la restituzione prospettica da singolo fotogramma

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "la restituzione prospettica da singolo fotogramma"

Transcript

1 la restituzione prospettica da singolo fotogramma arch. francesco guerini politecnico di Milano, Facoltà di Architettura e Società Laboratorio di Rappresentazione 1 Prof. Andrea Rolando, Prof.ssa Paola Condoleo

2 questa immagine ha almeno tre punti di fuga: non è possibile fare una restituzione prospettica con il metodo descritto in questa lezione. Perché non è possibile? Potrei eventuamente restituire anche il tamburo ottagonale? 2

3 3 la facciata dell edificio rappresentato nell immagine può essere restituita a patto di individuare anche il punto di fuga della facciata in ombra o di conoscere la misura dell angolo fra le due facciate (nella maggior parte dei casi è 90 ) Perché?

4 4 immagine dell edificio: la fotografia dev essere scattata in modo che il sensore (o pellicola) della macchina fotografica sia perfettamente verticale. In questo modo le linee che descrivono gli spigoli verticali dell edificio sono verticali anche nell immagine prospettica. Ovvero l immagine fotografica dell edificio è perfettamente corrispondente ad una prospettiva a quadro verticale: il piano di quadro è rappresentato dal sensore/pellicola della macchina fotografica. Si sottolinea che quanto descritto è valido solo a condizione dhe siano verificati due requisiti nell edificio fotografato: - le facciate appartengono effettivamente ad un piano verticale (perpendicolare al piano geometrale) e descrivono tra loro un angolo di 90 - esiste un piano d appoggio orizzontale dell edificio (assimilabile al piano geometrale) o un orizzontamento effettivo sulla facciata (marcapiani, rivestimenti) che consenta di individuare una linea di terra e di rilevare una misura orizzontale sull oggetto reale.

5 5 il PP è il centro della fotografia, da cui passa la linea dell orizzonte. l immagine dell edificio è la stampa di qullo che il sensore/pellicola della macchina fotografica cattura al momento dello scatto. Ovviamente il centro è il punto di mira, ovvero il punto principale dell immagine prospettica. Affinche questo sia effettivamente verificato il fotogramma NON deve essere ritagliato rispetto a ciò che è stato scattato.

6 6 sull orizzonte giacciono i punti di concorso (C1 e C2) dell immagine prospettica, li individuo seguendo il profilo dell immagine prospettica dell edificio

7 7 disegnando una semicirconferenza (con centro nel punto medio fra i due punti di concorso) posso in seguito determinare le direzioni di fuga (p.8) il punto di vista, secondo il metodo della prospettiva, è allineato al PP lungo una retta perpendicolare al piano di quadro. Per determinare la distanza del PV dal quadro (passo necessario per individuare i punti misuratori) è necessario tracciare una semicirconferenza di diametro pari alla distanza fra i due punti di concorso (C1 e C2) e intersecarla con la retta verticale passante per PP, che altro non è che il ribaltamento sul quadro del raggio proiettante PV - PP. Questo metodo è corretto solo nel caso che le facciate dell edificio rappresentato descrivano nella realtà un angolo di 90

8 8 la verticale passante per il PP, interseca la circonferenza individuando le direzioni di fuga. L angolo ottenuto è retto e rappresenta il ribaltamento sul piano di quadro del punto di vista (vedi p.7 e 15) Il triangolo inscritto nella semicirconferenza e costruito sul diametro è sempre retto. Si traccia la semicirconferenza tra i due punti di concorso perchè si suppone che l angolo descritto dalle due facciate dell edificio sia retto. Questa supposizione ci consente di individuare le due direzioni di fuga ribaltate sul quadro ed è effettivamente valida solo se anche nell edificio reale le due facciate descrivono un angolo retto (e appartengono a un piano verticale).

9 9 puntando in C1 e C2 e ribaltando il punto di vista sull orizzonte ottengo i punti di misura (M1 e M2) dell immagine prospettica. il metodo per individuare i punti di misura è il medesimo di quello dell omonimo metodo, invece di eseguire la costruzione sul piano geometrale, la si esegue - ribaltata - sul quadro

10 10 ottenuti i due punti di misura posso proiettare in avanti i vertici dell immagine prospettica per determinare in seguito la linea di terra è possibile utilizzareil metodo descritto SOLO se le faciate sono piane. Come si osserva dall immagine, i quattro vertici della facciata descrivono una porzione di piano. Il metodo non può essere utilizzato per facciate non piane.

11 11 la linea di terra viene individuata laddove i due raggi proiettati dal punto di misura misurano sull orizzontale la dimensione (alla scala desiderata) presa dall edificio reale ovviamente la misura da riportare in scala nel disegno, dev essere NOTA al momento della restituzione. Quindi durante il rilievo fotografico è necessario rilevare almeno una dimensione di riferimento dell oggetto (meglio due, una in orizzontale e una in verticale)

12 12 proiettando in avanti i vertici della figura prospettica (SOLO quelli appartenenti allo stesso piano della facciata) ottengo il prospetto dell edificio (in scala) costruito sul piano di quadro

13 13

14 14

15 15 la semicirconferenza costruita sull immagine prospettica è il ribaltamento del sistema grafico (proiettato sul piano geometrale) che definisce il punto di vista, i punti di concorso e i punti di misura

16 la restituzione prospettica da fotogramma parziale

17 17 è possibile effettuare una restituzione prospettica anche se non si dispone di un fotogramma integro. In questo caso è necessario avere obbligatoriamente un riferimento in altezza dell edificio fotografato come per il metodo a fotogramma integro, è necessario che le facciate dell edificio siano piane, verticali e tra loro incidenti a 90. Dal momento che non è possibile definite il PP (non è più il centro del fotogramma) sarà inoltre necessario utilizzare altri metodi per la definizione dei punti misuratori, in particolare è indispensabile rilevare direttamente una misura in altezza, senza la quale non è possibile sviluppare il processo di restituzione.

18 come per il metodo precedente è possibile individuare i punti di concorso dell immagine prospettica e quindi l orizzonte. In seguito è possibile fissare una linea di terra (parrallela all orizzonte) al piede dell edificio: il piano di quadro tocca lo spigolo dell edificio. 18 diversamente dal metodo a fotogramma integro, l individuazione di C1 e C2 NON serve all ottenimento dei due punti misuratori ma all individuazione dell orizzonte, indispensabile per definire l inclinazione della LT (il fotogramma potrebbe non essere ritagliato ortogonalmente all originale). per proseguire è INDISPENSABILE aver provveduto ad ottenere le misure reali (rilievo diretto) dei lati dell edificio corrispondenti agli spigoli AB, BC e BE (o BD, nel caso BE sia inottenibile col rilievo diretto). L individuazione della LT al piede dell edificio (piano di quadro tangente lo spigolo dell edificio) è motivata dal fatto che - come noto - in prospettiva è possibile misurare solo sul piano di quadro. Fissando il quadro in modo tangente lo spigolo BE, lo stesso spigolo è una rappresentazione in scala dello spigolo reale corrispondente nell edificio. Il rapporto di scala è definito dalla misura di BE (o BD) nell immagine prospettica fratto la misura reale dello spigolo BE (o BD) nell edificio. ad esempio BD reale = 200cm BD fotogramma = 2cm fattore di scala X = 2:200 = scala 1:100

19 le misure sulla LT consentono di ottenere i punti misuratori una volta ottenuto il fattore di scala grazie allo spigolo verticale (l unico giacente sul quadro e quindi misurabile) è possibile fissare sulla LT le misure delle basi delle facciate dell edificio, riportte secondo il fattore di scala X (vedi pagina precedente). 19 Le rette che congiungono gli estremi delle misure sulla LT con gli estremi delle basi delle facciate - prolungate fino all orizzonte - individuano i due punti di misura M1 e M2. Una volta ottenuti i punti miduratori è possibile procedere come già visto nel metodo precedente

20 20 si ricorda che: - per poter utilizzare questi metodi le facciate dell edificio devono essere piane, verticali e incidenti tra loro a 90 - la ripresa fotografica va effettuata mantenendo la macchina fotografica in perfetta verticalità (il più possibile) - la foto (se digitale) dev essere scattata ad alta risoluzione - se si utilizza una macchina fotografica compatta (non reflex) è necessario evitare l effetto grandangolo che rende CURVE linee e superfici, rendendo non praticabile il metodo di restituzione. Per evitare il problema si utilizzi uno zoom: si trovi un giusto compromesso fra distanza dall edificio e utilizzo dello zoom (l effetto grandangolo si ha quando lo zoom della macchina non è utilizzato, zoomare in avanti per eliminarlo). - è necessario rilevare almeno le misure di base delle due facciate inquadrate e l altezza dello spigolo che le unisce. - se non si riesce ad ottenere la misura dell altezza completa dell edificio rilevare almeno una misura verticale riportabile per proiezione sullo spigolo tra le due facciate (es: altezza della porta, marcapiano, etc.) indicazioni operative: una volta scattata la fotografia e rilevate le misure dell edificio, impostare in bozza entrambi i metodi fino alla definizione del profilo di una delle due facciate. Si confrontino poi le misure dei prospetti ottenuti con i diversi metodi. Una differenza sensibile è sintomo che la fotografia non è perfettamente verticale o risente di effetti grandangolari, si utilizzi quindi il metodo da fotogramma parziale (applicabile anche ai fotogrammi integri). Nel caso la differenza non sia particolarmente evidente si preferisca il metodo a fotogramma integro.

Fig. 2. Proiezioni ortogonali di un parallelepipedo su piani esterni alla figura

Fig. 2. Proiezioni ortogonali di un parallelepipedo su piani esterni alla figura 3. LE PROIEZIONI ORTOGONALI Le proiezioni ortogonali sono originate dallo scopo di proiettare su un piano (il foglio della rappresentazione) un oggetto posto nello spazio, che conservi le stesse caratteristiche

Dettagli

Laboratorio di Rappresentazione e Modellazione dell Architettura

Laboratorio di Rappresentazione e Modellazione dell Architettura Laboratorio di Rappresentazione e Modellazione dell Architettura Seconda Università di Napoli Facoltà di Architettura Corso di Laurea in Architettura Laboratorio di Rappresentazione e Modellazione dell

Dettagli

PROIEZIONI ORTOGONALI

PROIEZIONI ORTOGONALI PROIEZIONI ORTOGONALI 104 Il metodo della doppia proiezione ortogonale Il metodo attualmente conosciuto come metodo delle proiezioni ortogonali (o proiezioni ortografiche) inizialmente nacque come metodo

Dettagli

11 - Rilievo tridimensionale di un edificio con distanziometro senza prisma e restituzione dei prospetti in 2D

11 - Rilievo tridimensionale di un edificio con distanziometro senza prisma e restituzione dei prospetti in 2D 11 - Rilievo tridimensionale di un edificio con distanziometro senza prisma e restituzione dei prospetti in 2D Vediamo in questo capitolo una procedura molto importante di PFCAD CATASTO quale il disegno

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t)

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t) CONTINUITÀ E DERIVABILITÀ Esercizi proposti 1. Determinare lim M(sin) (M(t) denota la mantissa di t) kπ/ al variare di k in Z. Ove tale limite non esista, discutere l esistenza dei limiti laterali. Identificare

Dettagli

Processo di rendering

Processo di rendering Processo di rendering Trasformazioni di vista Trasformazioni di vista Il processo di visione in tre dimensioni Le trasformazioni di proiezione 2 Rendering nello spazio 2D Il processo di rendering (visualizzazione)

Dettagli

r.berardi COSTRUZIONI GEOMETRICHE

r.berardi COSTRUZIONI GEOMETRICHE r.berardi COSTRUZIONI Costruzioni geometriche di base perpendicolari Pag.. 2 OVALI Pag. 12 Bisettrice e divisione Pag. 3 angoli COSTRUZIONE POLIGONI RACCORDI GRAFICI DATO IL LATO Triangolo equilatero,

Dettagli

LA RETTA. Retta per l'origine, rette orizzontali e verticali

LA RETTA. Retta per l'origine, rette orizzontali e verticali Retta per l'origine, rette orizzontali e verticali LA RETTA Abbiamo visto che l'equazione generica di una retta è del tipo Y = mx + q, dove m ne rappresenta la pendenza e q il punto in cui la retta incrocia

Dettagli

La spirale iperbolica: Fu descritta per la prima volta da Pierre Varignon (1654-1722). L equazione, espressa in coordinate polari, è del tipo:

La spirale iperbolica: Fu descritta per la prima volta da Pierre Varignon (1654-1722). L equazione, espressa in coordinate polari, è del tipo: Esistono delle forme geometriche che sono in grado, per complessi fattori psicologici non del tutto chiariti, di comunicarci un senso d equilibrio, di gradimento e di benessere. Tra queste analizzeremo

Dettagli

Modellare una poltrona

Modellare una poltrona 7 Modellare una poltrona Sfruttando i comandi di costruzione delle superfici, modelleremo un arredo di media complessità, la poltrona, alla ricerca di una geometria organica che rispetti la continuità

Dettagli

SEZIONI. Introduzione

SEZIONI. Introduzione SEIONI 128 Introduzione Sezionare un solido significa tagliarlo secondo una superficie ideale in modo da mostrare il volume interno del solido stesso. Nella maggior parte dei casi l elemento secante è

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

Tecniche grafiche per il disegno a mano libera il segno espressivo

Tecniche grafiche per il disegno a mano libera il segno espressivo Tecniche grafiche per il disegno a mano libera il segno espressivo Tecnica a tratto o di solo contorno textures e trattamenti di campo chiaroscuro acquerello Alcuni suggerimenti utili.. Una corretta postura

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

Misure di base su una carta. Calcoli di distanze

Misure di base su una carta. Calcoli di distanze Misure di base su una carta Calcoli di distanze Per calcolare la distanza tra due punti su una carta disegnata si opera nel modo seguente: 1. Occorre identificare la scala della carta o ricorrendo alle

Dettagli

Lunghezza ocale. Donato Di Bello

Lunghezza ocale. Donato Di Bello F Lunghezza ocale Donato Di Bello Cinepresa, telecamera, macchina fotografica: tre strumenti tecnologici che utilizziamo per registrare la realtà intorno a noi o per trasformare in immagini la nostra fantasia.

Dettagli

CORSO DI FONDAMENTI DI DISEGNO TECNICO LEZIONE 2 PROIEZIONI ORTOGONALI

CORSO DI FONDAMENTI DI DISEGNO TECNICO LEZIONE 2 PROIEZIONI ORTOGONALI PERCORSI ABILITANTI SPECIALI (PAS) - A.A. 2013-2014 UNIVERSITÀ DI PISA DIPARTIMENTO DI INGEGNERIA CIVILE E INDUSTRIALE (DICI) CORSO DI FONDAMENTI DI DISEGNO TECNICO LEZIONE 2 PROIEZIONI ORTOGONALI 1 CENNI

Dettagli

Forze come grandezze vettoriali

Forze come grandezze vettoriali Forze come grandezze vettoriali L. Paolucci 23 novembre 2010 Sommario Esercizi e problemi risolti. Per la classe prima. Anno Scolastico 2010/11 Parte 1 / versione 2 Si ricordi che la risultante di due

Dettagli

Elementi di Geometria. Lezione 03

Elementi di Geometria. Lezione 03 Elementi di Geometria Lezione 03 I triangoli I triangoli sono i poligoni con tre lati e tre angoli. Nelle rappresentazioni grafiche (Figura 32) i vertici di un triangolo sono normalmente contrassegnati

Dettagli

LIVELLO STUDENT S1. S2. S3. S4. S5. S6.

LIVELLO STUDENT S1. S2. S3. S4. S5.  S6. LIVELLO STUDENT S1. (5 punti ) La figura mostra due quadrati uguali che hanno in comune esattamente un vertice. È possibile precisare la misura dell'angolo ABC? S2. (7 punti ) Negli usuali fogli (rettangolari)

Dettagli

Parte Seconda. Geometria

Parte Seconda. Geometria Parte Seconda Geometria Geometria piana 99 CAPITOLO I GEOMETRIA PIANA Geometria: scienza che studia le proprietà delle figure geometriche piane e solide, cioè la forma, l estensione e la posizione dei

Dettagli

LEZIONI N 24 E 25 UNIONI SALDATE

LEZIONI N 24 E 25 UNIONI SALDATE LEZIONI N 24 E 25 UNIONI SALDATE Le saldature si realizzano prevalentemente con il metodo dell arco elettrico, utilizzando elettrodi rivestiti, che forniscono il materiale di apporto. Il collegamento è

Dettagli

DISEGNO E LABORATORIO CAD

DISEGNO E LABORATORIO CAD CORSO DI DISEGNO E LABORATORIO CAD CIVILI C.D.L. INGEGNERIA CIVILE, AMBIENTALE E EDILE A.A. 2014 2015 P R O G R A M M A DISEGNO E LABORATORIO CAD Docente: Ing. Marco NOCERA m.nocera@email.it Codocente:

Dettagli

Approfondimento B1.2 La teoria delle ombre 1

Approfondimento B1.2 La teoria delle ombre 1 Approfondimento B1.2 La teoria delle ombre 1 Galleria fotografica: la teoria delle ombre si comprende con l osservazione diretta 1. Camminando sotto il portico più lungo del mondo (Portico di San Luca

Dettagli

r.berardi NOTE E SCHEDE OPERATIVE PER APPRENDERE LE PROIEZIONI ORTOGONALI

r.berardi NOTE E SCHEDE OPERATIVE PER APPRENDERE LE PROIEZIONI ORTOGONALI r.berardi NOTE E SCHEDE OPERATIVE PER APPRENDERE LE PROIEZIONI ORTOGONALI 1. Proiezioni Assonometriche e ortogonali 2. Teoria delle proiezioni ortogonali Pag. 1 Pag. 2. 3. SCHEDE OPERATIVE SULLE PROIEZIONI

Dettagli

B. Vogliamo determinare l equazione della retta

B. Vogliamo determinare l equazione della retta Risoluzione quesiti ordinamento Quesito N.1 Indicata con α la misura dell angolo CAB, si ha che: 1 Area ( ABC ) = AC AB sinα = 3 sinα π 3 sinα = 3 sinα = 1 α = Il triangolo è quindi retto in A. La misura

Dettagli

Punti notevoli di un triangolo

Punti notevoli di un triangolo Punti notevoli dei triangoli (UbiLearning). - 1 Punti notevoli di un triangolo Particolarmente importanti in un triangolo sono i punti dove s intersecano specifici segmenti, rette o semirette (Encyclopedia

Dettagli

CONI, CILINDRI, SUPERFICI DI ROTAZIONE

CONI, CILINDRI, SUPERFICI DI ROTAZIONE CONI, CILINDRI, SUPERFICI DI ROTAZIONE. Esercizi x + z = Esercizio. Data la curva x, calcolare l equazione del cilindro avente γ y = 0 come direttrice e con generatrici parallele al vettore v = (, 0, ).

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 004 Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PRBLEMA Sia la curva d equazione: ke ove k e

Dettagli

DISEGNO DI MACCHINE APPUNTI DELLE LEZIONI

DISEGNO DI MACCHINE APPUNTI DELLE LEZIONI DISEGNO DI MACCHINE APPUNTI DELLE LEZIONI Lezione 3: Proiezioni Ortogonali con il metodo europeo Francesca Campana Le proiezioni ortogonali Le proiezioni ortogonali descrivono bi-dimensionalmente un oggetto

Dettagli

Martina Agazzi. Corso di Tecniche plastiche contemporanee. Prof. Carlo Lanzi

Martina Agazzi. Corso di Tecniche plastiche contemporanee. Prof. Carlo Lanzi Martina Agazzi Corso di Tecniche plastiche contemporanee Prof. Carlo Lanzi RILEVAMENTO 3D DI UN OGGETTO ARTISTICO (SCULTURA) Luce strutturata Dispositivo portatile, facilmente trasportabile digitalizzazione

Dettagli

Inserimento di distanze e di angoli nella carta di Gauss

Inserimento di distanze e di angoli nella carta di Gauss Inserimento di distanze e di angoli nella carta di Gauss Corso di laurea in Ingegneria per l Ambiente e il Territorio a.a. 2006-2007 Inserimento della distanza reale misurata nella carta di Gauss (passaggio

Dettagli

Corso Integrato di DISEGNO A Prof.ssa Anna De Santis

Corso Integrato di DISEGNO A Prof.ssa Anna De Santis Prima Facoltà di Architettura Ludovico Quaroni Corso di Laurea in DISEGNO INDUSTRIALE A.A. 2007-08 - 1 Semestre Corso Integrato di DISEGNO A Prof.ssa Anna De Santis Calendario del corso con argomenti svolti

Dettagli

( x) ( x) 0. Equazioni irrazionali

( x) ( x) 0. Equazioni irrazionali Equazioni irrazionali Definizione: si definisce equazione irrazionale un equazione in cui compaiono uno o più radicali contenenti l incognita. Esempio 7 Ricordiamo quanto visto sulle condizioni di esistenza

Dettagli

Sistema di ripresa con fotocamera digitale fissa Calibrazione

Sistema di ripresa con fotocamera digitale fissa Calibrazione Sistema di ripresa con fotocamera digitale fissa Calibrazione TUTORIAL CALIBRAZIONE FOTOCAMERA Sommario 1. Interfacciamento PC... 3 2. Collocamento fotocamera... 4 3. Distanza di ripresa... 5 4. Interfacciamento

Dettagli

I teoremi di Euclide e di Pitagora

I teoremi di Euclide e di Pitagora I teoremi di Euclide e di Pitagora In questa dispensa vengono presentati i due teoremi di Euclide ed il teorema di Pitagora, fondamentali per affrontare diverse questioni sui triangoli rettangoli. I teoremi

Dettagli

~ Copyright Ripetizionando - All rights reserved ~ http://ripetizionando.wordpress.com STUDIO DI FUNZIONE

~ Copyright Ripetizionando - All rights reserved ~ http://ripetizionando.wordpress.com STUDIO DI FUNZIONE STUDIO DI FUNZIONE Passaggi fondamentali Per effettuare uno studio di funzione completo, che non lascia quindi margine a una quasi sicuramente errata inventiva, sono necessari i seguenti 7 passaggi: 1.

Dettagli

INdAM QUESITI A RISPOSTA MULTIPLA

INdAM QUESITI A RISPOSTA MULTIPLA INdAM Prova scritta per il concorso a 40 borse di studio, 2 borse aggiuntive e a 40 premi per l iscrizione ai Corsi di Laurea in Matematica, anno accademico 2011/2012. Piano Lauree Scientifiche. La prova

Dettagli

Laboratorio di Disegno e Rilievo dell Architettura PROF. MANUELA PISCITELLI

Laboratorio di Disegno e Rilievo dell Architettura PROF. MANUELA PISCITELLI RILIEVO DEGLI ALZATI Per collegare correttamente il rilievo altimetrico di più ambienti sovrapposti in verticale è necessario costruire un riferimento esterno all edificio al quale relazionare le quote

Dettagli

Sistema operativo: Gestione della memoria

Sistema operativo: Gestione della memoria Dipartimento di Elettronica ed Informazione Politecnico di Milano Informatica e CAD (c.i.) - ICA Prof. Pierluigi Plebani A.A. 2008/2009 Sistema operativo: Gestione della memoria La presente dispensa e

Dettagli

PARTICOLARI COSTRUTTIVI MURATURA ARMATA POROTON

PARTICOLARI COSTRUTTIVI MURATURA ARMATA POROTON PARTICOLARI COSTRUTTIVI MURATURA ARMATA POROTON La muratura armata rappresenta un sistema costruttivo relativamente nuovo ed ancora non molto conosciuto e le richieste di chiarimenti sulle modalità di

Dettagli

Andrea Pagano, Laura Tedeschini Lalli

Andrea Pagano, Laura Tedeschini Lalli 3.5 Il toro 3.5.1 Modelli di toro Modelli di carta Esempio 3.5.1 Toro 1 Il modello di toro finito che ciascuno può costruire è ottenuto incollando a due a due i lati opposti di un foglio rettangolare.

Dettagli

Il valore assoluto. F. Battelli Università Politecnica delle Marche, Ancona. Pesaro, Precorso di Analisi 1, 22-28 Settembre 2005 p.

Il valore assoluto. F. Battelli Università Politecnica delle Marche, Ancona. Pesaro, Precorso di Analisi 1, 22-28 Settembre 2005 p. Il valore assoluto F Battelli Università Politecnica delle Marche Ancona Pesaro Precorso di Analisi 1 22-28 Settembre 2005 p1/23 Il valore assoluto Si definisce il valore assoluto di un numero reale l

Dettagli

Rette e piani con le matrici e i determinanti

Rette e piani con le matrici e i determinanti CAPITOLO Rette e piani con le matrici e i determinanti Esercizio.. Stabilire se i punti A(, ), B(, ) e C(, ) sono allineati. Esercizio.. Stabilire se i punti A(,,), B(,,), C(,, ) e D(4,,0) sono complanari.

Dettagli

Analisi e diagramma di Pareto

Analisi e diagramma di Pareto Analisi e diagramma di Pareto L'analisi di Pareto è una metodologia statistica utilizzata per individuare i problemi più rilevanti nella situazione in esame e quindi le priorità di intervento. L'obiettivo

Dettagli

30 o. 60 o. assocubo.ggb. Disegno tecnico + costruzione cartellina. a cura di Manuela Menzaghi 1

30 o. 60 o. assocubo.ggb. Disegno tecnico + costruzione cartellina. a cura di Manuela Menzaghi 1 assocubo.ggb Assonometria monometrica del cubo con gli strumenti geometrici di NOTEBOOK Z Y 60 o 60 o 30 o X L.T. Assonometria monometrica con squadra e righello interattivo a cura di Manuela Menzaghi

Dettagli

Soluzioni del Certamen Mathematicum

Soluzioni del Certamen Mathematicum Soluzioni del Certamen Mathematicum dicembre 2004 1. Notiamo che un qualsiasi quadrato modulo 4 è sempre congruo o a 0 o a 1. Infatti, se tale numero è pari possiamo scriverlo come 2k, seè dispari invece

Dettagli

SymCAD/C.A.T.S. modulo Canali Schema

SymCAD/C.A.T.S. modulo Canali Schema SymCAD/C.A.T.S. modulo Canali Schema Il modulo Ventilazione Standard permette di effettuare la progettazione integrata (disegno e calcoli) in AutoCAD di reti di canali aria (mandata e ripresa). Il disegno

Dettagli

-Rilievo diretto Laboratori -Rilievo Aula 9 edificio A. Alessio Tirapelle Mirko Mondini Daniel Colombelli Irene Gregori

-Rilievo diretto Laboratori -Rilievo Aula 9 edificio A. Alessio Tirapelle Mirko Mondini Daniel Colombelli Irene Gregori -Rilievo diretto Laboratori -Rilievo Aula 9 edificio A Alessio Tirapelle Mirko Mondini Daniel Colombelli Irene Gregori Operazioni di misura a diretto contatto con l oggetto da rilevare; è possibile il

Dettagli

La quotatura costituisce il complesso delle informazioni in un disegno che precisano le dimensioni di un oggetto o di un componente meccanico

La quotatura costituisce il complesso delle informazioni in un disegno che precisano le dimensioni di un oggetto o di un componente meccanico La quotatura costituisce il complesso delle informazioni in un disegno che precisano le dimensioni di un oggetto o di un componente meccanico 1 La quotatura è ottenuta con i seguenti elementi La linea

Dettagli

APPUNTI DI MATEMATICA GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1)

APPUNTI DI MATEMATICA GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1) GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1) Un ente (geometrico) è un oggetto studiato dalla geometria. Per descrivere gli enti vengono utilizzate delle definizioni. Una definizione è una

Dettagli

GEOMETRIA DELLE MASSE

GEOMETRIA DELLE MASSE 1 DISPENSA N 2 GEOMETRIA DELLE MASSE Si prende in considerazione un sistema piano, ossia giacente nel pian x-y. Un insieme di masse posizionato nel piano X-Y, rappresentato da punti individuati dalle loro

Dettagli

La teoria delle ombre nelle proiezioni ortogonali

La teoria delle ombre nelle proiezioni ortogonali La teoria delle ombre nelle proiezioni ortogonali Nello studio della storia dell'arte è facilmente verificabile come la luce sia sempre stata considerata un importante mezzo espressivo. Artisti di ogni

Dettagli

AddCAD per ZWCad. Passa alla progettazione 3D rimanendo sul tuo Cad famigliare

AddCAD per ZWCad. Passa alla progettazione 3D rimanendo sul tuo Cad famigliare AddCAD per ZWCad Passa alla progettazione 3D rimanendo sul tuo Cad famigliare Passare alla progettazione 3D è un salto di qualità che molti Professionisti tentano di compiere, ma in tanti casi senza successo.

Dettagli

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo. DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti

Dettagli

Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete.

Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete. I triangoli e i criteri di congruenza Diapositive riassemblate e rielaborate da prof. ntonio Manca da materiali offerti dalla rete. ontributi di: tlas editore, matematicamente, Prof.ssa. nnamaria Iuppa,

Dettagli

GEOGEBRA I OGGETTI GEOMETRICI

GEOGEBRA I OGGETTI GEOMETRICI GEOGEBRA I OGGETTI GEOMETRICI PROPRIETA : Finestra Proprietà (tasto destro mouse sull oggetto) Fondamentali: permette di assegnare o cambiare NOME, VALORE, di mostrare nascondere l oggetto, di mostrare

Dettagli

Geogebra. Numero lati: Numero angoli: Numero diagonali:

Geogebra. Numero lati: Numero angoli: Numero diagonali: TRIANGOLI Geogebra IL TRIANGOLO 1. Fai clic sull icona Ic2 e nel menu a discesa scegli Nuovo punto : fai clic all interno della zona geometria e individua il punto A. Fai di nuovo clic per individuare

Dettagli

Modellare una copertura a falde

Modellare una copertura a falde 4 Modellare una copertura a falde Costruire un tetto a falde partendo dalla posizione dei muri. Utilizzeremo sia strumenti di creazione sia strumenti di deformazione dei solidi. Introduzione In questo

Dettagli

Anno 5 Funzioni inverse e funzioni composte

Anno 5 Funzioni inverse e funzioni composte Anno 5 Funzioni inverse e funzioni composte 1 Introduzione In questa lezione impareremo a definire e ricercare le funzioni inverse e le funzioni composte. Al termine di questa lezione sarai in grado di:

Dettagli

CURVE DI LIVELLO. Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello.

CURVE DI LIVELLO. Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello. CURVE DI LIVELLO Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello. Definizione. Si chiama insieme di livello k della funzione f

Dettagli

OROLOGIO SOLARE Una meridiana equatoriale

OROLOGIO SOLARE Una meridiana equatoriale L Osservatorio di Melquiades Presenta OROLOGIO SOLARE Una meridiana equatoriale Il Sole, le ombre e il tempo Domande guida: 1. E possibile l osservazione diretta del Sole? 2. Come è possibile determinare

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi risolti

CONTINUITÀ E DERIVABILITÀ Esercizi risolti CONTINUITÀ E DERIVABILITÀ Esercizi risolti. Determinare kπ/ [cos] al variare di k in Z. Ove tale ite non esista, discutere l esistenza dei iti laterali. Identificare i punti di discontinuità della funzione

Dettagli

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R Studio di funzione Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R : allo scopo di determinarne le caratteristiche principali.

Dettagli

Vademecum studio funzione

Vademecum studio funzione Vademecum studio funzione Campo di Esistenza di una funzione o dominio: Studiare una funzione significa determinare gli elementi caratteristici che ci permettono di disegnarne il grafico, a partire dalla

Dettagli

Scuola di Wrenn, Dipartimento di Matematica. Investigare cerchi. Questo pacchetto di fogli di lavoro vi fornisce alcune attività per aiutarvi

Scuola di Wrenn, Dipartimento di Matematica. Investigare cerchi. Questo pacchetto di fogli di lavoro vi fornisce alcune attività per aiutarvi Scuola di Wrenn, Dipartimento di Matematica Investigare cerchi Questo pacchetto di fogli di lavoro vi fornisce alcune attività per aiutarvi a scoprire alcune proprietà di cerchi usando The Geometer s Sketchpad.

Dettagli

LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A

LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 6/7 SIMULAZIONE DI II PROVA - A Tempo a disposizione: cinque ore E consentito l uso della calcolatrice non programmabile. Non è consentito uscire dall aula

Dettagli

Fig. 23. Viste assonometriche di un cubo

Fig. 23. Viste assonometriche di un cubo 4. L ASSONOMETRIA Marco Cardini L'assonometria, come metodo grafico di rappresentazione degli oggetti nello spazio tridimensionale, viene descritta da MONGE nel trattato di "GEOMETRIE DESCRIPTIVE" edito

Dettagli

Dimostrare alla Scuola media: dal perché al rigore spontaneamente

Dimostrare alla Scuola media: dal perché al rigore spontaneamente (Maria Cantoni, gennaio 2013). Un lavoro che viene da lontano e che continua oggi. Dimostrare alla Scuola media: dal perché al rigore spontaneamente Costruzione dei triangoli in prima media. Prima dei

Dettagli

1. PRIME PROPRIETÀ 2

1. PRIME PROPRIETÀ 2 RELAZIONI 1. Prime proprietà Il significato comune del concetto di relazione è facilmente intuibile: due elementi sono in relazione se c è un legame tra loro descritto da una certa proprietà; ad esempio,

Dettagli

3DE Modeling Color. E il modulo che si occupa della costruzione di modelli 3D con tessitura a colori.

3DE Modeling Color. E il modulo che si occupa della costruzione di modelli 3D con tessitura a colori. 3DE Modeling Color E il modulo che si occupa della costruzione di modelli 3D con tessitura a colori. E spesso necessario che alle informazioni geometriche di forma siano abbinate informazioni di colore

Dettagli

Gli input sono detti anche fattori di produzione: terra, capitale, lavoro, materie prime.

Gli input sono detti anche fattori di produzione: terra, capitale, lavoro, materie prime. LA TECNOLOGIA Studio del comportamento dell impresa, soggetto a vincoli quando si compiono scelte. La tecnologia rientra tra vincoli naturali e si traduce nel fatto che solo alcuni modi di trasformare

Dettagli

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π PROBLEMA Il triangolo rettangolo ABC ha l ipotenusa AB = a e l angolo CAB =. a) Si descriva, internamente al triangolo, con centro in B e raggio, l arco di circonferenza di estremi P e Q rispettivamente

Dettagli

Grandezze scalari e vettoriali

Grandezze scalari e vettoriali Grandezze scalari e vettoriali Esempio vettore spostamento: Esistono due tipi di grandezze fisiche. a) Grandezze scalari specificate da un valore numerico (positivo negativo o nullo) e (nel caso di grandezze

Dettagli

Proiezioni Grafica 3d

Proiezioni Grafica 3d Proiezioni Grafica 3d Giancarlo RINALDO rinaldo@dipmat.unime.it Dipartimento di Matematica Università di Messina ProiezioniGrafica 3d p. 1 Introduzione Il processo di visualizzazione in 3D è intrinsecamente

Dettagli

Cenni di geografia astronomica. Giorno solare e giorno siderale.

Cenni di geografia astronomica. Giorno solare e giorno siderale. Cenni di geografia astronomica. Tutte le figure e le immagini (tranne le ultime due) sono state prese dal sito Web: http://www.analemma.com/ Giorno solare e giorno siderale. La durata del giorno solare

Dettagli

LEZIONI CON I PAD Docente scuola secondaria IC Moglia Carla Casareggio Classi seconde 2014/2015 Proprietà triangoli e quadrilateri con Sketchometry

LEZIONI CON I PAD Docente scuola secondaria IC Moglia Carla Casareggio Classi seconde 2014/2015 Proprietà triangoli e quadrilateri con Sketchometry LEZIONI CON I PAD Docente scuola secondaria IC Moglia Carla Casareggio Classi seconde 2014/2015 Proprietà triangoli e quadrilateri con Sketchometry La costruzione di figure geometriche al computer con

Dettagli

www.andreatorinesi.it

www.andreatorinesi.it La lunghezza focale Lunghezza focale Si definisce lunghezza focale la distanza tra il centro ottico dell'obiettivo (a infinito ) e il piano su cui si forma l'immagine (nel caso del digitale, il sensore).

Dettagli

RILIEVO LASER SCANNER PARETE MARMOREA XXXXXXXXXXXXX

RILIEVO LASER SCANNER PARETE MARMOREA XXXXXXXXXXXXX RILIEVO LASER SCANNER PARETE MARMOREA XXXXXXXXXXXXXXXXXX PROVA n. 3651/XX Committente: Relatore: XXXXXXXXXXXXX ing. Georg Schiner Vista della parete di intarsio marmoreo XX/88/09/mt Bolzano, 9 Settembre

Dettagli

DALLE CARTE ALLE SEZIONI GEOLOGICHE

DALLE CARTE ALLE SEZIONI GEOLOGICHE DALLE CARTE ALLE SEZIONI GEOLOGICHE PROFILO TOPOGRAFICO Il profilo topografico, detto anche profilo altimetrico, è l intersezione di un piano verticale con la superficie topografica. Si tratta quindi di

Dettagli

RILIEVI TOPOGRAFICI ED ARCHITETTONICI CON APPARECCHIATURA LASER SCANNER

RILIEVI TOPOGRAFICI ED ARCHITETTONICI CON APPARECCHIATURA LASER SCANNER Studio Tecnico Associato CALCATERRA Geom. Giancarlo - PRADELLA Geom. Ermindo SONDRIO RILIEVI TOPOGRAFICI ED ARCHITETTONICI CON APPARECCHIATURA LASER SCANNER Cenni metodologici ed esempi Febbraio 2015 L

Dettagli

Lo spessimetro ( a cura di Elena Pizzinini)

Lo spessimetro ( a cura di Elena Pizzinini) Lo spessimetro ( a cura di Elena Pizzinini) 1) Che cos è? Lo spessivetro è uno strumento (brevettato dalla ditta Saint Gobain) dal funzionamento piuttosto semplice che permette di misurare lo spessore

Dettagli

VETROMATTONE ONDULATO CHIARO TERMINALE CURVO

VETROMATTONE ONDULATO CHIARO TERMINALE CURVO INDICE 1. Anagrafica 2. Caratteristiche Tecniche 3. Certificazioni 4. Utilizzo 5. Posa in Opera 5.A. Fase preliminare 5.B. Fase di installazione 5.C. Fase di finitura 6. Disegni 7. Voce di capitolato 1/5

Dettagli

Giuseppe Ruffo. Fisica: lezioni e

Giuseppe Ruffo. Fisica: lezioni e Giuseppe Ruffo Fisica: lezioni e problemi Unità A2 - La rappresentazione di dati e fenomeni 1. Le rappresentazioni di un fenomeno 2. I grafici cartesiani 3. Le grandezze direttamente proporzionali 4. Altre

Dettagli

ISTRUZIONI PER LA DETERMINAZIONE DELL OMBREGGIAMENTO DI SUPERFICI TRASPARENTI SU PARETE VERTICALE

ISTRUZIONI PER LA DETERMINAZIONE DELL OMBREGGIAMENTO DI SUPERFICI TRASPARENTI SU PARETE VERTICALE ISTRUZIONI PER LA DETERMINAZIONE DELL OMBREGGIAMENTO DI SUPERFICI TRASPARENTI SU PARETE VERTICALE Per ogni superficie trasparente presente sulle facciate degli edifici è possibile costruire una maschera

Dettagli

Domande a scelta multipla 1

Domande a scelta multipla 1 Domande a scelta multipla Domande a scelta multipla 1 Rispondete alle domande seguenti, scegliendo tra le alternative proposte. Cercate di consultare i suggerimenti solo in caso di difficoltà. Dopo l elenco

Dettagli

rilievo classificazione e metodologie arch. Paola Condoleo, arch. Francesco Guerini arch. Francesco Guerini

rilievo classificazione e metodologie arch. Paola Condoleo, arch. Francesco Guerini arch. Francesco Guerini rilievo classificazione e metodologie testi a cura di arch. Paola Condoleo, arch. Francesco Guerini arch. Francesco Guerini Politecnico di Milano, Facoltà di Architettura e Società Laboratorio di Rappresentazione

Dettagli

Corso di disegno. Riccardo Migliari 2015-2016

Corso di disegno. Riccardo Migliari 2015-2016 Corso di disegno Riccardo Migliari 2015-2016 ii Indice 1 Prolusione 1 1.1 Il disegno come tramite tra il pensiero e la realtà................................ 1 1.2 Il disegno dell architettura...........................................

Dettagli

Unità Didattica 3 ESERCITAZIONE IL PLASTICO. Unità Didattica 1 CURVE DI LIVELLO. Unità Didattica 2 PROFILO ALTIMETRICO

Unità Didattica 3 ESERCITAZIONE IL PLASTICO. Unità Didattica 1 CURVE DI LIVELLO. Unità Didattica 2 PROFILO ALTIMETRICO ARGOMENTO INTERDISCIPLINARE: TECNOLOGIA-SCIENZE-GEOGRAFIA Unità Didattica 1 CURVE DI LIVELLO Unità Didattica 2 PROFILO ALTIMETRICO................................. Unità Didattica 3 ESERCITAZIONE IL PLASTICO

Dettagli

Gli angoli. In questa dispensa vengono presentati i concetti fondamentali relativi agli angoli.

Gli angoli. In questa dispensa vengono presentati i concetti fondamentali relativi agli angoli. Gli angoli In questa dispensa vengono presentati i concetti fondamentali relativi agli angoli. Dopo le prime nozioni riguardanti angoli convessi e concavi, angolo piatto, angolo giro e angolo nullo, si

Dettagli

ORGANIZZATORE PER BORSA GRANDE

ORGANIZZATORE PER BORSA GRANDE ORGANIZZATORE PER BORSA GRANDE Lavorando a circa cinquanta chilometri da dove vivo, la borsa risulta per me è essere uno strumento di sopravvivenza! Dentro di essa deve trovare spazio tutto ciò che ipoteticamente

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

Tutorial 3DRoom. 3DRoom

Tutorial 3DRoom. 3DRoom Il presente paragrafo tratta il rilievo di interni ed esterni eseguito con. L utilizzo del software è molto semplice ed immediato. Dopo aver fatto uno schizzo del vano si passa all inserimento delle diagonali

Dettagli

6 Generalità Quando un pezzo presenta fori o cavità, il disegno può risultare di difficile comprensione a causa della presenza di numerose linee tratteggiate. 7 Generalità Sezionando ( tagliando ) con

Dettagli

Esercitazione 5 Dinamica del punto materiale

Esercitazione 5 Dinamica del punto materiale Problema 1 Un corpo puntiforme di massa m = 1.0 kg viene lanciato lungo la superficie di un cuneo avente un inclinazione θ = 40 rispetto all orizzontale e altezza h = 80 cm. Il corpo viene lanciato dal

Dettagli

1 Il Laser 2 Il laser quindi non è altro che una radiazione elettromagnetica, ovvero un'onda luminosa, avente particolari caratteristiche: deve essere composta da luce di una sola frequenza (monocromaticità).

Dettagli

Corso di Scienza Economica (Economia Politica) prof. G. Di Bartolomeo

Corso di Scienza Economica (Economia Politica) prof. G. Di Bartolomeo Corso di Scienza Economica (Economia Politica) prof. G. Di Bartolomeo Lezione 14 Equilibrio economico generale (efficienza nello scambio) e fallimenti del mercato Facoltà di Scienze della Comunicazione

Dettagli

Tabella A.1 Classificazione generale degli edifici per categorie

Tabella A.1 Classificazione generale degli edifici per categorie Appendice A Modalità di installazione degli impianti fotovoltaici sugli edifici Ai fini dell applicabilità della tariffa incentivante competente agli impianti fotovoltaici realizzati sugli edifici si adotta

Dettagli