fabrizio Margaroli Termodinamica(3) Fabrizio Margaroli 1 Macchine termiche e frigoriferi MACCHINA TERMICA Dispositivo che assorbe calore da una sorgente calda, compie lavoro meccanico, cede calore non utilizzato ad una sorgente

Dettagli

Termodinamica: introduzione

Termodinamica: introduzione Termodinamica: introduzione La Termodinamica studia i fenomeni che avvengono nei sistemi in seguito a scambi di calore (energia termica) ed energia meccanica, a livello macroscopico. Qualche concetto rilevante

Dettagli

Termodinamica. Grandezze termodinamiche: funzioni di stato Macro e micro meccanica statistica Principi della termodinamica

Termodinamica. Grandezze termodinamiche: funzioni di stato Macro e micro meccanica statistica Principi della termodinamica Termodinamica Studia cosa succede macroscopicamente a un sistema sottoposto a trasformazioni energetiche Sistema: parte di spazio o quantità di materia Aperto/chiuso Isolato Omogeneo Grandezze termodinamiche:

Dettagli

La temperatura questa sconosciuta!

La temperatura questa sconosciuta! La temperatura questa sconosciuta! Sondaggio Metti «mi piace» alla definizione che ritieni più giusta Energia Calore Misura del caldo/freddo Stato della materia ermometria e calorimetria Principio zero

Dettagli

Ogni sostanza è composta da un grandissimo numero di molecole soggette a forze di attrazione reciproche più o meno intense (coesione molecolare o più

Ogni sostanza è composta da un grandissimo numero di molecole soggette a forze di attrazione reciproche più o meno intense (coesione molecolare o più I Fluidi Ogni sostanza è composta da un grandissimo numero di molecole soggette a forze di attrazione reciproche più o meno intense (coesione molecolare o più comunemente forze di coesione) che caratterizzano

Dettagli

Termodinamica: introduzione

Termodinamica: introduzione Termodinamica: introduzione La Termodinamica studia i fenomeni che avvengono nei sistemi in seguito a scambi di calore (energia termica) ed energia meccanica, a livello macroscopico. Qualche concetto rilevante

Dettagli

Esercitazione 7. Soluzione. Il sistema è isolato, quindi l energia totale si conserva. Applicando il primo principio della termodinamica si ottiene:

Esercitazione 7. Soluzione. Il sistema è isolato, quindi l energia totale si conserva. Applicando il primo principio della termodinamica si ottiene: Esercitazione 7 Esercizio 1 Una massa m g = 20 g di ghiaccio a 0 C è contenuta in un recipiente termicamente isolato. Successivamente viene aggiunta una massa m a = 80 di acqua a 80 C. Quale sarà, all

Dettagli

Temperatura, calore e prima legge termodinamica

Temperatura, calore e prima legge termodinamica Temperatura, calore e prima legge termodinamica Principio di conservazione Energia ΔE tot = ΔE i = ΔT tot = ΔT j = L +Q +... Energia Termica - Calore Temperatura Conservazione energia Forme di energia

Dettagli

TERMOLOGIA & TERMODINAMICA I

TERMOLOGIA & TERMODINAMICA I TERMOLOGIA & TERMODINAMICA I 1 Meccanica: studia il moto dei corpi e le cause che lo genera Grandezze meccaniche: massa, velocità, accelerazione, forza, energia Struttura atomica dei gas: particelle tutte

Dettagli

SCALA TERMOMETRICA CELSIUS

SCALA TERMOMETRICA CELSIUS TERMOLOGIA TEMPERATURA LA TEMPERATURA E UN INDICE DELLA SENSAZIONE FISIOLOGICA DI CALDO/FREDDO. A LIVELLO MICROSCOPICO E INDICE DELLO STATO DI AGITAZIONE TERMICA MOLECOLARE, ESSENDO PROPORZIONALE ALLA

Dettagli

Processi reversibili e irreversibili

Processi reversibili e irreversibili Processi reversibili e irreversibili Trasformazioni reversibili: la direzione della trasformazione può essere invertita, cambiando di poco le condizioni esterne. Esempio: gas compresso da un pistone. Trasformazioni

Dettagli

Macchina termica Q Q Q. η = L Q ass

Macchina termica Q Q Q. η = L Q ass Macchina termica Dispositivo che scambia calore Q con l ambiente e produce lavoro L: Ogni macchina termica contiene un fluido motore (per es. acqua, miscela aria-benzina); Per produrre lavoro in modo continuativo,

Dettagli

Il primo principio della termodinamica

Il primo principio della termodinamica 1 Il primo principio della termodinamica Il primo principio della termodinamica Nelle lezioni precedenti abbiamo visto che per far innalzare la temperatura di un sistema vi sono due possibilità: fornendo

Dettagli

CALORIMETRIA E TERMODINAMICA. G. Roberti

CALORIMETRIA E TERMODINAMICA. G. Roberti CALORIMETRIA E TERMODINAMICA G. Roberti 422. A due corpi, alla stessa temperatura, viene fornita la stessa quantità di calore. Al termine del riscaldamento i due corpi avranno ancora pari temperatura se:

Dettagli

Esercitazione 13/5/2016

Esercitazione 13/5/2016 Esercitazione 3/5/206 Esercizio Un anello di massa m e raggio r rotola senza strisciare su un piano orizzontale con velocità v CM costante. Ad un certo istante inizia a salire lungo un piano inclinato.

Dettagli

2) Primo principio della Termodinamica

2) Primo principio della Termodinamica 2) Primo principio della Termodinamica Antefatto: conservazione dell energia dalla descrizione molecolare (secondo la meccanica classica/quantistica) del sistema materiale Energia() = energia cinetica

Dettagli

Temperatura Calore Trasformazioni termodinamiche

Temperatura Calore Trasformazioni termodinamiche I FENOMENI TERMICI Temperatura Calore Trasformazioni termodinamiche Gas perfetti Temperatura assoluta Gas reali Principi della Termodinamica Trasmissione i del calore Termoregolazione del corpo umano pag.1

Dettagli

CONVENZIONE SUI SEGNI

CONVENZIONE SUI SEGNI CONVENZIONE SUI SEGNI Si stabilisce una convenzione sui segni sia per gli scambi di calore che per il lavoro che il sistema compie o subisce L>0: LAVORO COMPIUTO DAL SISTEMA Q>0: CALORE ASSORBITO SISTEMA

Dettagli

LA TERMODINAMICA. di Giuseppe Frangiamore con la collaborazione di Roberto Nocera

LA TERMODINAMICA. di Giuseppe Frangiamore con la collaborazione di Roberto Nocera LA TERMODINAMICA di Giuseppe Frangiamore con la collaborazione di Roberto Nocera La Termodinamica è una scienza sperimentale basata su pochi principi derivanti da generalizzazioni dall'esperienza sperimentale.

Dettagli

Primo principio. Energia interna di un sistema. Sistema e stato termodinamico Trasformazioni termodinamiche ΔU =Q L

Primo principio. Energia interna di un sistema. Sistema e stato termodinamico Trasformazioni termodinamiche ΔU =Q L Primo principio Energia interna di un sistema Funzione di stato Aumenta se viene dato calore al sistema Aumenta se viene fatto lavoro dall esterno sul sistema ΔU =Q L Sistema e stato termodinamico Trasformazioni

Dettagli

Trasformazioni reversibili e irreversibili:

Trasformazioni reversibili e irreversibili: rasformazioni reversibili e irreversibili: Esempi di trasformazioni irreversibili: - un gas compresso si espande spontaneamente in uno spazio vuoto - la neve fonde al sole - un farmaco si scioglie nel

Dettagli

FISICA CLASSE 4ASU. CAPITOLO 10 Legge di conservazione della : se su un sistema non agiscono forze, la quantità di moto totale del sistema

FISICA CLASSE 4ASU. CAPITOLO 10 Legge di conservazione della : se su un sistema non agiscono forze, la quantità di moto totale del sistema FISICA CLASSE 4ASU CAPITOLO 10 Legge di conservazione della : se su un sistema non agiscono forze, la quantità di moto totale del sistema.... Un urto si dice se in esso si conserva l energia totale dei

Dettagli

La termochimica. Energia in movimento

La termochimica. Energia in movimento La termochimica Energia in movimento Sistema termodinamico La termodinamica è una scienza che studia proprietà macroscopiche della materia e prevede quali processi chimici e fisici siano possibili, in

Dettagli

Termodinamica (1) Temperatura e calore Lezione 12, 13/11/2018, JW

Termodinamica (1) Temperatura e calore Lezione 12, 13/11/2018, JW Termodinamica (1) Temperatura e calore Lezione 12, 13/11/2018, JW 15.1-15.6 1 1. Calore Definizione di calore Il calore è l energia trasferita tra oggetti a causa della loro differenza di temperatura.

Dettagli

Fisica 1 Anno Accademico 2011/2012

Fisica 1 Anno Accademico 2011/2012 Matteo Luca Ruggiero DISAT@Politecnico di Torino Anno Accademico 2011/2012 (4 Giugno - 8 Giugno 2012) Sintesi Abbiamo formulato il primo principio della termodinamica che regola gli scambi di calore, la

Dettagli

Termodinamica. Università degli Studi di Bari Aldo Moro Dip. DiSAAT - Ing. Francesco Santoro Corso di Fisica

Termodinamica. Università degli Studi di Bari Aldo Moro Dip. DiSAAT - Ing. Francesco Santoro Corso di Fisica Termodinamica La termodinamica si preoccupa di studiare i fenomeni per i quali la temperatura gioca un ruolo fondamentale In termodinamica si considerano le interazioni di un sistema con l ambiente circostante

Dettagli

Calore e lavoro. 1 caloria = quantità di calore che bisogna cedere a 1 g di acqua per far passare la sua temperatura da 14.5 a 15.

Calore e lavoro. 1 caloria = quantità di calore che bisogna cedere a 1 g di acqua per far passare la sua temperatura da 14.5 a 15. Calore e lavoro Nel 1700 si pensava al calore come qualcosa contenuto in un corpo, il calorico, che si trasmetteva da un corpo ad un altro. Sistema A T 1 Sistema B T 2 Parete conduttrice T 1 > T 2 Definizione

Dettagli

Studia le leggi con cui i corpi scambiano (cedono/assorbono) lavoro e calore con l'ambiente che li circonda.

Studia le leggi con cui i corpi scambiano (cedono/assorbono) lavoro e calore con l'ambiente che li circonda. 1 La termodinamica, scienza nata all'inizio del XIX secolo, si occupa degli scambi energetici fra un sistema e l'ambiente esterno con cui può interagire, con particolare riguardo alle trasformazioni di

Dettagli

TERMOLOGIA Temperatura principio zero della termodinamica Calore

TERMOLOGIA Temperatura principio zero della termodinamica Calore Lezione VII 1 TERMOLOGIA La termologia studia la natura e gli effetti del calore. Ne fanno parte la termometria (misura delle temperature) e la calorimetria (misura delle quantità di calore che intervengono

Dettagli

Calorimetria. Principio zero Trasformazioni termodinamiche Lavoro termodinamico

Calorimetria. Principio zero Trasformazioni termodinamiche Lavoro termodinamico Calorimetria Principio zero Trasformazioni termodinamiche Lavoro termodinamico Stato di un sistema In Meccanica: lo stato di una particella è definito quando per ogni istante siano note, la posizione (x,

Dettagli

TERMODINAMICA. Il sistema è il corpo o l insieme dei corpi sotto esame.

TERMODINAMICA. Il sistema è il corpo o l insieme dei corpi sotto esame. TERMODINAMICA SISTEMI TERMODINAMICI Il sistema è il corpo o l insieme dei corpi sotto esame. L ambiente esterno è l insieme di tutti i corpi che possono interagire con il sistema. Tipi di sistemi termodinamici

Dettagli

GAS TERMODINAMICA CLASSE DELLE LAUREE TRIENNALI DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE

GAS TERMODINAMICA CLASSE DELLE LAUREE TRIENNALI DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE CLASSE DELLE LAUREE TRIENNALI DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE GAS TERMODINAMICA GAS PERFETTI E GAS REALI TRASFORMAZIONI TERMODINAMICHE TRASMISSIONE DEL CALORE A. A. 2015-2016 Fabrizio

Dettagli

PROGRAMMA DI FISICA CLASSE 4 E A.S. 2010/2011 PROF.SSA NICOLETTA CASSINARI testo adottato : Caforio-Ferilli Fisica 2 Le Monnier

PROGRAMMA DI FISICA CLASSE 4 E A.S. 2010/2011 PROF.SSA NICOLETTA CASSINARI testo adottato : Caforio-Ferilli Fisica 2 Le Monnier PROGRAMMA DI FISICA CLASSE 4 E A.S. 2010/2011 PROF.SSA NICOLETTA CASSINARI testo adottato : Caforio-Ferilli Fisica 2 Le Monnier Ripasso : lavoro ed energia, forze conservative e forze dissipative. 1. Il

Dettagli

Sistema termodinamico: porzione di universo separata da tutto il resto del mondo. Ambiente esterno confini del sistema

Sistema termodinamico: porzione di universo separata da tutto il resto del mondo. Ambiente esterno confini del sistema Termodinamica: concetti di base Sistema termodinamico: porzione di universo separata da tutto il resto del mondo Ambiente esterno confini del sistema sistema Stato del sistema: definito dal valore delle

Dettagli

Dipartimento di Fisica anno accademico 2015/16 Registro lezioni del docente RUI RINALDO

Dipartimento di Fisica anno accademico 2015/16 Registro lezioni del docente RUI RINALDO Dipartimento di Fisica anno accademico 2015/16 Registro lezioni del docente RUI RINALDO Attività didattica TERMODINAMICA E FLUIDODINAMICA [172SM] Periodo di svolgimento: Secondo Semestre Docente titolare

Dettagli

V=kT e P=jT, dove k e j sono costanti a temperatura costante(isoterma):p*v=costante ( legge di Boyle) Per dei gas perfetti che obbediscono alle leggi

V=kT e P=jT, dove k e j sono costanti a temperatura costante(isoterma):p*v=costante ( legge di Boyle) Per dei gas perfetti che obbediscono alle leggi La Termodinamica La temperatura è una grandezza fisica che misura lo stato termico di un corpo ed è misurata con un termometro ed esistono varie scale di misura: scala kelvin, Celsius, Rèaumur, Farenheit.

Dettagli

Lo stato gassoso. Particelle con volume proprio trascurabile puntiformi

Lo stato gassoso. Particelle con volume proprio trascurabile puntiformi Lo stato gassoso Gas ideale (o perfetto) Particelle in movimento (casuale) Particelle con volume proprio trascurabile puntiformi Assenza di interazioni tra le particelle trasformazioni fisiche e non chimiche

Dettagli

A.S. 2016/2017 PROGRAMMA SVOLTO E INDICAZIONI PER IL RECUPERO ESTIVO. Del prof. Gabriele Giovanardi (nome e cognome in stampatello) docente di Fisica

A.S. 2016/2017 PROGRAMMA SVOLTO E INDICAZIONI PER IL RECUPERO ESTIVO. Del prof. Gabriele Giovanardi (nome e cognome in stampatello) docente di Fisica A.S. 2016/2017 PROGRAMMA SVOLTO E INDICAZIONI PER IL RECUPERO ESTIVO Del prof. Gabriele Giovanardi (nome e cognome in stampatello) docente di Fisica Classe 2E Informatica e Telecomunicazioni Moduli Modulo

Dettagli