Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n"

Transcript

1 Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n Sfera polarizzata. Legge di Gauss nella materia Il campo Spostamento Elettrico D Sfera di dielettrico in campo uniforme Anno Accademico 2018/2019

2 Campo elettrico di una sfera polarizzata Consideriamo una sfera di dielettrico uniformemente polarizzata Dato che la polarizzazione è uniforme all'interno non ci sono densità di carica volumetriche Sulla superficie ci sarà una densità superficiale di carica che dipende dall'angolo polare Possiamo pertanto sostituire al blocco di dielettrico la distribuzione di carica superficiale σ P (θ) Il potenziale si ottiene con l'integrale La formula risolve il problema per r interno o esterno alla sfera Il calcolo di questo integrale è un po' laborioso È un problema computazionale Possiamo sviluppare altre soluzioni più interessanti dal punto di vista della fisica Elettromagnetismo Prof. Francesco Ragusa 301

3 Campo elettrico di una sfera polarizzata Un modo alternativo per risolvere il problema è quello di considerare due sfere di densità ρ uniforme e raggio R Di carica totale Q, positiva e negativa rispettivamente Le due sfere sovrapposte sono equivalenti ad un sistema neutro Spostiamo le due sfere in modo che i centri distino una piccola distanza s Compaiono due regioni di carica la cui densità varia con l'angolo come cosθ La carica presente è proporzionale a Δl = l R trascuriamo Elettromagnetismo Prof. Francesco Ragusa 302

4 Campo elettrico di una sfera polarizzata Un elemento di superficie da sulla sfera individua un volume dv = da Δl La carica di questo volume è V è il volume della sfera Calcoliamo la densità superficiale di carica Confrontando con la densità superficiale dovuta alla densità di polarizzazione P: σ(θ) =P cosθ Otteniamo la relazione fra Q, s e i dati del problema A questo punto possiamo calcolare il campo elettrico Iniziamo con la regione esterna alla sfera Questo è banale Il sistema è equivalente a due cariche puntiformi ±Q distanti s: un dipolo p 0 = Qs Elettromagnetismo Prof. Francesco Ragusa 303

5 Campo elettrico di una sfera polarizzata Veniamo al campo elettrico all'interno Utilizziamo il principio di sovrapposizione e sommiamo i campi all'interno delle due sfere di carica uniforme Abbiamo già calcolato il campo all'interno di una sfera (diapositiva ) Elettromagnetismo Prof. Francesco Ragusa 304

6 Campo elettrico di una sfera polarizzata Notiamo che il campo elettrico è discontinuo sulla superficie della sfera Analizziamo la discontinuità Per semplicità nel polo nord della sfera (θ = 0) Il campo esterno è (diapositiva ) Il campo interno è Vediamo che la discontinuità nella componente normale è È la discontinuità della componente normale di un campo elettrico al passaggio di una densità superficiale di carica σ = P Elettromagnetismo Prof. Francesco Ragusa 305

7 Campo elettrico di una sfera polarizzata Questa relazione vale per tutti gli angoli La componente normale (radiale) del campo elettrico esterno è La componente radiale del campo elettrico interno è La componente tangenziale è continua Il entrambe le proiezioni si è assunta positiva la direzione di Elettromagnetismo Prof. Francesco Ragusa 306

8 La legge di Gauss nella materia Supponiamo di avere un grande dielettrico all'interno del quale si trova una carica q Una carica che non fa parte della struttura molecolare del dielettrico Ad esempio una sfera metallica carica immersa in un bagno di olio Come nel condensatore piano con il dielettrico presente, il campo elettrico nel materiale risulta ridotto rispetto a quello nel vuoto (con la stessa carica q) Normalmente si definisce la permittività del dielettrico È legittimo chiedersi se la legge di Gauss è ancora valida Infatti il flusso del campo elettrico su una superficie che circonda la carica, ad esempio una sfera, sarà più piccolo perché E è più piccolo Sembra pertanto che il flusso non sia più uguale a q/ε 0 ma piuttosto q/ε Nel fare questa affermazione commettiamo un grave errore La carica q non è la sola carica all'interno della sfera che utilizziamo per il calcolo del flusso C'è una densità di carica indotta dalla polarizzazione di cui bisogna tenere conto Elettromagnetismo Prof. Francesco Ragusa 307

9 La legge di Gauss nella materia Infatti il campo elettrico polarizza il materiale La sferetta metallica carica ha un'interfaccia con il dielettrico Intorno alla sferetta compare una carica superficiale della quale bisogna tenere conto È a causa di questa carica, che "scherma" la sfera, che il campo risulta meno intenso In generale potrebbe esserci anche una carica volumetrica se P 0 ( in questo caso P = 0) Supponiamo che il dielettrico sia lineare Il campo elettrico e densità di polarizzazione sono Supponendo che il raggio della sfera sia a la densità di carica di polarizzazione (uniforme) sulla sua superficie è All'esterno della sfera il campo è quello di una carica puntiforme Q = q + q p Carica schermata, più piccola Elettromagnetismo Prof. Francesco Ragusa 308

10 La legge di Gauss nella materia Tenere conto della carica di polarizzazione non è semplice In laboratorio si controllano le cariche o i potenziali sui conduttori, non la carica di polarizzazione Sarebbe utile una relazione che utilizzasse solo le cariche libere Q free = q 1 +q 2 Scriviamo la legge di Gauss in forma integrale tenendo conto di tutte le cariche presenti La carica di polarizzazione Q pol è quella presente nel volume e sulle superfici S 1 e S 2 Notiamo che la superficie S è una superficie matematica Non è una discontinuità nel dielettrico Non c'è una carica superficiale su di essa Calcoliamo Q pol Il volume V è quello delimitato da S, S 1, S 2 Usiamo il teorema della divergenza per trasformare l'integrale di volume Elettromagnetismo Prof. Francesco Ragusa 309

11 La legge di Gauss nella materia Riepiloghiamo Inseriamo l'espressione di Q pol nella legge di Gauss Definiamo il campo vettoriale D, chiamato induzione elettrica Chiamato anche "spostamento elettrico" Introducendo nell'equazione otteniamo in forma differenziale Vediamo che per il campo D vale una versione della legge di Gauss che stabilisce una relazione con le sole cariche libere Elettromagnetismo Prof. Francesco Ragusa 310

12 La carica di un dielettrico Osservazione Le cariche che compaiono in un dielettrico polarizzato dipendono dalle deformazioni degli atomi e dall'orientamento dei dipoli molecolari Le cariche fanno piccoli spostamenti (dell'ordine delle dimensioni atomiche) Il dielettrico si polarizza ma la sua carica totale è nulla Nel calcolo precedente abbiamo trovato La superficie S è una superficie matematica La carica Q pol è diversa da zero perché non stiamo considerando la superficie esterna del dielettrico Se consideriamo tutte le superfici del corpo (S e ) Elettromagnetismo Prof. Francesco Ragusa 311

13 Lo spostamento elettrico D Il campo D può risultare utile in talune circostanze ma non aggiunge un reale contenuto fisico nuovo Può indurre in semplificazioni errate Il fatto che soddisfi una legge di Gauss che utilizza solo le cariche libere potrebbe fare pensare che si possa costruire un'elettrostatica solo con D Non esiste una legge di Coulomb per D FALSO!! La ragione importante è che il campo D in generale non è conservativo D non si può scrivere in funzione di un potenziale La legge di Coulomb aveva entrambe le proprietà Il motivo è ovvio Consideriamo la circuitazione di P come nella figura Dielettrico uniformemente polarizzato Cammino chiuso con lati paralleli alla polarizzazione Dielettrico Vuoto Elettromagnetismo Prof. Francesco Ragusa 312

14 Lo spostamento elettrico D In casi particolari risulta semplice calcolare il campo D Succede quando il problema ha evidenti simmetrie che possono condurre alla soluzione come abbiamo visto con la legge di Gauss per E Nel caso generale bisogna avere una relazione fra D e il campo elettrico E Una relazione che deriva dall'esperimento o da un modello della materia Come nel caso della densità di polarizzazione Per un dielettrico lineare Per l'induzione elettrica si ottiene Abbiamo definito un'ennesima costante: la permettività del materiale Ha le stesse dimensioni di ε 0 Avere trovato questa relazione per i dielettrici lineari potrebbe fare pensare che almeno per questi si possa avere la circuitazione nulla FALSO!! La costante ε è discontinua quando si attraversa un'interfaccia In generale non si può portare fuori dall'integrale Elettromagnetismo Prof. Francesco Ragusa 313

15 Problema elettrostatico con i dielettrici Consideriamo un sistema composto da più dielettrici lineari In ogni dielettrico vale la relazione Naturalmente vale sempre Il campo elettrostatico E è sempre derivabile da un potenziale Possiamo utilizzare i metodi sviluppati per il calcolo del potenziale separatamente in ogni regione di dielettrico Con le opportune condizioni al contorno sulle superfici che delimitano i dielettrici sulle quali compaiono le densità superficiali di cariche In particolare, nelle regioni in cui ρ f = 0 il potenziale obbedisce all'equazione di Laplace Notiamo che se all'interno di un dielettrico lineare non è presente una densità di carica libera (ρ f = 0) anche la densità di carica di polarizzazione sarà nulla (ρ b = 0) Elettromagnetismo Prof. Francesco Ragusa 314

16 Condizioni al contorno Abbiamo visto che sulla superficie di un dielettrico compaiono densità superficiali di cariche di polarizzazione Sappiamo che il campo elettrico ha delle discontinuità quando incontra strati di carica superficiale Analizziamo le discontinuità per i campi D, E Abbiamo visto che il campo D obbedisce alla legge di Gauss Applichiamo la legge intorno all'interfaccia fra due dielettrici Supponiamo che non ci siano cariche libere sulla superficie: Q f = 0 Per il campo D otteniamo Ricordando che D = εe Pertanto La componente normale del campo D è continua se non ci sono cariche libere La componente normale del campo elettrico E è discontinua Elettromagnetismo Prof. Francesco Ragusa 315

17 Condizioni al contorno La condizione su E che abbiamo trovato può essere ottenuta senza l'uso del campo D Utilizziamo la proprietà del campo elettrico che conosciamo Attraversando una densità di carica σ la componente normale ha una discontinuità ΔE = σ/ε 0 Chiamiamo E 1 e E 2 i campi elettrici presenti all'interfaccia nel dielettrico 1 e 2 rispettivamente Poiché i dielettrici sono lineari P = χε 0 E Dai lati 1 e 2 dell'interfaccia ci saranno le cariche Pertanto Ricordiamo che κ = 1 + χ e che ε = κε 0 Elettromagnetismo Prof. Francesco Ragusa 316

18 Condizioni al contorno Possiamo generalizzare la condizione al contorno su D al caso in cui nell'interfaccia sia presente carica libera La condizione precedente Diventa Analizziamo il caso in cui l'interfaccia è fra un metallo e un dielettrico lineare In questo caso uno dei due materiali è un conduttore All interno del conduttore Supponendo che il materiale conduttore sia il 2 Ricordando che D = εe Nel dielettrico, all esterno del conduttore Elettromagnetismo Prof. Francesco Ragusa 317

19 Condizioni al contorno Per quanto riguarda la componente tangenziale del campo elettrico questa è continua Questa condizione deriva dal fatto che il campo elettrico è conservativo Infatti, considerando una linea chiusa intorno all'interfaccia, come in figura Per il potenziale le condizioni diventano Il potenziale è continuo attraverso l'interfaccia V è l'integrale di E La derivata del potenziale è discontinua Se n è la normale alla superficie Il vettore r varia sulla superficie di interfaccia dei dielettrici N.B.: non ci sono cariche libere sull'interfaccia Elettromagnetismo Prof. Francesco Ragusa 318

20 Condizioni al contorno Riepilogando Ricordiamo solo le condizioni al contorno per campo elettrico e potenziale Sono sufficienti per risolvere i problemi Per il campo elettrico Per il potenziale Il potenziale è continuo attraverso l'interfaccia Il vettore r varia sulla superficie di interfaccia fra i dielettrici La condizione sulla componente normale del campo diventa Elettromagnetismo Prof. Francesco Ragusa 319

21 Sfera di dielettrico in campo uniforme Consideriamo una sfera di dielettrico posta in un campo elettrico uniforme È un problema analogo a quello della sfera conduttrice in campo uniforme che abbiamo affrontato in precedenza (vedi diapositiva ) Utilizziamo il metodo della separazione delle variabili in coordinate sferiche C'è simmetria azimutale (V indipendente da φ) Qualitativamente possiamo dire che il campo elettrico polarizza il dielettrico Sulla superficie della sfera compare una carica superficiale Il campo uniforme è distorto Il campo rimane uniforme all'infinito All'interno della sfera il campo elettrico è dato dalla somma del campo esterno e del campo generato dalle cariche di polarizzazione z x y Elettromagnetismo Prof. Francesco Ragusa 320

22 Sfera di dielettrico in campo uniforme Esprimiamo il potenziale all'esterno e all'interno utilizzando la formula utilizzata per il problema della sfera conduttrice La seconda formula è necessaria perché adesso il campo dentro la sfera non è nullo Le condizioni al contorno sono (ε è la permittività della sfera) All'infinito campo uniforme Potenziale continuo sulla sfera Discontinuità della componente normale Assumendo come nel caso della sfera conduttrice V 0 = 0, la prima condizione permette di porre a zero tutti gli A l escluso A 1 = E 0 ( P 1 (cosθ) = cosθ ) Inoltre, poiché al centro della sfera il potenziale deve essere finito si ha che per tutti gli l deve essere D l = 0 Elettromagnetismo Prof. Francesco Ragusa 321

23 Sfera di dielettrico in campo uniforme La condizione di continuità diventa L'uguaglianza implica che per ogni l devono essere uguali i coefficienti dei corrispondenti polinomi di Legendre P l (P 1 = cosθ) Per l = 1 Per l 1 Elettromagnetismo Prof. Francesco Ragusa 322

24 Sfera di dielettrico in campo uniforme Veniamo adesso alla condizione di discontinuità Ricordiamo che sulla sfera / n = / r Ancora una volta uguagliamo i coefficienti dei polinomi di Legendre dello stesso ordine l Per l = 1 Per l 1 Confrontiamo con la precedente equazione per l 1 Concludiamo che Per l = 0 B 0 = 0 e C 0 = 0 Per l 0,1 le due relazioni per B l implicano che Elettromagnetismo Prof. Francesco Ragusa 323

25 Sfera di dielettrico in campo uniforme Esaminiamo infine le due equazioni trovate per l = 1 Eliminiamo C 1 inserendo la prima equazione nella seconda Per finire inseriamo il valore trovato per B 1 nell'equazione di C 1 Abbiamo trovato il potenziale Elettromagnetismo Prof. Francesco Ragusa 324

26 Sfera di dielettrico in campo uniforme Calcoliamo le componenti del campo elettrico All'interno All'esterno Campo uniforme Sulla superficie della sfera Componente tangenziale continua Elettromagnetismo Prof. Francesco Ragusa 325

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 15 1.12.2017 Campo "Spostamento elettrico" Legge di Gauss nel dielettrico Soluzione dell'equazione di Laplace in presenza

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 14 29.11.2017 Campo elettrico di materia polarizzata Densità di carica superficiali e di volume Sfera di dielettrico

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 14 30.11.2018 Sfera di dielettrico polarizzata Carica puntiforme e semispazio dielettrico Energia elettrostatica Anno

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo rof. Francesco Ragusa Università degli tudi di Milano Lezione n. 14 29.11.217 Campo elettrico di materia polarizzata Densità di carica superficiali e di volume fera di dielettrico polarizzata

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 33 11.05.2018 Guscio sferico di carica Uso del potenziale scalare Sfera magnetica in campo uniforme Anno Accademico

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 16 13.12.2017 Carica puntiforme e dielettrico Energia elettrostatica Corrente elettrica. Equazione di continuità Legge

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 09 27.10.2017 Soluzioni dell'equazione di Laplace Metodo separazione delle variabili Anno Accademico 2017/2018 Separazione

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 10 2.11.2016 Equazione di Poisson Metodo delle cariche immagine Anno Accademico 2016/2017 Equazione di Poisson Tramite

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 5 13.10.2017 Legge di Gauss Angolo solido Applicazioni della legge di Gauss Anno Accademico 2017/2018 La Legge di Gauss

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 6 18.10.2017 Divergenza e teorema della divergenza Forma differenziale della Legge di Gauss Energia del campo elettrostatico

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 12 21.11.2018 Espansione Multipolare Campo elettrico generato dalla materia polarizzata Densità di carica di polarizzazione

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 10 3.11.2017 Equazione di Poisson Funzione δ(x) di Dirac Metodo delle cariche immagine Anno Accademico 2017/2018 Equazione

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 23 20.3.2018 Applicazioni della legge di Ampère Potenziale Vettore Anno Accademico 2017/2018 Filo di raggio a percorso

Dettagli

Elettromagnetismo. Applicazioni della legge di Gauss. Lezione n. 6 14.10.2015. Prof. Francesco Ragusa Università degli Studi di Milano

Elettromagnetismo. Applicazioni della legge di Gauss. Lezione n. 6 14.10.2015. Prof. Francesco Ragusa Università degli Studi di Milano Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 6 14.10.2015 Applicazioni della legge di Gauss Anno Accademico 2015/2016 Campo di un guscio sferico cavo Abbiamo già

Dettagli

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue 1.1 Una sfera conduttrice di raggio R 1 = 10 cm ha una carica Q = 10-6 C ed è circondata da uno strato sferico di dielettrico di raggio (esterno) R 2 = 20 cm e costante dielettrica relativa. Determinare

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 21 16.3.2018 Sorgenti del campo magnetico Divergenza e rotore del campo magnetico Applicazioni della legge di Ampère

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 8 21.10.2015 Equazione di Laplace Conduttori in un campo elettrostatico Anno Accademico 2015/2016 Energia del campo

Dettagli

Elettromagnetismo. Teoria macroscopica del magnetismo nella materia. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano

Elettromagnetismo. Teoria macroscopica del magnetismo nella materia. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 33 16.5.217 Teoria macroscopica del magnetismo nella materia Anno Accademico 216/217 Discontinuità del campo magnetico

Dettagli

Operatore applicato a prodotti

Operatore applicato a prodotti Operatore applicato a prodotti Con l'operatore «Nabla" ( ) abbiamo definito tre operazioni applicandolo Ad una funzione scalare per costruire un vettore: gradiente φ Ad una funzione vettoriale per costruire

Dettagli

Elettromagnetismo. Teoria macroscopica del magnetismo nella materia. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano

Elettromagnetismo. Teoria macroscopica del magnetismo nella materia. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 31 4.05.2018 Teoria macroscopica del magnetismo nella materia Anno Accademico 2017/2018 Magnetizzazione e suscettività

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 5 17.10.2018 Legge di Gauss. Angolo solido Applicazioni della legge di Gauss Divergenza e teorema della divergenza Forma

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 24 27.03.2018 Forse sui circuiti percorsi da corrente Invarianza relativistica della carica Trasformazioni di Lorentz

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 21 19.3.2019 Campo di una spira circolare Potenziale Vettore Potenziale di una spira Anno Accademico 2018/2019 Campo

Dettagli

Elettromagnetismo. Distribuzioni di carica Potenziale elettrostatico. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano

Elettromagnetismo. Distribuzioni di carica Potenziale elettrostatico. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 3 6.10.2017 Distribuzioni di carica Potenziale elettrostatico Anno Accademico 2017/2018 Distribuzioni di carica Fino

Dettagli

Potenziale elettrostatico

Potenziale elettrostatico Doppio strato piano Potenziale elettrostatico Consideriamo il lavoro compiuto dalla forza elettrica quando una particella di prova di carica q viene spostata in un campo elettrico E. Possiamo definire

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 23 23.3.2018 Potenziale di una spira. Dipolo magnetico. Forze su circuiti magnetici Anno Accademico 2017/2018 Il momento

Dettagli

RICHIAMI DI ELETTROMAGNETISMO

RICHIAMI DI ELETTROMAGNETISMO RICHIAMI DI ELETTROMAGNETISMO Equazioni di Maxwell I fenomeni elettrici e magnetici a livello del mondo macroscopico sono descritti da due campi vettoriali, in generale dipendenti dal tempo, E(x, t), H(x,

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 24 16.11.2017 Forze sul dipolo. Espansione multipolare Campo elettrico di materia polarizzata Anno Accademico 2017/2018

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 8 31.10.2018 Coordinate curvilinee Soluzioni dell'equazione di Laplace Metodo separazione delle variabili Anno Accademico

Dettagli

CAPITOLO 3 LA LEGGE DI GAUSS

CAPITOLO 3 LA LEGGE DI GAUSS CAPITOLO 3 LA LEGGE DI GAUSS Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2017-2018 2 Premesse TEOREMA DI GAUSS Formulazione equivalente alla legge di Coulomb Trae vantaggio dalle situazioni nelle

Dettagli

ELETTROSTATICA. D = ρ (2) a cui possono essere associate, in caso di mezzo isotropo e lineare, le equazioni di materiale: = ε E, (3)

ELETTROSTATICA. D = ρ (2) a cui possono essere associate, in caso di mezzo isotropo e lineare, le equazioni di materiale: = ε E, (3) ELETTROSTATICA Si parla di elettrostatica quando, in ogni punto dello spazio ed in ogni istante risultano nulle tutte le derivate temporali che compaiono nelle equazioni generali dell elettromagnetismo,

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 12 9.11.2016 Coefficienti di capacità Dielettrici. Dipolo elettrico Anno Accademico 2017/2018 Coefficienti di capacità

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 38 5.06.2018 Potenziali per una carica puntiforme Quantità di moto elettromagnetica Radiazione. Dipolo oscillante Anno

Dettagli

Definizione di Flusso

Definizione di Flusso Definizione di Flusso Il flusso aumenta se il campo elettrico aumenta!! Δφ E ΔA EΔAcosθ E Il flusso è la quantità di materia che passa attraverso una superficie nell unità di tempo. Se si parla di campo

Dettagli

approfondimento Struttura atomica e conservazione della carica nei fenomeni elettrici

approfondimento Struttura atomica e conservazione della carica nei fenomeni elettrici approfondimento Struttura atomica e conservazione della carica nei fenomeni elettrici Flusso del campo elettrico e legge di Gauss: Il campo elettrico generato da distribuzioni di carica a simmetria sferica

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 34 17.05.2019 Il tensore degli stress Energia e quantità di moto dell'onda Propagazione nella materia Riflessione e

Dettagli

FORMULARIO ELETTROMAGNETISMO

FORMULARIO ELETTROMAGNETISMO FORMULARIO ELETTROMAGNETISMO Forza di Coulomb : forza che intercorre tra due particelle cariche Campo elettrico : quantità vettoriale generata da una carica Densità di carica superficiale, volumetrica

Dettagli

Lezione 5: Elettrostatica. Seminario didattico

Lezione 5: Elettrostatica. Seminario didattico Lezione 5: Elettrostatica Seminario didattico Esercizio n 1 Ai vertici di un quadrato di lato 2 l sono poste 4 cariche uguali Q. Determinare : a) Il campo elettrico in un punto P dell'asse; b) il campo

Dettagli

Dipolo Elettrico: due cariche (puntiformi) +q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo

Dipolo Elettrico: due cariche (puntiformi) +q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo Il Dipolo Elettrico Dipolo Elettrico: due cariche (puntiformi) q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo qa che va da qq a q Dato un punto P molto distante

Dettagli

Applicazioni del Teorema di Gauss

Applicazioni del Teorema di Gauss Applicazioni del Teorema di Gauss Simone Alghisi Liceo Scientifico Luzzago Ottobre 2011 Simone Alghisi Liceo Scientifico Luzzago Applicazioni del Teorema di Gauss Ottobre 2011 1 / 8 Definizione Dato un

Dettagli

ELETTROSTATICA. ' = ρ (2) a cui possono essere associate, in caso di mezzo isotropo e lineare, le equazioni di legame materiale:

ELETTROSTATICA. ' = ρ (2) a cui possono essere associate, in caso di mezzo isotropo e lineare, le equazioni di legame materiale: ELETTROSTATICA Si parla di elettrostatica quando, in ogni punto dello spazio ed in ogni istante risultano nulle tutte le derivate temporali che compaiono nelle equazioni generali dell elettromagnetismo,

Dettagli

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 1. Il campo elettrico e legge di Coulomb: esempio del calcolo generato da alcune semplici distribuzioni. 2. Il campo

Dettagli

Elettromagnetismo. Campo elettrico come gradiente del potenziale. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano

Elettromagnetismo. Campo elettrico come gradiente del potenziale. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 4 12.10.2017 Campo elettrico come gradiente del potenziale Anno Accademico 2017/2018 Il campo elettrico come gradiente

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 13 16.11.2016 Forze sul dipolo. Espansione multipolare Campo elettrico di materia polarizzata Anno Accademico 2016/2017

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 7.1.17 Energia Elettrostatica. Conduttori. Conduttori in un campo elettrostatico Anno Accademico 17/18 Energia del campo

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 8 25.10.2017 Equazioni di Poisson e di Laplace Coordinate curvilinee Soluzioni dell'equazione di Laplace Metodo di separazione

Dettagli

Chi fa lavoro? Osserviamo che la forza magnetica è perpendicolare alla velocità dei portatori di carica Non compie lavoro sulle cariche

Chi fa lavoro? Osserviamo che la forza magnetica è perpendicolare alla velocità dei portatori di carica Non compie lavoro sulle cariche Chi fa lavoro? Nell'analisi del sistema precedente abbiamo osservato che se si aumenta la corrente la forza magnetica supera il peso e il circuito si sposta verso l'alto La massa m acquista energia potenziale

Dettagli

Primo Parziale Fisica Generale T-B

Primo Parziale Fisica Generale T-B Primo Parziale Fisica Generale T-B (CdL Ingegneria Civile e Informatica [A-K]) Prof. M. Sioli 23/11/2012 Soluzioni Compito B Esercizi Ex. 1 Tre cariche puntiformi sono disposte ai vertici di un uadrato

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 22 22.3.2019 Forze sui dipoli magnetici Invarianza relativistica della carica Trasformazione di Lorentz del campo E

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 19 5.3.2019 Proprietà della forza magnetica Densità di Corrente. Forza su una corrente. Legge di Biot e Savart Anno

Dettagli

Equazione d onda per il campo elettromagnetico

Equazione d onda per il campo elettromagnetico Equazione d onda per il campo elettromagnetico Leggi fondamentali dell elettromagnetismo. I campi elettrici sono prodotti da cariche elettriche e da campi magnetici variabili. Corrispondentemente l intensità

Dettagli

Elettromagnetismo. Induttanza e mutua induttanza Energia Magnetica. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano

Elettromagnetismo. Induttanza e mutua induttanza Energia Magnetica. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 28 20.04.2018 Induttanza e mutua induttanza Energia Magnetica Anno Accademico 2017/2018 Induttanza Consideriamo una

Dettagli

Gradiente, divergenza e rotore

Gradiente, divergenza e rotore Gradiente, divergenza e rotore Gradiente di una funzione scalare della posizione Sia f(x,y,z) una funzione scalare continua e derivabile delle coordinate costruiamo in ogni punto dello spazio un vettore

Dettagli

CAPITOLO 1 ELETTROSTATICA

CAPITOLO 1 ELETTROSTATICA CAPITOLO 1 1.1 Introduzione Nell elettromagnetismo studieremo fenomeni elettrici e magnetici che rappresentano un altra interazione fondamentale della natura (dopo quella gravitazionale che abbiamo visto

Dettagli

APPENDICE 1 CAMPI CONSERVATIVI CIRCUITAZIONE DI UN VETTORE LUNGO UNA LINEA CHIUSA CORRENTE DI SPOSTAMENTO

APPENDICE 1 CAMPI CONSERVATIVI CIRCUITAZIONE DI UN VETTORE LUNGO UNA LINEA CHIUSA CORRENTE DI SPOSTAMENTO APPENDICE 1 CAMPI CONSERVATIVI CIRCUITAZIONE DI UN VETTORE LUNGO UNA LINEA CHIUSA CORRENTE DI SPOSTAMENTO Quando un punto materiale P si sposta di un tratto s per effetto di una forza F costante applicata

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 35 18.05.2018 Polarizzazione Teorema di Poynting Energia e quantità di moto dell'onda Anno Accademico 2017/2018 Soluzioni:

Dettagli

= E qz = 0. 1 d 3 = N

= E qz = 0. 1 d 3 = N Prova scritta d esame di Elettromagnetismo 7 ebbraio 212 Proff.. Lacava,. Ricci, D. Trevese Elettromagnetismo 1 o 12 crediti: esercizi 1, 2, 4 tempo 3 h; Elettromagnetismo 5 crediti: esercizi 3, 4 tempo

Dettagli

Elettromagnetismo. Proprietà della forza magnetica. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano

Elettromagnetismo. Proprietà della forza magnetica. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 20 13.3.2018 Proprietà della forza magnetica Anno Accademico 2017/2018 La forza di Lorentz Insistiamo ancora sul fatto

Dettagli

Dielettrici (Isolanti)

Dielettrici (Isolanti) Dielettrici (Isolanti) N.B. nelle operazioni che svolgeremo avremo a che fare con condensatori carichi. Si può operare in due diverse condizioni: 1) a carica costante: condensatore caricato e poi scollegato

Dettagli

CARICA ELETTRICA E LEGGE DI COULOMB

CARICA ELETTRICA E LEGGE DI COULOMB QUESITI 1 CARICA ELETTRICA E LEGGE DI COULOMB 1. (Da Medicina e Odontoiatria 2015) Due particelle cariche e isolate sono poste, nel vuoto, a una certa distanza. La forza elettrostatica tra le due particelle

Dettagli

Dielettrici V = V 0. E = V h = V 0 kh = E 0

Dielettrici V = V 0. E = V h = V 0 kh = E 0 Dielettrici Dielettrico: materiale non conduttore (gomma, vetro, carta paraffinata) Al contrario dei conduttori anche in presenza di un campo elettrico esterno in essi non si genera un movimento di cariche.

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 32 8.05.2018 Ferromagnetismo Equazioni di Maxwell nella materia Esempi Anno Accademico 2017/2018 Il campo H Calcoliamo

Dettagli

Tesina di Fisica Generale II

Tesina di Fisica Generale II Tesina di Fisica Generale II Corso di laurea di scienza e ingegneria dei materiali 1 gruppo Coordinatore Scotti di Uccio Umberto Tesina svolta da: nnalisa Volpe N50000281 Catello Staiano N50000285 Raffaele

Dettagli

Dario D Amore Corso di Elettrotecnica (AA 08 09)

Dario D Amore Corso di Elettrotecnica (AA 08 09) Dario D Amore Corso di Elettrotecnica (AA 08 09) Si dice campo scalare uno scalare funzione del punto, per es. la temperatura in una stanza, la densità della materia in una regione dello spazio Un campo

Dettagli

All interno di una sfera di raggio R posta nel vuoto esiste una densità di carica ρ = ρ 0 distanza dal centro della sfera e ρ 0.

All interno di una sfera di raggio R posta nel vuoto esiste una densità di carica ρ = ρ 0 distanza dal centro della sfera e ρ 0. Esercizio 1 All interno di una sfera di raggio posta nel vuoto esiste una densità di carica ρ = ρ r 2 distanza dal centro della sfera e ρ. Determinare: 1. La carica totale della sfera 2. Il campo elettrico

Dettagli

Fisica Generale B. 2. Elettrostatica dei Conduttori Metallici. Isolanti o Dielettrici. Induzione Elettrostatica. Conduttori

Fisica Generale B. 2. Elettrostatica dei Conduttori Metallici. Isolanti o Dielettrici. Induzione Elettrostatica. Conduttori Fisica Generale B 2. Elettrostatica dei Conduttori Metallici http://campus.cib.unibo.it/247/ Isolanti o Dielettrici In un isolante (detto anche dielettrico), le cariche elettriche in dotazione a una molecola

Dettagli

Cosa differenzia un conduttore da un dielettrico? Come si comporta un conduttore? Come si utilizza un conduttore?

Cosa differenzia un conduttore da un dielettrico? Come si comporta un conduttore? Come si utilizza un conduttore? 1 Cosa differenzia un conduttore da un dielettrico? A livello macroscopico A livello microscopico Come si comporta un conduttore? In elettrostatica In presenza di cariche in moto (correnti)... Come si

Dettagli

Politecnico di Milano Fondamenti di Fisica Sperimentale (Prof. A. Farina) Seconda prova in itinere - 26/06/2012

Politecnico di Milano Fondamenti di Fisica Sperimentale (Prof. A. Farina) Seconda prova in itinere - 26/06/2012 Politecnico di Milano Fondamenti di Fisica Sperimentale Prof. A. Farina) a.a. 200-20-Facoltà di Ingegneria Industriale- Ingegneria Aerospaziale, Energetica e Meccanica Seconda prova in itinere - 26/06/202

Dettagli

CAPITOLO 1 FORZA ELETTROSTATICA CAMPO ELETTROSTATICO

CAPITOLO 1 FORZA ELETTROSTATICA CAMPO ELETTROSTATICO CAPITOLO 1 FORZA ELETTROSTATICA CAMPO ELETTROSTATICO Elisabetta Bissaldi (Politecnico di Bari) 2 L elettromagnetismo INTERAZIONE ELETTROMAGNETICA = INTERAZIONE FONDAMENTALE Fenomeni elettrici e fenomeni

Dettagli

Insegnamento di: METODI COMPUTAZIONALI PER L ELETTROMAGNETISMO APPLICATO a.a II sem. Prof. Cesare Mario Arturi Programma dettagliato

Insegnamento di: METODI COMPUTAZIONALI PER L ELETTROMAGNETISMO APPLICATO a.a II sem. Prof. Cesare Mario Arturi Programma dettagliato 16-06-2009 Programma dettagliato di METODI COMPUTAZIONALI PER L ELETTROMAGNETISMO APPLICATO_08_09.htm Insegnamento di: METODI COMPUTAZIONALI PER L ELETTROMAGNETISMO APPLICATO a.a. 2008-09 II sem. Prof.

Dettagli

Flusso Elettrico Legge di Gauss: Motivazione & Definizione Legge di Coulomb come conseguenza della legge di Gauss Cariche sui Conduttori

Flusso Elettrico Legge di Gauss: Motivazione & Definizione Legge di Coulomb come conseguenza della legge di Gauss Cariche sui Conduttori Legge di Gauss Flusso Elettrico Legge di Gauss: Motivazione & Definizione Legge di Coulomb come conseguenza della legge di Gauss Cariche sui Conduttori La legge di Gauss mette in relazione i campi su una

Dettagli

Definizione di Flusso

Definizione di Flusso Definizione di Flusso Il flusso aumenta se il campo elettrico aumenta!! Δφ E ΔA EΔAcosθ E Il flusso è la quantità di materia che passa attraverso una superficie nell unità di tempo. Se si parla di campo

Dettagli

CAPACITÀ, CONDENSATORI, ENERGIA

CAPACITÀ, CONDENSATORI, ENERGIA Fisica generale II, a.a. 3/4 CAPACITÀ, CONDENSATORI, ENERGIA B.. Se un protone (carica e) ha raggio r =.( 5 ) m, la sua energia elettrostatica è pari a circa ( MeV=.6( 3 )J). (A).6 MeV (B).6 MeV (C). MeV

Dettagli

Indice 3. Note di utilizzo 9. Ringraziamenti 10. Introduzione 11

Indice 3. Note di utilizzo 9. Ringraziamenti 10. Introduzione 11 Indice Indice 3 Note di utilizzo 9 Ringraziamenti 10 Introduzione 11 Capitolo 1 Grandezze fisiche e schematizzazione dei sistemi materiali 13 1.1 Grandezze fisiche ed operazione di misura 13 1.2 Riferimento

Dettagli

Interazioni di tipo magnetico II

Interazioni di tipo magnetico II INGEGNERIA GESTIONALE corso di Fisica Generale Prof. E. Puddu Interazioni di tipo magnetico II 1 Forza magnetica su una carica in moto Una particella di carica q in moto risente di una forza magnetica

Dettagli

Elettromagnetismo Formulazione differenziale

Elettromagnetismo Formulazione differenziale Elettromagnetismo Formulazione differenziale 1. Legge di Gauss 2. Legge di Ampere 3. Equazioni di Maxwell statiche V - 0 Legge di Gauss Campo elettrico Carica contenuta all interno della superficie A Flusso

Dettagli

Elettromagnetismo. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Elettromagnetismo. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico Elettromagnetismo È lo studio deli fenomeni collegati alle cariche elettriche in quiete o in movimento Alcuni fenomeni sono stati osservati fin dall antichità sull ambra (electron) e su materiali provenienti

Dettagli

QUARTO APPELLO FISICA GENERALE T-2, Prof. G. Vannini Corso di Laurea in Ingegneria Elettrica e dell Automazione

QUARTO APPELLO FISICA GENERALE T-2, Prof. G. Vannini Corso di Laurea in Ingegneria Elettrica e dell Automazione UARTO APPELLO 11092017 FISICA GENERALE T-2, Prof G Vannini Corso di Laurea in Ingegneria Elettrica e dell Automazione ESERCIZIO 1 Una sfera conduttrice di raggio R1 = 2 cm e carica = 1 mc è circondata

Dettagli

POTENZIALE V T O R I ELETTRICO g. bonomi fisica sperimentale (mecc., elettrom.) Introduzione

POTENZIALE V T O R I ELETTRICO g. bonomi fisica sperimentale (mecc., elettrom.) Introduzione Introduzione Mentre era su una piattaforma panoramica questa ragazza si accorse che i suoi capelli le si rizzavano in testa. Suo fratello, divertito, le scattò questa foto. Cinque minuti dopo un fulmine

Dettagli

CAPITOLO 4 CONDUTTORI DIELETTRICI ENERGIA ELETTROSTATICA

CAPITOLO 4 CONDUTTORI DIELETTRICI ENERGIA ELETTROSTATICA CAPITOLO 4 CONDUTTORI DIELETTRICI ENERGIA ELETTROSTATICA Elisabetta Bissaldi (Politecnico di Bari) 2 Conduttori in equilibrio MATERIALI CONDUTTORI Le cariche al loro interno sono relativamente libere di

Dettagli

Cap 3- Legge di Gauss. 3.1-Concetto di flusso Flusso del campo elettrico. Cap 3- Legge di Gauss

Cap 3- Legge di Gauss. 3.1-Concetto di flusso Flusso del campo elettrico. Cap 3- Legge di Gauss Cap 3- Legge di Gauss Cap 3- Legge di Gauss Una formulazione equivalente alla legge di Coulomb è quella stabilita dal teorema di Gauss, che trae vantaggio dalle situazioni nelle quali vi è una simmetria

Dettagli

Facoltà di Ingegneria 1 a prova in itinere di Fisica II 15-Aprile Compito A

Facoltà di Ingegneria 1 a prova in itinere di Fisica II 15-Aprile Compito A Facoltà di Ingegneria a prova in itinere di Fisica II 5-Aprile-3 - Compito A Esercizio n. Un filo isolante di lunghezza è piegato ad arco di circonferenza di raggio (vedi figura). Su di esso è depositata

Dettagli

Esercizi di elettrostatica (prima parte)

Esercizi di elettrostatica (prima parte) Esercizi di elettrostatica (prima parte) Esercizi di elettrostatica: forza di coulomb, campo elettrico. 1. Date tre cariche elettriche puntiformi identiche ( Q ) poste ai vertici di un triangolo equilatero

Dettagli

Esercizi di elettrostatica (prima parte)

Esercizi di elettrostatica (prima parte) Esercizi di elettrostatica (prima parte) Esercizi di elettrostatica: forza di coulomb, campo elettrico. 1. Date tre cariche elettriche puntiformi identiche ( Q ) poste ai vertici di un triangolo equilatero

Dettagli

Prova Parziale 5. La forza di Coulomb è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti.

Prova Parziale 5. La forza di Coulomb è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti. La forza di Coulomb è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti. 1 / 52 La forza di Coulomb è: una forza conservativa. una forza radiale. una forza

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 36 24.05.2019 Potenziali di Liénard-Wiechert Campi di una carica in moto rettilineo uniforme Radiazione del dipolo Anno

Dettagli

Nome: Cognome: Matricola:

Nome: Cognome: Matricola: Esercizio 1: Una particella ++ si trova in quiete ad una distanza d = 100 µm da un piano metallico verticale mantenuto a potenziale nullo. i. Calcolare le componenti del campo E in un generico punto P

Dettagli

1.5 Calcolo di erenziale vettoriale Derivata ordinaria Gradiente Esempio n. 3 - Gradiente di 1

1.5 Calcolo di erenziale vettoriale Derivata ordinaria Gradiente Esempio n. 3 - Gradiente di 1 Indice 1 ANALISI VETTORIALE 1 1.1 Scalari e vettori......................... 1 1.1.1 Vettore unitario (versore)............... 2 1.2 Algebra dei vettori....................... 3 1.2.1 Somma di due vettori.................

Dettagli

Flusso di un campo vettoriale

Flusso di un campo vettoriale Flusso di un campo vettoriale Il concetto è stato originariamente introdotto nella teoria dei fluidi, dove il flusso è legato alla quantità di fluido che passa attraverso una data superficie geometrica,

Dettagli

CAMPO ELETTRICO. F r e = q E r. Newton ;

CAMPO ELETTRICO. F r e = q E r. Newton ; 1 CAMPO ELETTRICO Si definisce campo elettrico (o elettrostatico) una qualunque regione dello spazio nella quale si manifestano azioni su cariche elettriche. 1. DESCRIZIONE DEL CAMPO Per descrivere un

Dettagli

Lezione 13 - La legge di Gauss

Lezione 13 - La legge di Gauss Lezione 13 - La legge di Gauss Armati dei concetti fin qui introdotti possiamo enunciare la legge di Gauss o anche Φ = q interna r E da r sup. Gaussiana = q interna illustrazione tratta da: Halliday-Resnick-Walker,

Dettagli

Applicazioni del teorema di Gauss

Applicazioni del teorema di Gauss Prof. A.Guarrera Liceo Scientifico Galilei - Catania Applicazioni del teorema di Gauss Campo elettrostatico di una distribuzione di carica uniforme e filiforme (filo carico) di densità lineare di carica.

Dettagli

CONDUTTORI DIELETTRICI. G. Pugliese 1

CONDUTTORI DIELETTRICI. G. Pugliese 1 CONDUTTOI E DIELETTICI G. Pugliese I conduttori Conduttori materiali solidi, liuidi o gassosi in cui sono presenti cariche che possono muoversi liberamente (cariche mobili) Conduttori solidi (ad es. i

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 37 1.06.2016 Riflessione e rifrazione Incidenza obliqua Potenziali elettrodinamici Anno Accademico 2016/2017 Quantità

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 29 24.04.2018 Energia Magnetica. Oscillatore LC Equazione del rotore di B e corrente di spostamento Anno Accademico

Dettagli

Elettrostatica II. Energia Elettrostatica (richiamo) Potenziale Elettrico. Potenziale di cariche puntiformi. Superfici equipotenziali.

Elettrostatica II. Energia Elettrostatica (richiamo) Potenziale Elettrico. Potenziale di cariche puntiformi. Superfici equipotenziali. Elettrostatica II Energia Elettrostatica (richiamo) Potenziale Elettrico Potenziale di cariche puntiformi Superfici equipotenziali Condensatori Dielettrici Energia potenziale di due cariche Si può dimostrare

Dettagli

5,&+,$0, 68*/,23(5$725,9(7725,$/,

5,&+,$0, 68*/,23(5$725,9(7725,$/, 5,&+,$0, 8*/,23(5$725,9(7725,$/, Gradiente E un operatore differenziale del primo ordine che si applica ad una generica grandezza scalare ϕ, e genera un vettore secondo la seguente definizione: ϕ ϕ Q =

Dettagli