Le Galassie. Lezione 10
|
|
|
- Letizia Vaccaro
- 10 anni fa
- Visualizzazioni
Transcript
1 Le Galassie Lezione 10
2 Leggi Scala delle Galassie Si mettono in relazione i vari parametri strutturali ottenibili per una galassia per cercare di capire le proprietà fisiche. Attenzione però a non abusare delle correlazioni! What we learn from scaling relations... Kennicutt 1989 observable universe Venus Yellowstone Park forest fire Jeep Cherokee running in a garage burning cigar Kennicutt, is sometimes nothing! 2
3 Leggi Scala delle Galassie Si mettono in relazione i vari parametri strutturali ottenibili per una galassia per cercare di capire le proprietà fisiche. Attenzione però a non abusare delle correlazioni! What we learn from scaling relations... Kennicutt 1989 observable universe Venus Yellowstone Park forest fire Jeep Cherokee running in a garage burning cigar Kennicutt, is sometimes nothing! 2
4 Leggi Scala nelle Spirali Le curve di rotazione delle galassie a spirale sono piatte a grandi raggi (misure HI) quindi VC è una caratteristica della galassia (si può usare la larghezza della riga HI indicata con W o ΔVC). Vc correlata con la luminosità della galassia Relazione Tully-Fisher: L ~ VC α Qual è il significato fisico? Indicatore di Luminosità! Massa della galassia: M = VC 2 R / G Rapporto M/L: M = L (M/L) = L Υ Brillanza superficiale μ: L = μ πr 2 Si può quindi scrivere: L VC 4 / ( μ Υ 2 ) μ Υ 2 ~ cost. stretto legame tra stelle (L) e materia oscura (M). 3
5 Leggi Scala nelle Ellittiche Le ellittiche più luminose sono più grandi ed hanno una surface brightness minore ovvero la loro densità di luminosità sul piano del cielo è minore rispetto alle galassie meno luminose. Le galassie de e dsph hanno un comportamento completamente diverso dalle Ellittiche e dai Bulge delle spirali! log Re = γmb +δ Re LB -2.5γ μb = αmb +β Re LB (1-α)/2 µ B = 2.5 log ( FB πr 2 e ) + ZP B M B = 2.5 log L B + M B Le due relazioni sono equivalenti! 4
6 Leggi Scala nelle Ellittiche Kormendy relation Ellittiche Faber-Jackson relation Σ(Re) [V mag arcsec -2 ] log Re [kpc] Ellittiche Bulges log σe = αmb +β σe LB -2.5α LB σe 4 Queste relazioni hanno una dispersione più grande di quanto ci si aspetterebbe dagli errori di misura (χ 2 >1). La dispersione intrinseca è la dispersione dei residui (σres) del fit dopo aver tolto gli errori Δ: σint 2 = σres 2 -Δ 2 5
7 Il Piano Fondamentale La dispersione delle correlazioni L-σ, L-R, μ-σ è grande e comunque queste relazioni sono legate tra loro. Consideriamo i 3 parametri indipendenti, μ, σ, R (oppure L, σ, R): esiste una relazione fondamentale? La relazione fondamentale è un piano nello spazio dei tre parametri: log Re = α log σe +β log μe detto piano fondamentale. E equivalente a Re σe 1.4 μe Le altre relazioni sono proiezioni del piano fondamentale e hanno quindi dispersione maggiore! 6
8 Il Piano Fondamentale Re σe 1.4 μe Qual è il suo significato fisico? Non è altro che una relazione tra rapporto M/L (caratteristico di una popolazione stellare, della sua storia di formazione ed evoluzione) e luminosità L della galassia. Teorema del Viriale: M = ξ σe 2 Re / G Definizione di μ: L = 2μe π Re 2 Re σe α μe -β σe α Re 2β-1 L β σe 1.4 Re 0.7 L 0.85 (σe 2 Re) 0.7 L 0.85 M 0.7 L 0.85 M/L L 0.21 ovvero M/L dipende debolmente dalla Luminosità. Le galassie più massicce sono quelle con M/L più elevato quindi hanno popolazioni stellari più vecchie. La dipendenza di M/L da L derivata dal piano fondamentale che implica una variazione di popolazioni stellari e struttura delle galassie è nota come TILT del piano fondamentale. 7
9 Popolazioni Stellari Abbiamo visto le proprietà globali delle galassie ellittiche e spirali ma non abbiamo ancora considerato le proprietà delle stelle che costituiscono una galassia. Lo spettro di una galassia è dato dalla somma Stelle degli spettri delle singole stelle costituenti, ma anche dalla somma degli spettri degli altri componenti come regioni HII, nucleo attivo ecc. Regione HII 8
10 Popolazioni Stellari Starburst M5 Sb Sc K0 S0 G2 A1 E O5 9
11 Popolazioni Stellari E possibile analizzare lo spettro di una galassia considerandolo come sovrapposizione di varie popolazioni stellari. Una singola popolazione stellare è un insieme di stelle caratterizzate da: 1) storia di formazione stellare SFR(t) ovvero il numero di masse solari convertite in stelle per unità di tempo in funzione del tempo: dmgas/dt. Per esempio burst istantaneo (ovvero SFR(t) = S0 δ(t-t0) cioè all istante t0 si formano stelle per una massa totale di M) o burst continuo (ovvero SFR(t) = cost. ovvero si convertono continuamente varie M /yr in stelle) 2) initial mass function ovvero data massa M in stelle che si formano, quante sono le stelle che si formano ad una data massa m? ϕ(m)dm è il numero di stelle che si formano tra m e m+dm e dm = m ϕ(m)dm. La più nota è la IMF di Salpeter ϕ(m) ~ m ) Z ovvero le abbondanze iniziali degli elementi pesanti. L abbondanza poi varia a seguito della produzione di elementi pesanti. 10
12 Popolazioni Stellari Per una data popolazione stellare i modelli di evoluzione stellare forniscono le isocrone nel diagramma HR (costituite dai punti delle tracce evolutive con M, Z allo stesso tempo t). I modelli di atmosfere forniscono lo spettro di una stella con M, L e Te. Sommando gli spettri di tutte le stelle con varie masse (pesate per ϕ(m)) è possibile ottenere lo spettro e la luminosità della popolazione stellare in funzione del tempo. Le stelle giovani creano regioni HII di cui bisogna tener conto nel modello. Evoluzione dello spettro di una popolazione stellare (burst di 100 Myr) Stellar Tracks 11
13 Popolazioni Stellari Combinando varie popolazioni stellari diverse (eventualmente tenendo conto dell estinzione da parte della polvere per ciascuna di esse) è possibile ricostruire lo spettro della galassia: G(λ) = Σi Pi(λ) exp[-τi(λ)] dove Pi(λ) è lo spettro della popolazione stellare i- esima e τi(λ) è la profondità ottica della polvere tra noi e Pi. Problemi: ci sono molti parametri liberi tra loro degeneri. Per esempio età, metallicità ed estinzione da polvere sono degeneri (galassia vecchia e ricca di metalli o galassia giovane arrossata hanno spettri all apparenza simili). Spettro osservato Popolazione giovane Spettro sintetico totale Popolazione vecchia 12
14 Popolazioni Stellari Variazione del colore: Le galassie più brillanti (più luminose perché sono tutte in un ammasso alla stessa distanza) sono più rosse. Più rosse vuol dire più vecchie oppure più metalliche o entrambe le cose. f(t), Z fissata f(z), t fissato 13
15 Popolazioni Stellari Analisi degli spettri di ~84000 galassie dalla Sloan Digital Sky Survey (SDSS). Fit degli spettri stellari con modelli di popolazioni stellari per ricavare età della popolazione stellare (principalmente da Hα - stelle giovani - e dal break a 4000 Å - stelle vecchie). Metallicità dalle righe di emissione del gas. Le galassie più luminose sono più vecchie e più metalliche. 14
Le Galassie: relazioni di scala e popolazioni stellari. Lezione 4
Le Galassie: relazioni di scala e popolazioni stellari Lezione 4 Leggi Scala delle Galassie Si mettono in relazione i vari parametri strutturali ottenibili per una galassia per cercare di capire le proprietà
AC6 Misure della massa delle stelle
AC6 Misure della massa delle stelle Stelle doppie e relative misure di parallasse. Ancora il satellite Hypparcos Doppie fotometriche Doppie eclissanti e misure fotometriche di massa Relazione empirica
Dalle binarie alle galassie Come le stelle si aggregano
Istituto Nazionale di Astrofisica Osservatorio astronomico di Brera Universo in fiore Dalle binarie alle galassie Come le stelle si aggregano Stefano Covino [email protected] INAF-Osservatorio
Perché osservare le binarie ad eclisse
Perché osservare le binarie ad eclisse Marco Vincenzi Amelia 15-16 maggio 2010 VI Meeting sulle Stelle Variabili SSV UAI GRAV Le binarie ad eclisse, e, più in generale, i sistemi binari si studiano perché
Determinazione della composizione elementare dello ione molecolare. Metodo dell abbondanza isotopica. Misure di massa esatta
Determinazione della composizione elementare dello ione molecolare Metodo dell abbondanza isotopica Misure di massa esatta PREMESSA: ISOTOPI PICCHI ISOTOPICI Il picco dello ione molecolare è spesso accompagnato
Istituto Nazionale di Astrofisica Osservatorio Astronomico di Palermo. Terza lezione. Antonio Maggio. INAF Osservatorio Astronomico di Palermo
Istituto Nazionale di Astrofisica Osservatorio Astronomico di Palermo Terza lezione Antonio Maggio INAF Osservatorio Astronomico di Palermo Argomenti e concetti già introdotti Fotometria: il concetto di
La distribuzione Normale. La distribuzione Normale
La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una
2 + (σ2 - ρσ 1 ) 2 > 0 [da -1 ρ 1] b = (σ 2. 2 - ρσ1 σ 2 ) = (σ 1
1 PORTAFOGLIO Portafoglio Markowitz (2 titoli) (rischiosi) due titoli rendimento/varianza ( μ 1, σ 1 ), ( μ 2, σ 2 ) Si suppone μ 1 > μ 2, σ 1 > σ 2 portafoglio con pesi w 1, w 2 w 1 = w, w 2 = 1- w 1
ISTITUTO COMPRENSIVO BARBERINO MUGELLO
IL PESO percorso didattico scuola primaria Sperimentazione didattica ISTITUTO COMPRENSIVO BARBERINO MUGELLO I bambini utilizzano spontaneamente il concetto di pesante? Collochiamo su un banco alcuni oggetti:
IL LATO OSCURO DELL UNIVERSO dov e` la materia che non vediamo? Elena Zucca. INAF - Osservatorio Astronomico di Bologna
IL LATO OSCURO DELL UNIVERSO dov e` la materia che non vediamo? Elena Zucca INAF - Osservatorio Astronomico di Bologna Ma l Universo è costituito solo da materia luminosa? La forza di gravità Galileo
CONTINUITÀ E DERIVABILITÀ Esercizi risolti
CONTINUITÀ E DERIVABILITÀ Esercizi risolti. Determinare kπ/ [cos] al variare di k in Z. Ove tale ite non esista, discutere l esistenza dei iti laterali. Identificare i punti di discontinuità della funzione
Dimensione di uno Spazio vettoriale
Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione
Esperimentazioni di Fisica II. Esercitazione 3 Misure di resistività
Esperimentazioni di Fisica II Richiami sulla resistività elettrica La resistenza R di un conduttore dipende da diversi fattori : caratteristiche fisiche; caratteristiche geometriche; condizioni ambientali.
GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω
GIROSCOPIO Scopo dell esperienza: Verificare la relazione: ω p = bmg/iω dove ω p è la velocità angolare di precessione, ω è la velocità angolare di rotazione, I il momento principale d inerzia assiale,
Lezione 9: Cambio di base
Lezione 9: Cambio di base In questa lezione vogliamo affrontare uno degli argomenti piu ostici per lo studente e cioè il cambio di base all interno di uno spazio vettoriale, inoltre cercheremo di capire
Nascita e morte delle stelle
Nascita e morte delle stelle Se la materia che componeva l universo primordiale fosse stata tutta perfettamente omogenea e diffusa in modo uguale, non esisterebbero né stelle né pianeti. C erano invece
Antonella Martinucci, Rossana Nencini, 2013 IL PESO. classe quarta
Antonella Martinucci, Rossana Nencini, 2013 IL PESO classe quarta I bambini utilizzano spontaneamente il concetto di pesante? Collochiamo su un banco alcuni oggetti: penne matite gomme fogli scottex quaderni
La dispersione dei prezzi al consumo. I risultati di un indagine empirica sui prodotti alimentari.
La dispersione dei prezzi al consumo. I risultati di un indagine empirica sui prodotti alimentari. Giovanni Anania e Rosanna Nisticò EMAA 14/15 X / 1 Il problema Un ottimo uso del vostro tempo! questa
bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo
Momento di una forza Nella figura 1 è illustrato come forze uguali e contrarie possono non produrre equilibrio, bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo esteso.
ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA
ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA Francesco Bottacin Padova, 24 febbraio 2012 Capitolo 1 Algebra Lineare 1.1 Spazi e sottospazi vettoriali Esercizio 1.1. Sia U il sottospazio di R 4 generato dai
Transitori del primo ordine
Università di Ferrara Corso di Elettrotecnica Transitori del primo ordine Si consideri il circuito in figura, composto da un generatore ideale di tensione, una resistenza ed una capacità. I tre bipoli
1. PRIME PROPRIETÀ 2
RELAZIONI 1. Prime proprietà Il significato comune del concetto di relazione è facilmente intuibile: due elementi sono in relazione se c è un legame tra loro descritto da una certa proprietà; ad esempio,
Capitolo 2 Distribuzioni di frequenza
Edizioni Simone - Vol. 43/1 Compendio di statistica Capitolo 2 Distribuzioni di frequenza Sommario 1. Distribuzioni semplici. - 2. Distribuzioni doppie. - 3. Distribuzioni parziali: condizionate e marginali.
All.n.7 GAD PEC RI12 INDAGINE GEOFISICA TRAMITE TECNICA MASW
All.n.7 GAD PEC RI2 INDAGINE GEOFISICA TRAMITE TECNICA MASW Easy MASW La geofisica osserva il comportamento delle onde che si propagano all interno dei materiali. Un segnale sismico, infatti, si modifica
Funzioni funzione dominio codominio legge argomento variabile indipendente variabile dipendente
Funzioni In matematica, una funzione f da X in Y consiste in: 1. un insieme X detto dominio di f 2. un insieme Y detto codominio di f 3. una legge che ad ogni elemento x in X associa uno ed un solo elemento
All interno dei colori primari e secondari, abbiamo tre coppie di colori detti COMPLEMENTARI.
Teoria del colore La teoria dei colori Gli oggetti e gli ambienti che ci circondano sono in gran parte colorati. Ciò dipende dal fatto che la luce si diffonde attraverso onde di diversa lunghezza: ad ogni
Università di Milano Bicocca Esercitazione 7 di Matematica per la Finanza 12 Marzo 2015
Università di Milano Bicocca Esercitazione 7 di Matematica per la Finanza 12 Marzo 2015 Esercizio 1 Si consideri la funzione f(t) := 2t/10 1 + 0, 04t, t 0. 1. Verificare che essa rappresenta il fattore
Lezione 27: L offerta di moneta e la LM
Corso di Economia Politica prof. S. Papa Lezione 27: L offerta di moneta e la LM Facoltà di Economia Università di Roma Sapienza Offerta di moneta Offerta di moneta. È la quantità di mezzi di pagamento
Scuola tedesca (1912) Si contrappone all elementismo di Wundt. Analisi vs sintesi
Psicologia della forma (Gestalt) Scuola tedesca (1912) Si contrappone all elementismo di Wundt Esperienza Analisi vs sintesi Gestaltisti: quando una persona guarda fuori della finestra, essa vede immediatamente
L osservazione in luce bianca è, per così dire, l osservazione del Sole al naturale ovviamente dopo averne attenuato la fortissima emissione di luce.
L osservazione in luce bianca è, per così dire, l osservazione del Sole al naturale ovviamente dopo averne attenuato la fortissima emissione di luce. Questa attenuazione si ottiene mediante l uso di un
Ai fini economici i costi di un impresa sono distinti principalmente in due gruppi: costi fissi e costi variabili. Vale ovviamente la relazione:
1 Lastoriadiun impresa Il Signor Isacco, che ormai conosciamo per il suo consumo di caviale, decide di intraprendere l attività di produttore di caviale! (Vuole essere sicuro della qualità del caviale
SCIENZE. L Universo e le Stelle. Introduzione. il testo:
01 Introduzione Noi viviamo su un pianeta che si chiama Terra. La Terra si trova in uno spazio grandissimo (spazio infinito). In questo spazio infinito ci sono tante cose (tante parti di materia). Come
Analisi e diagramma di Pareto
Analisi e diagramma di Pareto L'analisi di Pareto è una metodologia statistica utilizzata per individuare i problemi più rilevanti nella situazione in esame e quindi le priorità di intervento. L'obiettivo
Dai colori alle stelle: un excursus tra Fisica e Ottica
Dai colori alle stelle: un excursus tra Fisica e Ottica Martina Giordani Facoltà di Scienze matematiche, fisiche e naturali Corso di Laurea in Ottica e Optometria Federica Ricci Facoltà di Scienze matematiche,
CALCOLO DELL'ENERGIA INTERNA
CALCOLO DELL'ENERGIA INTERNA Enrico Valenti Matricola 145442 29 novembre ore 10,30-12,30 ( trasformazione a temperatura costante ) U 0 = 0 J energia ( J ) p 0 = 1 bar pressione ( Pa ) T 0 = 273 K temperatura
Capitolo 13: L offerta dell impresa e il surplus del produttore
Capitolo 13: L offerta dell impresa e il surplus del produttore 13.1: Introduzione L analisi dei due capitoli precedenti ha fornito tutti i concetti necessari per affrontare l argomento di questo capitolo:
IL RISCHIO D IMPRESA ED IL RISCHIO FINANZIARIO. LA RELAZIONE RISCHIO-RENDIMENTO ED IL COSTO DEL CAPITALE.
IL RISCHIO D IMPRESA ED IL RISCHIO FINANZIARIO. LA RELAZIONE RISCHIO-RENDIMENTO ED IL COSTO DEL CAPITALE. Lezione 5 Castellanza, 17 Ottobre 2007 2 Summary Il costo del capitale La relazione rischio/rendimento
Lezione n. 2 (a cura di Chiara Rossi)
Lezione n. 2 (a cura di Chiara Rossi) QUANTILE Data una variabile casuale X, si definisce Quantile superiore x p : X P (X x p ) = p Quantile inferiore x p : X P (X x p ) = p p p=0.05 x p x p Graficamente,
Effetto reddito ed effetto sostituzione.
. Indice.. 1 1. Effetto sostituzione di Slutsky. 3 2. Effetto reddito. 6 3. Effetto complessivo. 7 II . Si consideri un consumatore che può scegliere panieri (x 1 ; ) composti da due soli beni (il bene
Cosa dobbiamo già conoscere?
Cosa dobbiamo già conoscere? Insiemistica (operazioni, diagrammi...). Insiemi finiti/numerabili/non numerabili. Perché la probabilità? In molti esperimenti l esito non è noto a priori tuttavia si sa dire
BIT? Cosa c è dietro a questo nome? Che cos è il bit? Perché si usa? Come si converte un numero binario?
BIT? Cosa c è dietro a questo nome? Che cos è il bit? Perché si usa? Come si converte un numero binario? Cosa c è dietro a questo nome? BIT è un acronimo e deriva da BInary digit, cioè cifra binaria Che
Progetti SCRUTANDO IL CIELO DEL PARCO
Progetti SCRUTANDO IL CIELO DEL PARCO Sin dai tempi più remoti il cielo ha avuto grande importanza per l uomo. Il cielo è testimone di miti, di leggende di popoli antichi; narra di terre lontane, di costellazioni
Progetto: L'anagrafe delle stelle
Stage 2014 presso INAF - IASF (Istituto di Astrofisica Spaziale e Fisica Cosmica) di Bologna. Progetto: L'anagrafe delle stelle Eleonora Biavati ed Andrea Guglielmi 1. Introduzione Prima di introdurre
LABORATORIO EXCEL XLSTAT 2008 SCHEDE 2 e 3 VARIABILI QUANTITATIVE
Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) LABORATORIO EXCEL
risulta (x) = 1 se x < 0.
Questo file si pone come obiettivo quello di mostrarvi come lo studio di una funzione reale di una variabile reale, nella cui espressione compare un qualche valore assoluto, possa essere svolto senza necessariamente
I COLORI DEL CIELO: COME SI FORMANO LE IMMAGINI ASTRONOMICHE
I COLORI DEL CIELO: COME SI FORMANO LE IMMAGINI ASTRONOMICHE Nell ultima notte di osservazione abbiamo visto bellissime immagini della Galassia, delle sue stelle e delle nubi di gas che la compongono.
19. Inclusioni tra spazi L p.
19. Inclusioni tra spazi L p. Nel n. 15.1 abbiamo provato (Teorema 15.1.1) che, se la misura µ è finita, allora tra i corispondenti spazi L p (µ) si hanno le seguenti inclusioni: ( ) p, r ]0, + [ : p
Inflazione e Produzione. In questa lezione cercheremo di rispondere a domande come queste:
Inflazione e Produzione In questa lezione cercheremo di rispondere a domande come queste: Da cosa è determinata l Inflazione? Perché le autorità monetarie tendono a combatterla? Attraverso quali canali
V= R*I. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro.
LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro. PREMESSA: Anche intuitivamente dovrebbe a questo punto essere ormai chiaro
L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare
L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare Cap.4 giroscopio, magnetismo e forza di Lorentz teoria del giroscopio Abbiamo finora preso in considerazione le condizionidi equilibrio
CONI, CILINDRI, SUPERFICI DI ROTAZIONE
CONI, CILINDRI, SUPERFICI DI ROTAZIONE. Esercizi x + z = Esercizio. Data la curva x, calcolare l equazione del cilindro avente γ y = 0 come direttrice e con generatrici parallele al vettore v = (, 0, ).
Plate Locator Riconoscimento Automatico di Targhe
Progetto per Laboratorio di Informatica 3 - Rimotti Daniele, Santinelli Gabriele Plate Locator Riconoscimento Automatico di Targhe Il programma plate_locator.m prende come input: l immagine della targa
Metodi Stocastici per la Finanza
Metodi Stocastici per la Finanza Tiziano Vargiolu [email protected] 1 1 Università degli Studi di Padova Anno Accademico 2011-2012 Lezione 6 Indice 1 Il metodo bootstrap 2 Esercitazione 3 Interpolazione
1. LE GRANDEZZE FISICHE
1. LE GRANDEZZE FISICHE La fisica (dal greco physis, natura ) è una scienza che ha come scopo guardare, descrivere e tentare di comprendere il mondo che ci circonda. La fisica si propone di descrivere
Teoria delle code. Sistemi stazionari: M/M/1 M/M/1/K M/M/S
Teoria delle code Sistemi stazionari: M/M/1 M/M/1/K M/M/S Fabio Giammarinaro 04/03/2008 Sommario INTRODUZIONE... 3 Formule generali di e... 3 Leggi di Little... 3 Cosa cerchiamo... 3 Legame tra N e le
Capitolo 2 Caratteristiche delle sorgenti luminose In questo capitolo sono descritte alcune grandezze utili per caratterizzare le sorgenti luminose.
Capitolo 2 Caratteristiche delle sorgenti luminose In questo capitolo sono descritte alcune grandezze utili per caratterizzare le sorgenti luminose. 2.1 Spettro di emissione Lo spettro di emissione di
6. Moto in due dimensioni
6. Moto in due dimensioni 1 Vettori er descriere il moto in un piano, in analogia con quanto abbiamo fatto per il caso del moto in una dimensione, è utile usare una coppia di assi cartesiani, come illustrato
Parte 6. Applicazioni lineari
Parte 6 Applicazioni lineari A Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Applicazioni fra insiemi, 2 Applicazioni lineari tra spazi vettoriali, 2 3 Applicazioni lineari da R n a R
Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici. a Corrente Alternata. Sergio Benenti 7 settembre 2013
Complementi di Analisi per nformatica *** Capitolo 2 Numeri Complessi e Circuiti Elettrici a Corrente Alternata Sergio Benenti 7 settembre 2013? ndice 2 Circuiti elettrici a corrente alternata 1 21 Circuito
Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo
Moto armonico semplice Consideriamo il sistema presentato in figura in cui un corpo di massa m si muove lungo l asse delle x sotto l azione della molla ideale di costante elastica k ed in assenza di forze
S- magari si potrebbe dire la prima riga, la seconda riga UNITÀ DIDATTICA: TESTO POETICO. Obiettivi
UNITÀ DIDATTICA: TESTO POETICO Obiettivi - Confrontare due testi poetici - Trovare le differenze e le somiglianze - Osservare le differenze e coglierne le caratteristiche. ATTIVITÀ L argomento presentato
13. Campi vettoriali
13. Campi vettoriali 1 Il campo di velocità di un fluido Il concetto di campo in fisica non è limitato ai fenomeni elettrici. In generale il valore di una grandezza fisica assegnato per ogni punto dello
LABORATORIO-EXCEL N. 2-3 XLSTAT- Pro Versione 7 VARIABILI QUANTITATIVE
LABORATORIO-EXCEL N. 2-3 XLSTAT- Pro Versione 7 VARIABILI QUANTITATIVE DESCRIZIONE DEI DATI DA ESAMINARE Sono stati raccolti i dati sul peso del polmone di topi normali e affetti da una patologia simile
Database 1 biblioteca universitaria. Testo del quesito
Database 1 biblioteca universitaria Testo del quesito Una biblioteca universitaria acquista testi didattici su indicazione dei professori e cura il prestito dei testi agli studenti. La biblioteca vuole
LEZIONE DI ELETTRONICA per la classe 5 TIM/TSE
LEZIONE DI ELETTRONICA per la classe 5 TIM/TSE MODULO : Analisi dei circuiti lineari in regime sinusoidale PREMESSA L analisi dei sistemi elettrici lineari, in regime sinusoidale, consente di determinare
Seguiamo con un pennarello la strada del filo..ogni bambino sceglie il colore per evidenziare la strada del suo filo..
Seguiamo con un pennarello la strada del filo..ogni bambino sceglie il colore per evidenziare la strada del suo filo....è tutta storta....è con tante curve perché il gomitolo la fa strana..se non lo tiri
Strutturazione logica dei dati: i file
Strutturazione logica dei dati: i file Informazioni più complesse possono essere composte a partire da informazioni elementari Esempio di una banca: supponiamo di voler mantenere all'interno di un computer
UNIVERSITÀ DEGLI STUDI DI TERAMO
UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA (Classe 7) Corso di Matematica per l Economia (Prof. F. Eugeni) TEST DI INGRESSO Teramo, ottobre 00 SEZIONE
Anna Montemurro. 2Geometria. e misura
Anna Montemurro Destinazione Matematica 2Geometria e misura GEOMETRIA E MISURA UNITÀ 11 Le aree dei poligoni apprendo... 11. 1 FIGURE PIANE EQUIVALENTI Consideriamo la figura A. A Le figure B e C
Sia data la rete di fig. 1 costituita da tre resistori,,, e da due generatori indipendenti ideali di corrente ed. Fig. 1
Analisi delle reti 1. Analisi nodale (metodo dei potenziali dei nodi) 1.1 Analisi nodale in assenza di generatori di tensione L'analisi nodale, detta altresì metodo dei potenziali ai nodi, è un procedimento
ColorSplitter. La separazione automatica dei colori di Colibri.. Perché ColorSplitter? Come opera ColorSplitter?
ColorSplitter La separazione automatica dei colori di Colibri.. ColorSplitter è una nuova funzionalità aggiunta a Colibri, che permette di elaborare un immagine trasformandola in una separata in canali
Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0.
Numeri Complessi. Siano z = + i e z 2 = i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 2. Siano z = 2 5 + i 2 e z 2 = 5 2 2i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 3. Ricordando che, se z è un numero complesso,
LABORATORIO DI CHIMICA GENERALE E INORGANICA
UNIVERSITA DEGLI STUDI DI MILANO Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea Triennale in Chimica CORSO DI: LABORATORIO DI CHIMICA GENERALE E INORGANICA Docente: Dr. Alessandro Caselli
Spettrofotometria. Le onde luminose consistono in campi magnetici e campi elettrici oscillanti, fra loro perpendicolari.
Spettrofotometria. Con questo termine si intende l utilizzo della luce nella misura delle concentrazioni chimiche. Per affrontare questo argomento dovremo conoscere: Natura e proprietà della luce. Cosa
Convertitori numerici in Excel
ISTITUTO DI ISTRUZIONE SUPERIORE G. M. ANGIOY CARBONIA Convertitori numerici in Excel Prof. G. Ciaschetti Come attività di laboratorio, vogliamo realizzare dei convertitori numerici con Microsoft Excel
Il sistema monetario
Il sistema monetario Premessa: in un sistema economico senza moneta il commercio richiede la doppia coincidenza dei desideri. L esistenza del denaro rende più facili gli scambi. Moneta: insieme di tutti
Contabilità generale e contabilità analitica
1/5 Contabilità generale e contabilità analitica La sfida della contabilità analitica è di produrre informazioni sia preventive che consuntive. Inoltre questi dati devono riferirsi a vari oggetti (prodotti,
GEOMETRIA DELLE MASSE
1 DISPENSA N 2 GEOMETRIA DELLE MASSE Si prende in considerazione un sistema piano, ossia giacente nel pian x-y. Un insieme di masse posizionato nel piano X-Y, rappresentato da punti individuati dalle loro
APPLICAZIONI LINEARI
APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)
Elementi di Psicometria con Laboratorio di SPSS 1
Elementi di Psicometria con Laboratorio di SPSS 1 5-Indici di variabilità (vers. 1.0c, 20 ottobre 2015) Germano Rossi 1 [email protected] 1 Dipartimento di Psicologia, Università di Milano-Bicocca
PROBABILITA MISURARE L INCERTEZZA Lanciamo due dadi, facciamo la somma dei punteggi ottenuti. Su quale numero mi conviene scommettere?
Lanciamo due dadi, facciamo la somma dei punteggi ottenuti. Su quale numero mi conviene scommettere? Abbiamo visto nella lezione precedente che lo spazio degli eventi più idoneo a rappresentare l esperimento
Esercizi svolti sui numeri complessi
Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =
Relazioni statistiche: regressione e correlazione
Relazioni statistiche: regressione e correlazione È detto studio della connessione lo studio si occupa della ricerca di relazioni fra due variabili statistiche o fra una mutabile e una variabile statistica
Similitudine e omotetia nella didattica della geometria nella scuola secondaria di primo grado di Luciano Porta
Similitudine e omotetia nella didattica della geometria nella scuola secondaria di primo grado di Luciano Porta Il concetto di similitudine è innato: riconosciamo lo stesso oggetto se è più o meno distante
Idrostatica Correnti a pelo libero (o a superficie libera) Correnti in pressione. Foronomia
Idrostatica Correnti a pelo libero (o a superficie libera) Correnti in pressione Foronomia In idrostatica era lecito trascurare l attrito interno o viscosità e i risultati ottenuti valevano sia per i liquidi
Lezione 24: Il modello reddito spesa e il
Corso di Economia Politica prof. S. Papa Lezione 24: Il modello reddito spesa e il moltiplicatore del reddito Facoltà di Economia Università di Sapienza Roma Da che dipendono C e I? Per cercare di tener
I SISTEMI DI NUMERAZIONE (esercizi svolti)
ISTITUTO DI ISTRUZIONE SUPERIORE G. M. ANGIOY CARBONIA I SISTEMI DI NUMERAZIONE (esercizi svolti) Prof. G. Ciaschetti Conversione di un numero da binario a decimale Esercizio 1. Convertire in decimale
MICROECONOMIA La teoria del consumo: Alcuni Arricchimenti. Enrico Saltari Università di Roma La Sapienza
MICROECONOMIA La teoria del consumo: Alcuni Arricchimenti Enrico Saltari Università di Roma La Sapienza 1 Dotazioni iniziali Il consumatore dispone ora non di un dato reddito monetario ma di un ammontare
Sulle funzioni di W 1,p (Ω) a traccia nulla
Sulle funzioni di W 1,p () a traccia nulla Sia u W 1,p (R n ) e supponiamo che il supp u, essendo un aperto di R n. Possiamo approssimare u con una successione di funzioni C il cui supporto è contenuto
Per lo svolgimento del corso risulta particolarmente utile considerare l insieme
1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R
