Parte III Logica Digitale, Memorie, Microprocessori e Bus

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Parte III Logica Digitale, Memorie, Microprocessori e Bus"

Transcript

1 Parte III Logica Digitale, Memorie, Microprocessori e Bus Calcolatori Elettronici(5 crediti), Prof. S. Salza a.a III.1

2 Circuiti Digitali INGRESSI i 1 i n CIRCUITO DIGITALE o 1 o m USCITE Circuiti elettronici i cui ingressi e le cui uscite assumono solo due livelli Al circuito sono associate le funzioni che calcolano le uscite a partire dagli ingressi o 1 = f 1 ( i 1,.,i n ). o m = f m ( i 1,.,i n ) III.2

3 Semiaddizionatore (Half Adder) Circuito a 2 ingressi e 2 uscite: somma e riporto (carry) Non può essere usato per la somma di numerali a più bit, dove occorre sommare anche il riporto della cifra precedente III.3

4 Addizionatore Completo (Full Adder) III.4 Circuito a 3 ingressi e 2 uscite Riceve il riporto dalla cifra precedente

5 ALU a 1 bit (bit slice) A e B sono bit omologhi degli operandi F 0 e F 1 selezionano la funzione (00: AND), (01: OR), (10: NOT), (11: SUM) ENA ed ENB sono segnali di enable INVA permette di negare A Default ENA=ENB=1 e INVA=0 III.5

6 ALU ad n bit III.6 Realizzata connettendo n ALU ad 1 bit (bit slices) Problema: propagazione dei riporti Ciascuno stadio deve attendere il riporto dal precedente Tempo di addizione lineare con n INC incrementa la somma di 1 (A+1, A+B+1)

7 Latch e Flip-Flop a) b) I Latch commutano sui livelli del clock ( a) alto, b) basso) a) b) I Flip-Flop commutano sui fronti del clock: a) Commuta sul fronte di salita b) Commuta sul fronte di discesa III.7

8 Registri I Flip-Flop sono gli elementi base di memorizzazione nel computer Molti Flip-Flop possono essere messi su un unico chip Occorrono in genere da 6 a 10 transistor per ogni Flip-Flop III.8

9 Organizzazione della Memoria III.9

10 Dispositivi a 3 stati In base ad un segnale di controllo C si comporta: (b) C=1: come circuito chiuso (c) C=0: come circuito aperto Tempo di commutazione: pochi nsec Consente di usare gli stessi piedini sia per la lettura che per scrittura Usato anche per la connessione ai bus e a qualsiasi linea bidirezionale III.10

11 Chip di Memoria CS OE CHIP DI MEMORIA n m. log 2 n LINEE INDIRIZZO WE. m LINEE DATI IN/OUT Chip da n m bit complessivi m linee dati bidirezionali log 2 n linee di indirizzo Segnali di controllo: CS (Chip Select) OE (Output Enable) WE (Write Enable) Problema: numero limitato di piedini del contenitore III.11

12 Matrice di selezione log 2 n 1/2 log 2 n 1/2 log 2 n = log 2 n DECODER 1/2 log n n DECODER 1/2 log n n Si risparmia nella complessità della logica di decodifica Un decoder m 2 m richiede 2 m porte AND ES 4M parole 22 linee 1 decoder a 22 4M porte AND 2 decoder a = 4k porte AND III.12

13 Chip di Memoria (Esempi) III.13 RAS (Row Address Strobe), CAS (Column Address Strobe) Indirizzi di riga e di colonna multiplexati sugli stessi piedini

14 Schede di Memoria III.14 La scheda memorizza parole di n byte Si usano n+1 se si vuole il controllo di parità Bit di parità gestito dal controller della memoria

15 SIMM da 16 Mbyte (8 chip da 4M 4 bit) IND 2-23 R / W CS0 CS1 CS2 CS3 22 4M 4 4M M III.15 4 x 8 bit

16 Organizzazione della memoria SIMM (Single Inline Memory Module) 72 piedini, 32 bit, 8-16 chip, 32 MByte A coppie nel Pentium (bus dati 64 bit) DIMM (Double Inline Memory Module) 168 piedini, 64 bit, 16 chip, 128 MByte Il controller gestisce più SIMM (o DIMM) Ogni SIMM informa il controller della sua dimensione (segnali su certi piedini) Il controller determina al momento del boot il tipo di RAM (e.g. EDO) Dall indirizzo e dalla configurazione il controller calcola a quale SIMM mandare il segnale di Chip Select III.16

17 Tassonomia delle RAM e ROM RAM (Random Access Memory) ROM (Read Only Memory) SRAM (Static RAM): a Flip-Flop, molto veloce (~5nsec) DRAM (Dynamic RAM): basata su capacità parassite; richiede refresh, alta densità, basso costo (~70 nsec) FPM: selezione a matrice EDO: (Extended Data Output) lettura in pipeline, più banda SDRAM (Synchronous DRAM) Sincrona, prestazioni migliori PROM (Programmable ROM) EPROM (Erasable PROM) raggi UV EEPROM: cancellabile elettricamente Flash Memory: tipo di EEPROM, ciclo 100nsec, max riscritture III.17

18 III.18 Tipi di RAM e di ROM e loro impieghi

19 Refresh nelle DRAM Necessario rinfrescare, cioè riscrivere, tutta la DRAM con periodo T Possibile scrivere in un solo ciclo una riga o una colonna Refresh simultaneo di tutti i chip e tutte le schede ES T : periodo di refresh (4 ms) n : dimensione (4MB) τ : durata ciclo refresh (40ns) η : overhead η=( n τ) / T η=( ) / ( ) 2% III.19

20 Pinout Logico del µp Indirizzamento Dati Controllo Controllo del ciclo di bus Gestione delle interruzioni Arbitraggio del bus Gestione del coprocessore Segnalazione di stato Vari (alimentazione etc.) III.20

21 Architettura a più Bus Diversi bus, interni ed esterni al chip Soddisfano diverse esigenze: Velocità di trasferimento Numero di linee Più trasferimenti paralleli Compatibilità all indietro Nei primi PC c era un unico bus Negli attuali PC almeno tre bus esterni III.21

22 Comunicazione sul Bus La comunicazione sul bus è regolata da un protocollo di bus In ciascun ciclo comunicano due soli dispositivi il master e lo slave Lo stesso dispositivo può avere ruoli diversi a seconda dei casi I dispositivi sono connessi al bus tramite un bus transceiver La connessione al bus avviene tramite dispositivi a tre stati oppure è di tipo open collector III.22

23 Larghezza del Bus Larghezza = numero di linee Linee dati: banda di trasferimento Linee indirizzo: dimensione dello spazio (di memoria) indirizzabile, 2 n locazioni con n bit di indirizzo Problema: al crescere del numero di linee aumenta il bus skew (differenza nella velocità di propagazione dei segnali Soluzione: multiplexamento di più segnali sulla stessa linea III.23

24 Segnali asseriti e negati In alcuni casi ( a seconda delle scelte di progetto) un segnale provoca l azione corrispondente quando la sua tensione è alta, in altri quando è bassa Per evitare confusione si parla di: Segnale asserito: quando assume il valore che provoca l azione Segnale negato: altrimenti Si adotta la seguente notazione: S: segnale che è asserito alto S: segnale che è asserito basso Ulteriore notazione (usata da Intel): S: segnale che è asserito alto S#: segnale che è asserito basso ( adatta al set di caratteri ASCII) III.24

25 Bus Sincroni: ciclo di lettura T=25 nsec Tutte le azioni avvengono sui fronti Se la memoria mantiene asserito WAIT il ciclo si prolunga III.25

26 Bus Sincrono: Temporizzazione ES Frequenza 40 MHz, periodo 25 nsec Tempo a disposizione della memoria fra: a) la comparsa dell indirizzo sul Bus b) la disponibilità dei dati sul Bus τ 1 = 2.5 T-T AD -T DS = = 46.5 nsec Tempo a disposizione della memoria fra: a) l asserzione di MREQ e RD b) la disponibilità dei dati sul Bus τ 2 = 2 T-T M -T DS = = 37 nsec Una memoria da 40 nsec ce la fa di sicuro Altrimenti mantiene asserito il segnale di WAIT, per introdurre stati di wait, cioè cicli di bus addizionali III.26

27 Bus Asincrono: ciclo di lettura Accoppiamento di dispositivi con velocità diverse Gli eventi avvengono in risposta ad altri eventi (rapporto di causa ed effetto) FULL HANDSHAKE 1) MSYN asserito 2) SSYN asserito in risposta a MSYN 3) MSYN negato in risposta a SSYN 4) SSYN negato in risposta a MSYN III.27

28 Arbitraggio del Bus Permette di decidere quale dispositivo sarà il prossimo Bus Master risolvendo eventuali conflitti Spesso l arbitro è nel chip del µp Linea di richiesta condivisa Il Bus grant è propagato dall arbitro poco prima dell inizio del ciclo Viene intercettato dal futuro master NB Favoriti i dispositivi situati vicino all arbitro III.28

29 Livelli Multipli di priorità Diverse linee di richiesta associate a diversi livelli di priorità In caso di conflitto favorite le catene a priorità più alta All interno di ciascuna catena vale la posizione In genere se c è un solo bus con anche la memoria la CPU ha priorità più bassa dei dispositivi di I/O (e.g. dischi) III.29

30 Arbitraggio Decentralizzato Quando un dispositivo vuole il Bus: 1) Se Bus Request è asserito attende 2) Appena Bus Request è libero lo asserisce (lo possono fare in tanti) 3) Appena Busy è libero nega Out 4) Attende τ (che la linea sia stabile) 5) Aspetta di vedere se riceve In 6) Se e quando riceve In asserisce Busy e nega Bus Request Non necessita di arbitro, è più semplice e più veloce III.30

31 Block Transfers Permette di leggere più parole consecutive Usato per trasferire blocchi di cache Numero di parole specificato durante T 1 Dopo la prima viene trasferita una word ogni ciclo (invece di una ogni tre cicli) Per leggere quattro word occorrono 6 cicli invece di 12 Il segnale BLOCK viene asserito per chiedere un block transfer III.31

32 Gestione delle Interruzioni Chip controllore di interruzioni Intel 8259A usato dal PC IBM e successori Gestisce 8 linee di interrupt INT: interruzione inviata alla CPU INTA: aknowledge della CPU Vettore di Interrupt passato sul Bus IR0-IR7: linee di interrupt sul Bus Il vettore di interrupt è usato dalla CPU per saltare alla relativa routine Registri all interno del chip scrivibili dalla CPU per programmare lo 8259A III.32

33 Il Pentium II Architettura a 32 bit completamente compatibile con i predecessori Aritmetica Floating-point IEEE 754 Bus di memoria a 64 bit Cache 1 o livello 16KB dati +16KB istr. Cache 2 o livello 512 KB nel package (a metà della frequenza della CPU) SEC (Single Edge Cartridge) a 242 pin Dissipa oltre 55W! III.33

34 Pentium II: Pinout Logico III.34

35 Pentium II: Pinout Logico (2) 242 connetori sul SEC: 170 segnali 27 connessioni di alimentazione 35 connessioni di massa 10 per uso futuro Indirizzi a 36 bit (64 GB), ma sempre in blocchi di 8 byte (solo 33 bit di indirizzo) 64 linee dati; segnali: D# (richiesta dati), DRDY# (data ready), DBSY# (data busy) Segnali di Snoop per la coerenza di cache Gestione delle interruzioni sia come l 8088 che con APIC (Adv. Progr. Interr. Contr.) VID: per la scelta della tensione Power Management: permette di mettere la CPU in stato di sleep e deep sleep 11 linee di diagnosi secondo lo standard IEEE JTAG III.35

36 Pentium II: Memory Bus Bus gestito con pipelining: è possibile sovrapporre più transazioni Fasi di una transazione (usano gruppi di linee indipendenti): 1) Bus arbitration phase (non mostrata) 2) Request phase 3) Error reporting phase 4) Snoop phase 5) Response phase 6) Data phase Non sempre si usano tutte le fasi III.36

37 Il Bus ISA del PC/AT ISA (Indunstry Standard Architecture) derivato dal bus del PC/AT Compatibile con il bus del PC a 62 linee linee: 16 dati e 24 indirizzi Edge Connectors (molto economici) Tutt'oggi presente in tutti i PC per l uso di carte legacy Estensione EISA di poco successo Sincrono a 8.33 MHz: 16.7 MB/sec III.37

38 III.38 Il Bus PCI: architettura complessiva

39 Il Bus PCI: specifiche PCI (Peripheral Component Interconnect) Introdotto da Intel per applicazioni video Video Byte a 30 frame/sec richiede una banda di 67.5 MB/sec Standard non propietario, adottato da molti, (ma Intel vende i chip di gestione.) Versione base a 32 bit, 33 MHz: 133 MB/sec Estensione a 64 bit e 66 MHz: 528 MB/sec Local Bus e Memory Bus separati (più veloci) Connessione tramite chip PCI bridge Varie opzioni di tensione (5 V e 3.3 V) Carte con 120 e contatti Bridge ISA (include doppio controller IDE) Controllori addizionali SCSI e USB Bus sincrono, transazioni tra initiator e target Linee indirizzo e dati multiplexate III.39

40 Il Bus PCI: arbitraggio Arbitraggio centralizzato (nel Bridge) Ogni PCI device ha due linee dedicate Il device fa la richiesta tramite REQ# Il grant viene concesso tramite GNT# Diversi algoritmi di arbitraggio: Round Robin Priorità Altro Transazioni su piu cicli separate da cicli di idle III.40

41 III.41 Il Bus PCI: Segnali Obbligatori

42 III.42 Il Bus PCI: Segnali Opzionali

43 Bus PCI: Segnali Bus a 120 o 180 linee Oltre ai segnali sono distribuiti anche alimentazioni e masse 32(+32) linee AD multiplexate tra dati e indirizzo con 1(+1) bit di parità PAR C/BE# (in cicli diversi) invia comandi e specifica quanti e quali byte leggere FRAME# e IRDY (lettura) usati dal master DEVSEL# e TRDY# usati dallo slave IDSEL indirizza nel configuration space di un device invece che in memoria (usato per gestire il Plug and Play) STOP# e PERR# segnalano errori RST# induce un reset nella CPU e in tutti i device sul bus SBO e SDONE segnali di cache snooping III.43

44 Bus USB (Universal Serial Bus) Bus economico concordato da varie aziende per la gestione di device di I/O a bassa velocità (~ 1995) Obiettivi: 1) Evitare switch, jumpers 2) Installazione di tipo esterno 3) Cavo di connessione unificato 4) Alimentazione fornita dal cavo 5) Fino a 127 dispositivi collegabili 6) Supporto di dispositivi real-time 7) Installazione a PC acceso 8) Reboot non necessario 9) Bus e dispositivi economici Tutti gli obiettivi sono di fatto rispettati III.44

45 USB: Specifiche Fondamentali Banda complessiva 1.5 MB/sec Limitata per ragioni di costo Root hub di connessione al bus PCI Connessione di dispositivi e di altri hub Struttura complessiva ad albero con massima ramificazione di 16 Connettori ai capi del cavo diversi Cavo a 4 fili: +5V, GND, 2 di segnale Alla connessione di un dispositivo: Interrupt: intervento del SO Richiesta di banda Assegnazione di indirizzo Indirizzo 0 usato per inizializzazione Logicamente connessione tra root hub e ciascun device con bit pipe dedicata III.45

46 USB: Struttura dei Frame Frame emessi ogni 1.00±0.05 msec Idle frame se non c è comunicazione Contenuto del frame: SOF: Start of Frame IN / OUT: richiesta in lettura/scrittura DATA: payload fino a 64 byte più controllo e codice di errore ACK / NACK: acknowledge o errore Polling usato invece delle interruzioni III.46

47 Chip di I/O: UART, USART e PIO UART (Univ. Async. Rec. Transm.) USART ( Sync. Async. ) Usati in interfacce parallelo/seriale PIO (Parallel Input/Output) Configurabile dalla CPU 3 Porti indipendenti da 8 bit con latch La CPU legge e scrive nei porti Possibile gestire anche semplici protocolli di handshaking CPU-device Per gestire device TTY-compatible III.47

48 III.48 Decodifica Parziale

Calcolatori Elettronici Parte IV: Logica Digitale e Memorie

Calcolatori Elettronici Parte IV: Logica Digitale e Memorie Anno Accademico 2001/2002 Circuiti Digitali Calcolatori Elettronici Parte IV: Logica Digitale e Memorie Prof. Riccardo Torlone Università di Roma Tre INGRESSI i 1 CIRCUITO o 1 i n DIGITALE! Circuiti elettronici

Dettagli

Circuiti digitali. Parte III. Logica Digitale e Memorie. Funzioni logiche (booleane) Tavola della verità

Circuiti digitali. Parte III. Logica Digitale e Memorie. Funzioni logiche (booleane) Tavola della verità Circuiti digitali Parte III Logica Digitale e Memorie INGRESSI i 1 i n CIRCUITO DIGITALE Circuiti elettronici i cui ingressi e le cui uscite assumono solo due livelli Al circuito sono associate le funzioni

Dettagli

Parte III. Logica Digitale e Memorie

Parte III. Logica Digitale e Memorie Parte III Logica Digitale e Memorie III.1 Circuiti digitali INGRESSI i 1 i n CIRCUITO DIGITALE o 1 o m USCITE Circuiti elettronici i cui ingressi e le cui uscite assumono solo due livelli Al circuito sono

Dettagli

Calcolatori Elettronici Parte V: Microprocessori e Bus. Prof. Riccardo Torlone Universita di Roma Tre

Calcolatori Elettronici Parte V: Microprocessori e Bus. Prof. Riccardo Torlone Universita di Roma Tre Calcolatori Elettronici Parte V: Microprocessori e Bus Prof. Riccardo Torlone Universita di Roma Tre Architettura a più Bus n Diversi bus, interni ed esterni al chip n Soddisfano diverse esigenze: n Velocità

Dettagli

Parte IV. Bus e microprocessori

Parte IV. Bus e microprocessori Parte IV Bus e microprocessori IV.1 Comunicazione nell elaboratore P M STRUTTURA DI INTERCONNESSIONE DISCO DISCO P PERIFERICHE P La struttura di interconnessione assicura la comunicazione fra le diverse

Dettagli

Parte III. Logica Digitale, Memorie, Microprocessori e Bus. Calcolatori Elettronici (5 crediti) Prof.G.Cosentino III.1

Parte III. Logica Digitale, Memorie, Microprocessori e Bus. Calcolatori Elettronici (5 crediti) Prof.G.Cosentino III.1 Parte III Logica Digitale, Memorie, Microprocessori e Bus Calcolatori Elettronici (5 crediti) Prof.G.Cosentino III.1 Ma in fondo quali sono i mattoncini che compongono un calcolatore elettronico? Porte

Dettagli

Livello logico digitale bus e memorie

Livello logico digitale bus e memorie Livello logico digitale bus e memorie Principali tipi di memoria Memoria RAM Memorie ROM RAM (Random Access Memory) SRAM (Static RAM) Basata su FF (4 o 6 transistor MOS) Veloce, costosa, bassa densità

Dettagli

DIAGRAMMI TEMPORALI relativi all'esecuzione di una istruzione e agli accessi alla memoria:

DIAGRAMMI TEMPORALI relativi all'esecuzione di una istruzione e agli accessi alla memoria: DIAGRAMMI TEMPORALI relativi all'esecuzione di una istruzione e agli accessi alla memoria: 1 Memoria centrale: è costituita da una sequenza ordinata di registri; ciascun registro è individuato da un indirizzo;

Dettagli

Calcolatori Elettronici Parte V: Microprocessori e Bus

Calcolatori Elettronici Parte V: Microprocessori e Bus Anno Accademico 2013/2014 Calcolatori Elettronici Parte V: Microprocessori e Bus Prof. Riccardo Torlone Universita di Roma Tre Pinout Logico di un Micro-Processore Riccardo Torlone - Corso di Calcolatori

Dettagli

Calcolatori Elettronici Parte IV: Logica Digitale e Memorie. Prof. Riccardo Torlone Università di Roma Tre

Calcolatori Elettronici Parte IV: Logica Digitale e Memorie. Prof. Riccardo Torlone Università di Roma Tre Calcolatori Elettronici Parte IV: Logica Digitale e Memorie Prof. Riccardo Torlone Università di Roma Tre Astrazione di un calcolatore L1 MACCHINA VIRTUALE (compilazione o interpretazione) L0 MACCHINA

Dettagli

Memorie a semiconduttore

Memorie a semiconduttore Memoria centrale a semiconduttore (Cap. 5 Stallings) Architettura degli elaboratori -1 Pagina 209 Memorie a semiconduttore RAM Accesso casuale Read/Write Volatile Memorizzazione temporanea Statica o dinamica

Dettagli

Il Sottosistema di Memoria

Il Sottosistema di Memoria Il Sottosistema di Memoria Classificazione delle memorie Funzionalità Memoria di sola lettura (ROM) Memoria di lettura/scrittura Tecnologia Memoria a semiconduttori Memoria magnetica Memoria ottica Modalità

Dettagli

Università degli Studi di Cassino e del Lazio Meridionale

Università degli Studi di Cassino e del Lazio Meridionale di Cassino e del Lazio Meridionale Corso di Tecnologie per le Memorie Anno Accademico Francesco Tortorella Gerarchia di memoria: vista complessiva Gerarchia di memoria: tecnologie Accesso casuale (random):

Dettagli

Struttura fisica di un calcolatore. Esempio di motherboard: ASRock. Esempio di motherboard: Acer. Oltre alla scheda madre:

Struttura fisica di un calcolatore. Esempio di motherboard: ASRock. Esempio di motherboard: Acer. Oltre alla scheda madre: Struttura fisica di un calcolatore Esempio di motherboard: ASRock La CPU risiede su una scheda madre, un circuito stampato contenente: bus integrati per il controllo dei bus (bridge, chipset) alcuni circuiti

Dettagli

Memorie Corso di Calcolatori Elettronici A 2007/2008 Sito Web:http://prometeo.ing.unibs.it/quarella Prof. G. Quarella

Memorie Corso di Calcolatori Elettronici A 2007/2008 Sito Web:http://prometeo.ing.unibs.it/quarella Prof. G. Quarella Memorie Corso di Calcolatori Elettronici A 2007/2008 Sito Web:http://prometeo.ing.unibs.it/quarella Prof. G. Quarella prof@quarella.net Tipi di memorie Possono essere classificate in base a varie caratteristiche:

Dettagli

Tipi di Bus. Bus sincrono. Comunicazioni nell elaboratore (e oltre) Bus sincroni e asincroni Standard commerciali (PCI,SCSI,USB)

Tipi di Bus. Bus sincrono. Comunicazioni nell elaboratore (e oltre) Bus sincroni e asincroni Standard commerciali (PCI,SCSI,USB) Comunicazioni nell elaboratore (e oltre) Bus sincroni e asincroni Standard commerciali (PCI,SCSI,USB) Architettura degli Elaboratori (Prima Unità) Renato.LoCigno@dit.unitn.it www.dit.unitn.it/~locigno/didattica/archit/02-03/index.html

Dettagli

Calcolatori Elettronici Parte IV: Logica Digitale e Memorie

Calcolatori Elettronici Parte IV: Logica Digitale e Memorie Anno Accademico 2013/2014 Calcolatori Elettronici Parte IV: Logica Digitale e Memorie Prof. Riccardo Torlone Università di Roma Tre Semplici elementi alla base di sistemi complessi Riccardo Torlone - Corso

Dettagli

DIAGRAMMI TEMPORALI relativi all'esecuzione di una istruzione e agli accessi alla memoria:

DIAGRAMMI TEMPORALI relativi all'esecuzione di una istruzione e agli accessi alla memoria: DIAGRAMMI TEMPORALI relativi all'esecuzione di una istruzione e agli accessi alla memoria: Calcolatori Elettronici 2002/2003 - Diagr. temp. e Mem. dinamiche 1 Memoria centrale: è costituita da una sequenza

Dettagli

Il Sottosistema di Memoria

Il Sottosistema di Memoria Il Sottosistema di Memoria Calcolatori Elettronici 1 Memoria RAM RAM: Random Access Memory Tempi di accesso indipendenti dalla posizione Statica o Dinamica Valutata in termini di Dimensione (di solito

Dettagli

Livello logico-digitale

Livello logico-digitale Livello logicodigitale Pagina 2 I circuiti digitali si basano su un piccolo numero di componenti elementari Circuito digitale =circuito in cui il valore di uscita può avere soltanto due valori (0 e 1)

Dettagli

Parte IV. Bus e microprocessori

Parte IV. Bus e microprocessori Parte IV Bus e microprocessori IV.1 Comunicazione nell elaboratore P M STRUTTURA DI INTERCONNESSIONE DISCO DISCO P PERIFERICHE P La struttura di interconnessione assicura la comunicazione fra le diverse

Dettagli

Parte IV. Bus e microprocessori

Parte IV. Bus e microprocessori Parte IV Bus e microprocessori IV.1 Comunicazione nell elaboratore P M STRUTTURA DI INTERCONNESSIONE DISCO DISCO P PERIFERICHE P La struttura di interconnessione assicura la comunicazione fra le diverse

Dettagli

Struttura fisica di un calcolatore

Struttura fisica di un calcolatore Struttura fisica di un calcolatore Esempio di motherboard: ASRock La CPU risiede su una scheda madre, un circuito stampato contenente: bus integrati per il controllo dei bus (bridge, chipset) alcuni circuiti

Dettagli

La memoria - tecnologie

La memoria - tecnologie Architettura degli Elaboratori e delle Reti Lezione 26 La memoria - tecnologie Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi di Milano L 26 1/24 Indirizzi

Dettagli

Input/Output. bus, interfacce, periferiche

Input/Output. bus, interfacce, periferiche Architettura degli Elaboratori e delle Reti Lezione 29 Input/Output: bus, interfacce, periferiche Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi di Milano

Dettagli

La memoria - tecnologie

La memoria - tecnologie Architettura degli Elaboratori e delle Reti Lezione 26 La memoria - tecnologie Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi di Milano L 26 1/24 Indirizzi

Dettagli

Struttura di un elaboratore

Struttura di un elaboratore Testo di rif.to: [Congiu] -.1,.2 (pg. 80 9) Struttura di un elaboratore 01.b Blocchi funzionali La memoria centrale Suddivisione in blocchi funzionali 1 I blocchi funzionali di un elaboratore Organizzazione

Dettagli

ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino

ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino ELETTRONICA II Prof. Dante Del Corso - Politecnico di Torino Gruppo H: Sistemi Elettronici Lezione n. 36 - H -1: Piastra di memoria statica Interfaccia con registri di I/O Interconnessioni e sistemi Protocolli

Dettagli

Lezione 22 La Memoria Interna (1)

Lezione 22 La Memoria Interna (1) Lezione 22 La Memoria Interna (1) Vittorio Scarano Architettura Corso di Laurea in Informatica Università degli Studi di Salerno Organizzazione della lezione Dove siamo e dove stiamo andando La gerarchia

Dettagli

Esempio di motherboard: ASRock

Esempio di motherboard: ASRock Struttura fisica di un calcolatore La CPU risiede su una scheda madre, un circuito stampato contenente: bus integrati per il controllo dei bus (bridge, chipset) alcuni circuiti di controllo e relative

Dettagli

La memoria - tecnologie

La memoria - tecnologie Architettura degli Elaboratori e delle Reti Lezione 26 La memoria - tecnologie Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi di Milano L 26 1/25 Struttura

Dettagli

Livello logico digitale. bus e memorie

Livello logico digitale. bus e memorie Livello logico digitale bus e memorie Principali tipi di memoria Memoria RAM Memorie ROM RAM (Random Access Memory) SRAM (Static RAM) Basata su FF (4 o 6 transistor MOS) Veloce, costosa, bassa densità

Dettagli

Il quadro di insieme. Tecnologie per la memoria e gerarchie di memoria. Un ripasso: latch D e flip-flop D. Un ripasso: clock

Il quadro di insieme. Tecnologie per la memoria e gerarchie di memoria. Un ripasso: latch D e flip-flop D. Un ripasso: clock Il quadro di insieme I cinque componenti di un calcolatore Tecnologie per la memoria e gerarchie di memoria Processore Unità di controllo Memoria Dispositivi di input Architetture dei Calcolatori (lettere

Dettagli

Architettura dei calcolatori

Architettura dei calcolatori Cos'è un calcolatore? Architettura dei calcolatori Esecutore automatico di algoritmi Macchina universale Elementi di Informatica Docente: Giorgio Fumera Corso di Laurea in Edilizia Facoltà di Architettura

Dettagli

CALCOLATORI ELETTRONICI II

CALCOLATORI ELETTRONICI II CALCOLATORI ELETTRONICI II L INTERFACCIA PARALLELA Argomenti della lezione Le interfacce parallele Il dispositivo Intel 855 Architettura Funzionamento Le interfacce parallele Esempio Le interfacce parallele

Dettagli

Università degli Studi di Cassino

Università degli Studi di Cassino Corso di Il Sistema di bus Anno Accademico 2007/2008 Francesco Tortorella Connettiamo tutto! Sistema di elaborazione: struttura formata da unità diverse (CPU, moduli di memoria, moduli di I/O) collegate

Dettagli

Logica Digitale. Fondamenti Informatica 2 - Prof. Gregorio Cosentino

Logica Digitale. Fondamenti Informatica 2 - Prof. Gregorio Cosentino Logica Digitale 1 Ma in fondo quali sono i mattoncini che compongono un calcolatore elettronico? Porte Circuiti Aritmetica Memorie Bus I/O And, Or, Nand, Nor, Not Multiplexer, Codif, Shifter, ALU Sommatori

Dettagli

CPU chips e bus. Didattica della strumentazione digitale e sistemi a microprocessore anno accademico 2006 2007 pagina 1

CPU chips e bus. Didattica della strumentazione digitale e sistemi a microprocessore anno accademico 2006 2007 pagina 1 CPU chips e bus anno accademico 2006 2007 pagina 1 Layout di una cpu anno accademico 2006 2007 pagina 2 I bus in un sistema a microprocessore anno accademico 2006 2007 pagina 3 Proprietà di un bus Bus

Dettagli

La memoria - tecnologie

La memoria - tecnologie Architettura degli Elaboratori e delle Reti Lezione 26 La memoria - tecnologie Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi di Milano L 25 1/21 Sommario!

Dettagli

Dispositivi di I/O. Dispositivi di I/O. Prestazioni degli hard disk. Dispositivi di I/O (2) Architetture dei Calcolatori (lettere A-I)

Dispositivi di I/O. Dispositivi di I/O. Prestazioni degli hard disk. Dispositivi di I/O (2) Architetture dei Calcolatori (lettere A-I) Dispositivi di I/O Architetture dei Calcolatori (lettere A-I) Dispositivi di I/O Un dispositivo di I/O è costituito da due componenti: Il dispositivo fisico effettivo (disco, stampante, mouse, video, )

Dettagli

Sintesi Calcolatori Elettronici

Sintesi Calcolatori Elettronici Sintesi Calcolatori Elettronici Unità di misura Byte 1 2 KiloByte 1024 2 MegaByte 1048576 2 GigaByte 1073741824 2 TeraByte 1099511627776 2 1 Byte = 8 bit Complemento a 1 I numeri positivi vengono rappresentati

Dettagli

Componenti fondamentali dell architettura di Van Neumann (già viste)

Componenti fondamentali dell architettura di Van Neumann (già viste) CPU e bus Corso: Architetture degli Elaboratori Docenti: F. Barbanera, G. Bella UNIVERSITA DI CATANIA Dip. di Matematica e Informatica Componenti fondamentali dell architettura di Van Neumann (già viste)

Dettagli

MEMORIE AD ACCESSO CASUALE

MEMORIE AD ACCESSO CASUALE MEMORIE Le memorie sono circuiti in grado di contenere un elevato numero di informazioni binarie in maniera organizzata e fornirle in uscita mediante una operazione detta LETTURA della memoria. A seconda

Dettagli

Comunicazione nell elaboratoreelaboratore. Parte IV. μp M I/O. La struttura di interconnessione assicura la comunicazione fra le

Comunicazione nell elaboratoreelaboratore. Parte IV. μp M I/O. La struttura di interconnessione assicura la comunicazione fra le Comunicazione nell elaboratoreelaboratore P M STRUTTURA DI INTERCONNESSIONE DISCO DISCO Parte IV P PERIFERICHE P Bus e microprocessori La struttura di interconnessione assicura la comunicazione fra le

Dettagli

L organizzazione interna della memoria e del banco di registri prevedono generalmente che le uscite di 2 o più componenti

L organizzazione interna della memoria e del banco di registri prevedono generalmente che le uscite di 2 o più componenti Banco di registri e memoria Corso ACSO prof. Cristina SILVANO Politecnico di Milano Componenti di memoria e circuiti di pilotaggio L organizzazione interna della memoria e del banco di registri prevedono

Dettagli

ARCHITETTURA DI UN ELABORATORE! Ispirata al modello della Macchina di Von Neumann (Princeton, Institute for Advanced Study, anni 40).!

ARCHITETTURA DI UN ELABORATORE! Ispirata al modello della Macchina di Von Neumann (Princeton, Institute for Advanced Study, anni 40).! ARCHITETTURA DI UN ELABORATORE! Ispirata al modello della Macchina di Von Neumann (Princeton, Institute for Advanced Study, anni 40).! MACCHINA DI VON NEUMANN! UNITÀ FUNZIONALI fondamentali! Processore

Dettagli

ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino

ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino ELETTRONICA II Prof. Dante Del Corso - Politecnico di Torino Gruppo G: Interfacciamento e interconnessioni Lezione n. 34 - G - 5: Protocollo a livello transazione Esempi di bus reali Interconnessioni 3

Dettagli

Il bus PCI. Piccinetti Stefano

Il bus PCI. Piccinetti Stefano Il bus PCI Piccinetti Stefano Prima del bus PCI: il bus ISA Il bus più diffuso prima del 1992 era il bus ISA (quello sostanzialmente trattato a Reti Logiche). Il primo bus ISA era ad 8 bit e garantiva

Dettagli

Reti logiche (2) Circuiti sequenziali

Reti logiche (2) Circuiti sequenziali Reti logiche (2) Circuiti sequenziali 1 Un ripasso Algebra booleana: operatori, postulati, identità, operatori funzionalmente completi Circuiti combinatori: tabelle di verità, porte logiche Decodificatore

Dettagli

La memoria: tecnologie di memorizzazione

La memoria: tecnologie di memorizzazione Architettura degli Elaboratori e delle Reti La memoria: tecnologie di memorizzazione Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi di Milano 1 Organizzazione

Dettagli

Logica Digitale. Fondamenti di Informatica - Prof. Gregorio Cosentino

Logica Digitale. Fondamenti di Informatica - Prof. Gregorio Cosentino Logica Digitale 1 Ma in fondo quali sono i mattoncini che compongono un calcolatore elettronico? Porte Circuiti Aritmetica Memorie Bus I/O And, Or, Nand, Nor, Not Multiplexer, Codif, Shifter, ALU Sommatori

Dettagli

Interrupt. Interno. Esterno. I/O (Gestione dei trasferimenti dati con la cpu e la memoria)

Interrupt. Interno. Esterno. I/O (Gestione dei trasferimenti dati con la cpu e la memoria) Interruzioni Interruzioni Le operazioni di I/O vengono gestite tramite un meccanismo chiamato Interrupt; Con l Interrupt il dispositivo d I/O invia un segnale (segnale d Interrupt) sul bus ogni volta che

Dettagli

Bus PCI (1) Calcolatore che utilizza (parzialmente o totalmente) bus PCI:

Bus PCI (1) Calcolatore che utilizza (parzialmente o totalmente) bus PCI: BUS PCI Bus PCI (1) Collegamento con le periferiche: standard di comunicazione costituito dal bus PCI (Periferal Component Interconnect): per il processore x86-64 possono essere utilizzati bus PCI a 32

Dettagli

Architettura hardware

Architettura hardware Architettura hardware la parte che si può prendere a calci Architettura dell elaboratore Sistema composto da un numero elevato di componenti, in cui ogni componente svolge una sua funzione elaborazione

Dettagli

Calcolatori Elettronici 1 Il Bus PCI

Calcolatori Elettronici 1 Il Bus PCI A.A. 2001/2002 Calcolatori Elettronici 1 Mauro Cortese 1 Sommario Generalità sui BUS Architetture precedenti Il BUS PCI e il suo funzionamento Architetture successive 2 Generalità sui BUS Generalità Il

Dettagli

Calcolatori Elettronici Lezione B2 Il Bus

Calcolatori Elettronici Lezione B2 Il Bus Calcolatori Elettronici Lezione B2 Il Bus Ing. Gestionale e delle Telecomunicazioni A.A. 2007/08 Gabriele Cecchetti Sommario Il bus Il bus asincrono Il bus sincrono Il bus semisincrono Arbitraggio del

Dettagli

Esame di INFORMATICA Lezione 4

Esame di INFORMATICA Lezione 4 Università di L Aquila Facoltà di Biotecnologie Esame di INFORMATICA Lezione 4 MACCHINA DI VON NEUMANN Il sottosistema di memorizzazione (memoria) contiene dati + istruzioni, inseriti inizialmente tramite

Dettagli

Memorie elettroniche. 1. Parametri delle memorie

Memorie elettroniche. 1. Parametri delle memorie 62 Fig. 1. Struttura di memoria. Memorie elettroniche Le memorie elettroniche sono dispositivi che immagazzinano informazioni sotto forma di codici binari. I dati memorizzati possono essere scritti (write)

Dettagli

Comunicazione di I/O

Comunicazione di I/O Corso di Informatica 2 Prof. Sciuto Comunicazione di I/O Daniele Paolo Scarpazza Dipartimento di Elettronica e Informazione Politecnico di Milano May 12th 2004 1 Nota sui termini Nelle slide che seguono

Dettagli

Lo scopo del BUS è quello d effettuare tutti i trasferimenti d informazioni tra le unità funzionali del calcolatore:

Lo scopo del BUS è quello d effettuare tutti i trasferimenti d informazioni tra le unità funzionali del calcolatore: ACSO Architettura dei Calcolatori e Sistemi Operativi Struttura e funzionamento del bus Corso ACSO prof. Cristina SILVANO Politecnico di Milano Il BUS del calcolatore Il calcolatore è composto da unità

Dettagli

Dal sistema operativo all' hardware

Dal sistema operativo all' hardware Dal sistema operativo all' hardware Di cosa parleremo? Il computer (processore e memoria principale) Cosa avviene all'avvio del computer? Scheda madre Alimentatore Memorie Secondarie (floppy disk, hard

Dettagli

FONDAMENTI DI INFORMATICA. Prof. PIER LUCA MONTESSORO. Facoltà di Ingegneria Università degli Studi di Udine. Reti logiche

FONDAMENTI DI INFORMATICA. Prof. PIER LUCA MONTESSORO. Facoltà di Ingegneria Università degli Studi di Udine. Reti logiche FONDAMENTI DI INFORMATICA Prof. PIER LUCA MONTESSORO Facoltà di Ingegneria Università degli Studi di Udine Reti logiche 2000 Pier Luca Montessoro (si veda la nota di copyright alla slide n. 2) 1 Nota di

Dettagli

Come è fatto un computer

Come è fatto un computer Come è fatto un computer COMPUTER = HARDWARE + SOFTWARE Hardware = Ferramenta Ovvero la parte elettronica e meccanica del PC Software = i programmi TIPI DI COMPUTER mainframe workstation server IL COMPUTER

Dettagli

Principali periferiche

Principali periferiche Principali periferiche Timer Periferica per il conteggio esatto del tempo Esempio: 8254 3 contatori "indietro" da 16 bit: si può impostare un valore iniziale fino a 0xFFFF in ciascuno dei tre contatori;

Dettagli

Architettura dei sistemi di elaborazione (Input/Output parte 3)

Architettura dei sistemi di elaborazione (Input/Output parte 3) Architettura dei sistemi di elaborazione (Input/Output parte 3) Accesso diretto alla RAM (DMA) Se la periferica è molto veloce, è possibile che la frequenza delle interruzioni sia così alta da non lasciare,

Dettagli

Corso di Informatica 2 Prof. Sciuto; Lezione su Bus e I/O.

Corso di Informatica 2 Prof. Sciuto; Lezione su Bus e I/O. Corso di Informatica 2 Prof. Sciuto Comunicazione di I/O Daniele Paolo Scarpazza Dipartimento di Elettronica e Informazione Politecnico di Milano 30 Maggio 2005 1 Convenzioni sui termini e sui segnali

Dettagli

Parte IV Architettura della CPU Central Processing Unit

Parte IV Architettura della CPU Central Processing Unit Parte IV Architettura della CPU Central Processing Unit IV.1 Struttura della CPU All interno di un processore si identificano in genere due parti principali: l unità di controllo e il data path (percorso

Dettagli

A.S. 2017/2018 PIANO DI LAVORO PREVENTIVO CLASSE 4Be

A.S. 2017/2018 PIANO DI LAVORO PREVENTIVO CLASSE 4Be A.S. 2017/2018 PIANO DI LAVORO PREVENTIVO CLASSE 4Be Docenti Disciplina Cinzia Brunetto, Antonino Cacopardo SAE Sistemi Automatici Elettronici Competenze disciplinari di riferimento Il percorso formativo

Dettagli

Il problema dello I/O e gli Interrupt. Appunti di Sistemi per la cl. 4 sez. D A cura del prof. Ing. Mario Catalano

Il problema dello I/O e gli Interrupt. Appunti di Sistemi per la cl. 4 sez. D A cura del prof. Ing. Mario Catalano Il problema dello I/O e gli Interrupt Appunti di Sistemi per la cl. 4 sez. D A cura del prof. Ing. Mario Catalano Il Calcolatore e le periferiche Periferica Decodifica Indirizzi Circuiti di Controllo Registri

Dettagli

La memoria: tecnologie di memorizzazione

La memoria: tecnologie di memorizzazione Architettura degli Elaboratori e delle Reti La memoria: tecnologie di memorizzazione Proff. A. Borghese, F. Pedersini Dipartimento di Informatica Università degli Studi di Milano 1 Organizzazione della

Dettagli

Architettura Single Channel

Architettura Single Channel LA RAM 1 Architettura Single Channel CPU ChipSet NothBridge RAM FSB 64 Bits Memory Bus 64 Bits Il Memory Bus ed il Front Side Bus possono (ma non necessariamente devono) avere la stessa velocità. 2 Architettura

Dettagli

Il Sottosistema di Memoria

Il Sottosistema di Memoria Il Sottosistema di Memoria Maurizio Palesi Maurizio Palesi 1 Memoria RAM RAM: Random Access Memory Tempi di accesso indipendenti dalla posizione Statica o Dinamica Valutata in termini di Dimensione (di

Dettagli

Clocking. Architetture dei Calcolatori (Lettere. di Memoria. Elemento. scritti. Tecnologie per la Memoria e Gerarchie di Memoria

Clocking. Architetture dei Calcolatori (Lettere. di Memoria. Elemento. scritti. Tecnologie per la Memoria e Gerarchie di Memoria Clocking Architetture dei Calcolatori (Lettere A-I) Tecnologie per la Memoria e Gerarchie di Memoria Ing.. Francesco Lo Presti Il segnale di Clock definisce quando i segnali possono essere letti e quando

Dettagli

Pipeline. Esempio pipeline lineare a 5 stadi. Tempificazione S1 S2 S3 S4 S5. Istruzioni. Istruzione 4. Istruzione 3. Istruzione 2. tempo.

Pipeline. Esempio pipeline lineare a 5 stadi. Tempificazione S1 S2 S3 S4 S5. Istruzioni. Istruzione 4. Istruzione 3. Istruzione 2. tempo. Pipeline Esempio pipeline lineare a 5 stadi Istruzioni S1 S2 S3 S4 S5 Tempificazione Istruzione 4 S1 S2 S3 S4 S5 Istruzione 3 S1 S2 S3 S4 S5 Istruzione 2 S1 S2 S3 S4 S5 Istruzione 1 S1 S2 S3 S4 S5 tempo

Dettagli

Processore. Memoria I/O. Control (Parte di controllo) Datapath (Parte operativa)

Processore. Memoria I/O. Control (Parte di controllo) Datapath (Parte operativa) Processore Memoria Control (Parte di controllo) Datapath (Parte operativa) I/O Memoria La dimensione del Register File è piccola registri usati per memorizzare singole variabili di tipo semplice purtroppo

Dettagli

Un bus è costituito da un fascio di collegamenti elettrici. In genere viene rappresentato mediante una freccia larga

Un bus è costituito da un fascio di collegamenti elettrici. In genere viene rappresentato mediante una freccia larga Introduzione Caratteristiche larghezza il bus multiplexato temporizzazione il bus asincrono (lettura/scrittura) il bus sincrono (lettura/scrittura) arbitraggio arbitro asincrono elementare arbitro asincrono

Dettagli

Architettura di un calcolatore

Architettura di un calcolatore 1 Università degli Studi di Roma Tor Vergata Facoltà di Ingegneria Corso di Laurea in Ingegneria Medica Architettura di un calcolatore I calcolatori sono un po come gli esseri umani; infatti pur essendo

Dettagli

Componenti principali. Programma cablato. Architettura di Von Neumann. Programma cablato. Cos e un programma? Componenti e connessioni

Componenti principali. Programma cablato. Architettura di Von Neumann. Programma cablato. Cos e un programma? Componenti e connessioni Componenti principali Componenti e connessioni Capitolo 3 CPU (Unita Centrale di Elaborazione) Memoria Sistemi di I/O Connessioni tra loro 1 2 Architettura di Von Neumann Dati e instruzioni in memoria

Dettagli

Circuiti di Indirizzamento della Memoria

Circuiti di Indirizzamento della Memoria Circuiti di Indirizzamento della Memoria Maurizio Palesi Maurizio Palesi 1 Memoria RAM RAM: Random Access Memory Tempi di accesso indipendenti dalla posizione Statica o Dinamica Valutata in termini di

Dettagli

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Processori per sistemi di controllo

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Processori per sistemi di controllo INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Processori per sistemi di controllo Prof. Carlo Rossi DEIS - Università di Bologna Tel: 051 2093020 email: crossi@deis.unibo.it Classificazione Processori

Dettagli

Tecnologie per la memoria e gerarchie di memoria

Tecnologie per la memoria e gerarchie di memoria Tecnologie per la memoria e gerarchie di memoria Architetture dei alcolatori (lettere A-I) Il quadro di insieme I cinque componenti di un calcolatore Processore Unità di controllo Memoria ispositivi di

Dettagli

Memorie a semiconduttore (1)

Memorie a semiconduttore (1) Elettronica II Corso di Laurea in Informatica Crema, 22 maggio 2002 (1) Department of Electrical Engineering The University of Texas at Dallas P.O. Box 830688 Richardson, Texas 75083 E-mail: stefano@utdallas.edu

Dettagli

ARCHITETTURA DI UN ELABORATORE

ARCHITETTURA DI UN ELABORATORE ARCHITETTURA DI UN ELABORATORE Unità funzionali Ispirata al modello della Macchina di Von Neumann (Princeton, Institute for Advanced Study, anni 40) Macchina di Von Neumann: Non distingueva fra RAM e ROM

Dettagli

ARCHITETTURA DI UN ELABORATORE

ARCHITETTURA DI UN ELABORATORE ARCHITETTURA DI UN ELABORATORE memoria centrale Ispirata al modello della Macchina di Von Neumann (Princeton, Institute for Advanced Study, anni 40). John von Neumann (Neumann János) (December 28, 1903

Dettagli

ARCHITETTURA DI UN ELABORATORE

ARCHITETTURA DI UN ELABORATORE ARCHITETTURA DI UN ELABORATORE Unità funzionali Ispirata al modello della Macchina di Von Neumann (Princeton, Institute for Advanced Study, anni 40). La macchiana di Von Neumann: Non distingueva fra RAM

Dettagli

Sistemi di Elaborazione: esercizio con il D12

Sistemi di Elaborazione: esercizio con il D12 Sistemi di Elaborazione: esercizio con il D12 Un sistema basato su PIC18F8720 a 24 MHz è dotato di 32 KB di EPROM agli indirizzi alti e 64 KB di RAM statica agli indirizzi bassi. Il sistema è dotato inoltre

Dettagli

Componenti principali

Componenti principali Componenti e connessioni Capitolo 3 Componenti principali n CPU (Unità Centrale di Elaborazione) n Memoria n Sistemi di I/O n Connessioni tra loro Architettura di Von Neumann n Dati e instruzioni in memoria

Dettagli

Memorie e circuiti sequenziali. Elementi di memoria

Memorie e circuiti sequenziali. Elementi di memoria Memorie e circuiti sequenziali Salvatore Orlando Arch. Elab. - S. Orlando 1 Elementi di memoria I circuiti combinatori sono in grado di calcolare funzioni che dipendono solo dai dati in input I circuiti

Dettagli

La macchina di Von Neumann. Central Processing Unit (CPU) Elementi base. Architettura computer. Bus di sistema MEMORIA CENTRALE PERIFERICHE A B INTR

La macchina di Von Neumann. Central Processing Unit (CPU) Elementi base. Architettura computer. Bus di sistema MEMORIA CENTRALE PERIFERICHE A B INTR Architettura di un computer La macchina di Von Neumann Architettura organizzata secondo il modello della macchina di von Neumann definita nei tardi anni 40 all Institute for Advanced Study di Princeton.

Dettagli

Componenti e connessioni. Capitolo 3

Componenti e connessioni. Capitolo 3 Componenti e connessioni Capitolo 3 Componenti principali CPU (Unità Centrale di Elaborazione) Memoria Sistemi di I/O Connessioni tra loro Architettura di Von Neumann Dati e instruzioni in memoria (lettura

Dettagli

PROVA SCRITTA DI ELETTRONICA DEI SISTEMI DIGITALI parte I e parte II. Ora Consegna: N. Matricola: Corso Laurea/Diploma: PARTE 1?

PROVA SCRITTA DI ELETTRONICA DEI SISTEMI DIGITALI parte I e parte II. Ora Consegna: N. Matricola: Corso Laurea/Diploma: PARTE 1? Data: Ora Consegna: N. Matricola: Corso Laurea/Diploma: Nome : Anno di Corso: Cognome: ESD I? II? Esercizi compilati ESD I: Esercizi compilati ESD II:? 1? 2?3?4? 5? 6?7?8? 9? 10? 1? 2?3?4? 5? 6?7?8? 9?

Dettagli

Pentium: architettura di sistema

Pentium: architettura di sistema Pentium: architettura di sistema 1 2 TXC 4 3 5 6 PIIX 7 Pentium: architettura a livello di sistema 1 Il processore Pentum (1) è interfacciato sul bus con la memoria cache di livello 2 (2). L interfacciamento

Dettagli

Architettura hardware

Architettura hardware Architettura dell elaboratore Architettura hardware la parte che si può prendere a calci Sistema composto da un numero elevato di componenti, in cui ogni componente svolge una sua funzione elaborazione

Dettagli

I dischi ottici. Fondamenti di Informatica -- Rossano Gaeta

I dischi ottici. Fondamenti di Informatica -- Rossano Gaeta I dischi ottici Le tecnologie dei dischi ottici sono completamente differenti e sono basate sull'uso di raggi laser Il raggio laser è un particolare tipo di raggio luminoso estremamente focalizzato che

Dettagli

Sistemi Operativi SISTEMI DI INPUT/OUTPUT. D. Talia - UNICAL. Sistemi Operativi 10.1

Sistemi Operativi SISTEMI DI INPUT/OUTPUT. D. Talia - UNICAL. Sistemi Operativi 10.1 SISTEMI DI INPUT/OUTPUT 10.1 Sistemi I/O Hardware di I/O Interfaccia di I/O per le applicazioni Sottosistema per l I/O del kernel Trasformazione delle richieste di I/O Stream Prestazioni 10.2 I/O Hardware

Dettagli

I.I.S. Benvenuto Cellini. Corso di formazione tecnica. Memoria Primaria. Prof. Alessandro Pinto. v.2009

I.I.S. Benvenuto Cellini. Corso di formazione tecnica. Memoria Primaria. Prof. Alessandro Pinto. v.2009 I.I.S. Benvenuto Cellini Corso di formazione tecnica Memoria Primaria Prof. Alessandro Pinto v.9 Memoria: contiene i dati da elaborare, i risultati dell elaborazione, il programma Memoria centrale (o primaria):

Dettagli

calcolatori e, in generale, nella maggior parte dei circuiti elettronici digitali un segnale può assumere solo 2 stati: 1 / VERO / [2..

calcolatori e, in generale, nella maggior parte dei circuiti elettronici digitali un segnale può assumere solo 2 stati: 1 / VERO / [2.. Le 5 porte logiche di base I calcolatori odierni sono costituiti da circuiti digitali (Hardware); ogni circuito di base, se preso singolarmente, è straordinariamente semplice; d altro canto, grazie all

Dettagli

static dynamic random access memory

static dynamic random access memory LA MEMORIA SRAM e D R A M static dynamic random access memory SRAM: unità che memorizza un gran numero di parole in un insieme di flip-flop, opportunamente connessi, mediante un sistema di indirizzamento

Dettagli

La macchina di Von Neumann. Elementi base. Central Processing Unit (CPU) Architettura computer. Bus di sistema MEMORIA CENTRALE PERIFERICHE A B ALU

La macchina di Von Neumann. Elementi base. Central Processing Unit (CPU) Architettura computer. Bus di sistema MEMORIA CENTRALE PERIFERICHE A B ALU Architettura di un computer La macchina di Von Neumann Architettura organizzata secondo il modello della macchina di von Neumann definita nei tardi anni 40 all Institute for Advanced Study di Princeton.

Dettagli