Progressioni geometriche
|
|
|
- Floriano Buono
- 7 anni fa
- Visualizzazioni
Transcript
1 Progressioi geometriche Comiciamo co due esempi: Esempio Cosideriamo la successioe di umeri:, 6,,, 8, 96 La successioe è tale che si passa da u termie al successivo moltiplicado il precedete per. Si dice ache che la successioe precedete è ua progressioe geometrica. è il primo termie della progressioe, 96 è l ultimo termie e (il umero che moltiplica u termie per avere il successivo) si chiama ragioe della progressioe. Ioltre, visto che i termii aumetao sempre, la progressioe cosiderata è crescete. Esempio Cosideriamo la successioe di umeri: 6,,, 6 La successioe è tale che si passa da u termie al successivo moltiplicado il precedete per ½. La successioe precedete è ua progressioe geometrica di ragioe ½. I termii della successioe dimiuiscoo sempre e la progressioe cosiderata è decrescete. Possiamo geeralizzare quato visto egli esempi co la seguete defiizioe: Ua progressioe geometrica é ua successioe di umeri reali tali che il rapporto tra due termii cosecutivi della successioe è costate. Questa costate si chiama ragioe della progressioe stessa: se la ragioe è positiva e maggiore di, la successioe è crescete; se la ragioe è compresa tra zero e ( escluso), la succesioe è decrescete; se la ragioe è uguale a la successioe é costate (tutti i suoi termii soo uguali); se la ragioe é egativa la successioe é oscillate (i suoi termii soo alterativamete positivi e egativi). Simbolicamete, idicado co a il termie -simo della successioe e co q la sua ragioe, possiamo scrivere: a = a q a = a q = a qq = a q a = a q = a q q = a q... a = a - q = a q - q = a q - dove l ultima espressioe: ½ R. SANTORO: Progressioi geometriche 0/07/0 ½ ½
2 a = aq () forisce ua relazioe geerale per calcolare il termie di posto (a ) di ua progressioe geometrica di cui si coosce il primo terie (a ) e la ragioe (q). Esempio Calcolare il quito termie di ua progressioe geometrica per cui il primo termie vale e la ragioe vale ¾. Applicado la formula precedete, abbiamo subito: a = aq = 8 8 = 6 = 8. Esempio Calcoliamo l iteresse composto di u capitale C 0 depositato i baca per ai co u iteresse percetuale auo uguale a i. Alla fie di ogi ao abbiamo la seguete situazioe: Ao Capitale C 0 + i C 0 = C 0 (+i) = C C + i C = C 0 (+i)+i C 0 (+i) = C 0 (+i)(+i) = C 0 (+i) = C C + i C = C 0 (+i) +i C 0 (+i) = C 0 (+i) (+i) = C 0 (+i) = C C 0 (+i) = C Possiamo allora otare che la successioe: C 0, C, C, C,..., C é ua progressioe geometrica il cui primo termie é C 0 e la cui ragioe é + i; il capitale C alla fie dell -simo ao di deposito é dato da ( ) C = C + i Allora se C 0 = ML (u milioe di lire) e i = 7%, dopo 0 ai il capitale sarà uguale a: C 0 = + = ML. ML, 00 cioé quasi raddoppiato (ma certamete svalutato!). La relazioe () puó essere utilizzata per calcolare uo qualuque degli elemeti preseti a partire dagli altri. Cosí possiamo scrivere ache le relazioi: R. SANTORO: Progressioi geometriche 0/07/0
3 a a = q () a q= a () a = logq + a () Esempio Calcolare la ragioe di ua progressioe geometrica di cui si coosce il primo termie uguale a ed il quito termie uguale a 8. Applicado la formula () precedete, abbiamo subito: 8 q= = =. Esempio 6 Di ua progressioe geometrica si sa che il primo termie vale 8/7, che il suo termie -simo vale 7 e che la ragioe vale /. Calcolare. Applicado la formula () precedete, abbiamo subito: = ( ) + = + = 7 log log log + = + = Esempio 7 Di ua progressioe geometrica si sa che a = e a 8 = 7. Calcolare: ) la ragioe q; ) il primo termie a. Applicado la formula () precedete due volte, abbiamo: a8 = q 7 q= q= 7 a = aq a. 7 a = = 8 aq a a a a = = a ( 7) q q Esempio 8 Dati due umeri, e, determiare altri due umeri (compresi tra i due dati), i modo da otteere quattro umeri i progressioe geometrica. Per risolvere il problema, basta teer coto del fatto che, dei sei umeri i R. SANTORO: Progressioi geometriche 0/07/0
4 progressioe geometrica, a = e a = e =. Applichiamo allora la formula () precedete ed abbiamo: q = = 6. I due umeri richiesti soo allora: =, a ( ) a = =. Calcoliamo la somma S dei primi termii di ua progressioe geometrica. Possiamo scrivere: S = a + aq+ aq + K + aq qs = a q+ aq + aq + K + aq + a q e, sottraedo membro a membro: S qs = a aq S ( q) = a ( q ) ifie, S = a q q () Esempio 9 Calcolare la somma dei primi 0 termii di ua progressioe geometrica sapedo che a = e q = ½). Applicado la formula () precedete, abbiamo subito: S 0 = 0 = = =. 0 Cosideriamo le poteze successive di due umeri miori di, ad esempio /0 e /: R. SANTORO: Progressioi geometriche 0/07/0
5 = =. = =. = =. = =. Possiamo otare che ma mao che l espoete aumeta, il valore della poteza diveta sempre più piccolo; al limite, quado l espoete diveta gradissimo, la poteza diveta piccolissima. I termii matematici più precisi, scriviamo: q < lim q = 0 (da leggere: se il valore assoluto di q é miore di, allora il limite per che tede all ifiito di q é uguale a zero). La cosiderazioe precedete é importate per calcolare la somma di ifiiti termii di ua successioe geometrica la cui ragioe (i valore assoluto) é miore di. Abbiamo subito: q a q < lims = lim a =. (6) q q La (6) é, tra l altro, utile per calcolare la frazioe geeratrice di u umero decimale periodico come egli esempi che seguoo. Esempio 0 Calcolare la frazioe geeratrice del umero 7. _. Abbiamo: _ 7. = = = = L espressioe i paretesi può essere cosiderata come la somma degli ifiiti termii di ua progressioe geometrica co primo termie uguale a e co ragioe uguale a /0. Essedo la ragioe miore di, possiamo applicare la formula (6) precedete ed abbiamo: Queste cosiderazioi sul limite di ua successioe soo molto ituitive. Lo studete avrà occasioe di studiare, i termii molto piú precisi, il limite di ua successioe. R. SANTORO: Progressioi geometriche 0/07/0
6 _ = 7+ = 7+ = 7+ = Esempio Calcolare la frazioe geeratrice del umero.. Abbiamo:. = = = = = + = + = = 00 9 = = dove l espressioe i paretesi idica la somma degli ifiiti termii di ua progressioe geometrica (primo termie uguale a, ragioe uguale a /00) e l ultima uguagliaza richiama la regola empirica di scrittura della frazioe geeratrice di u umero decimale periodico. Nota storica Zeoe (96 a.c. - 0 a. C.) ato a Elea, città dell Italia meridioale, ci ha lasciato alcui paradossi celebri che lui utilizzava per dimostrare che i metodi della logica erao isufficieti per reder coto ache di fatti molto baali (e sosteere, i tal modo, le idee del filosofo, suo maestro, Parmeide). Il più celebre dei suoi paradossi é quello di Achille e la Tartaruga. Il piè veloce Achille, pur corredo ad ua velocità 0 volte superiore a quella della Tartaruga, o potrà mai raggiugerla ache se questa ha u solo stadio di vataggio su di lui. Ifatti, metre Achille percorre lo stadio di svataggio, la Tartaruga percorre /0 di stadio; metre Achille percorre il decimo di stadio che gli resta, la Tartaruga percorre /00 di stadio e così via, all ifiito: Achille o raggiugerà mai la Tartaruga. Fiumi di ichiostro soo stati cosumati su questo paradosso (e su altri aaloghi), per cercare di dimostrare dov era l igao el ragioameto. Oggi sappiamo risolvere il paradosso co l ausilio delle progressioi geometriche e co il passaggio al limite utilizzato per dimostrare la formula (6). Ifatti, se poiamo uguale a il tempo che Achille impiega a percorrere uo stadio, abbiamo che il tempo che impiega a raggiugere la Tartaruga é: 0 t = = = =. (fiito) I realtà, ache la dimostrazioe della formula (6) ha delle difficoltà logiche ascoste e solo recetemete (egli ultimi decei) é stata trovata ua soluzioe più soddisfacete co la teoria dell aalisi o-stadard (vedi l articolo di William I. McLaughli i Scietific America, November 99: Resolvig Zeo s Paradoxes) R. SANTORO: Progressioi geometriche 0/07/0
7 7 Esercizi Scrivere i primi sei termii di ua progressioe geometrica il cui primo termie è uguale a e la cui ragioe è uguale a /. Calcolare il vetesimo termie della progressioe geometrica dello esercizio. Ua progressioe geometrica è tale che a 7 = 8 e q = /. Calcolare a e a. Calcolare il umero dei termii di ua pogressioe geometrica di ragioe, sapedo che a = 8 e a =. Per l esercizio precedete, calcolare S (somma dei primi termii della progressioe). Di ua progressioe geometrica si coosce a = 6 e q = -/. Calcolare: a) a ; b) S ; c) S. Tra i umeri e iserire umeri (compresi tra i due dati), i modo da otteere ua progressioe geometrica: a) crescete; b) decrescete. Di ua progressioe geometrica si sa che a = e a 9 = 96. Calcolare: a) la ragioe q; b) il primo termie a ; c) S. Calcolare x i modo che i umeri x +, x +, x - siao termii cosecutivi di ua progressioe geometrica. Scrivere ache i tre umeri i progressioe. Determiare la frazioe geeratrice di. 7 e di 7.. U capitale di 0 ML viee depositato i baca co u iteresse composto auo del 9%. Determiare l evoluzioe auale del capitale fio alla fie dei primi sette ai di deposito. Determiare dopo quati ai raddoppia u capitale C, depositato i baca co u iteresse composto auo del 9%. U capitale di 0 ML viee depositato i baca co u iteresse auo del 0%. Calcolare il capitale alla fie del secodo ao di deposito se R. SANTORO: Progressioi geometriche 0/07/0
8 8 gli iteressi vegoo calcolati (e capitalizzati): a) aualmete; b) ogi mesi; c) mesilmete; d) ogi settimaa A partire dal 990, Fracesca deposita i baca, il primo geaio di ciascu ao, ML, co u iteresse composto auo del 9%. Calcolare la somma di cui disporrà Fracesca al dicembre dell ao 000. Determiare cique umeri i progressioe geometrica tali che la somma dei primi tre é uguale a 0 e la somma degli ultimi tre é uguale a 0. Ua pallia viee lasciata cadere da u altezza di u metro ed esegue ua serie di rimbalzi fio a / dell altezza precedete. Calcolare lo spazio complessivo percorso dalla pallia dopo cique rimbalzi. I primi due termii di ua progressioe geometrica soo e 8. Calcolare: a) la ragioe; b) il sesto termie; c) la somma dei primi sei termii; d) il prodotto dei primi sei termii. Si dispoe di ua scacchiera 8 8. Partedo dal primo quadratio i alto a siistra e proseguedo verso destra e poi verso il basso, si poe u chicco di grao el primo quadratio, due chicchi el secodo quadratio, otto el terzo e così via, fio al sessataquattresimo quadratio. Calcolare il umero dei chicchi di grao posti (!) sulla scacchiera. R. SANTORO: Progressioi geometriche 0/07/0
Progressioni aritmetiche
Progressioi aritmetiche Comiciamo co due esempi: Esempio Cosideriamo la successioe di umeri:, 7,, 5, 9, +4 +4 +4 +4 +4 La successioe è tale che si passa da u termie al successivo aggiugedo sempre +4. Si
ESERCIZI SULLE SERIE
ESERCIZI SULLE SERIE. Dimostrare che la serie seguete è covergete: =0 + + A questa serie applichiamo il criterio del cofroto. Dovedo quidi dimostrare che la serie è covergete si tratterà di maggiorare
Esercizi su successioni, progressioni e principio di induzione
Esercizi su successioi, progressioi e pricipio di iduzioe Cosidera le successioi di termii geerali a = i, = a Dimostra che risulta: i, b j= j, c = i i, = ; i a = 4, b =, c = b Calcola il più grade valore
Le successioni: intro
Le successioi: itro Si cosideri la seguete sequeza di umeri:,, 2, 3, 5, 8, 3, 2, 34, 55, 89, 44, 233, detti di Fiboacci. Essa rappreseta il umero di coppie di coigli preseti ei primi 2 mesi i u allevameto!
Analisi Matematica Soluzioni prova scritta parziale n. 1
Aalisi Matematica Soluzioi prova scritta parziale. 1 Corso di laurea i Fisica, 018-019 3 dicembre 018 1. Dire per quali valori dei parametri α R, β R, α > 0, β > 0 coverge la serie + (!) α β. ( )! =1 Soluzioe.
Progressioni geometriche
Progressioi geometriche Comicimo co due esempi: Esempio Cosiderimo l successioe di umeri:, 6,, 4, 48, 96 L successioe è tle che si pss d u termie l successivo moltiplicdo il precedete per. Si dice che
SUCCESSIONI SERIE NUMERICHE pag. 1
SUCCESSIONI SERIE NUMERICHE pag. Successioi RICHIAMI Ua successioe di elemeti di u isieme X è ua fuzioe f: N X. E covezioe scrivere f( ) = x, e idicare le successioi mediate la ifiitupla ordiata delle
Richiami sulle potenze
Richiami sulle poteze Dopo le rette, le fuzioi più semplici soo le poteze: Distiguiamo tra: - poteze co espoete itero - poteze co espoete frazioario (razioale) - poteze co espoete reale = Domiio delle
2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33)
Defiizioe di umero reale come allieameto decimale co sego. Numeri reali positivi. Numeri razioali: defiizioe e proprietà di desità Numeri reali Defiizioe: U umero reale è u allieameto decimale co sego,
Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi:
Isiemi umerici Soo oti l isieme dei umeri aturali: N {1,, 3,, l isieme dei umeri iteri relativi: Z {0, ±1, ±, ±3, N {0 ( N e, l isieme dei umeri razioali: Q {p/q : p Z, q N. Si ottiee questo ultimo isieme,
Precorso di Matematica, aa , (IV)
Precorso di Matematica, aa 01-01, (IV) Poteze, Espoeziali e Logaritmi 1. Nel campo R dei umeri reali, il umero 1 e caratterizzato dalla proprieta che 1a = a, per ogi a R; per ogi umero a 0, l equazioe
Algoritmi e Strutture Dati (Elementi)
Algoritmi e Strutture Dati (Elemeti Esercizi sulle ricorreze Proff. Paola Boizzoi / Giacarlo Mauri / Claudio Zadro Ao Accademico 00/003 Apputi scritti da Alberto Leporati e Rosalba Zizza Esercizio 1 Posti
IL CALCOLO COMBINATORIO
IL CALCOLO COMBINATORIO 0. Itroduzioe Oggetto del calcolo combiatorio è quello di determiare il umero dei modi mediate i quali possoo essere associati, secodo prefissate regole, gli elemeti di uo stesso
Matematica I, Limiti di successioni (II).
Matematica I, 05102012 Limiti di successioi II) 1 Le successioi elemetari, cioe α, = 0, 1, 2, α R), b, = 0, 1, 2, b R), log b, = 1, 2, b > 0, b 1), si, = 0, 1, 2,, cos, = 0, 1, 2,, per + hao il seguete
Teorema delle progressioni di numeri primi consecutivi con distanza sei costante
Teorema delle progressioi di umeri primi cosecutivi co distaza sei costate A cura del Gruppo Eratostee - http://www.gruppoeratostee.com/) Co la collaborazioe di Eugeio Amitrao ( http://www.atuttoportale.it/)
Lezioni di Matematica 1 - I modulo
Lezioi di Matematica 1 - I modulo Luciao Battaia 4 dicembre 2008 L. Battaia - http://www.batmath.it Mat. 1 - I mod. Lez. del 04/12/2008 1 / 28 -2 Sottosuccessioi Grafici Ricorreza Proprietà defiitive Limiti
SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n.
SERIE DI POTENZE Esercizi risolti Esercizio x 2 + 2)2. Esercizio 2 + x 3 + 2 3. Esercizio 3 dove a è u umero reale positivo. Esercizio 4 x a, 2x ) 3 +. Esercizio 5 x! = x + x 2 + x 6 + x 24 + x 20 +....
Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1
Corso itegrato di Matematica per le scieze aturali ed applicate Materiale itegrativo Paolo Baiti Lorezo Freddi Dipartimeto di Matematica e Iformatica, Uiversità di Udie, via delle Scieze 206, 3300 Udie,
SUCCESSIONI DI FUNZIONI
SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe
SERIE NUMERICHE FAUSTO FERRARI
SERIE NUMERICHE FAUSTO FERRARI Materiale propedeutico alle lezioi di Aalisi Matematica per i corsi di Laurea i Igegeria Chimica e Igegeria per l Ambiete e il Territorio dell Uiversità di Bologa. Ao Accademico
Esercizi di Analisi II
Esercizi di Aalisi II Ao Accademico 008-009 Successioi e serie di fuzioi. Serie di poteze. Studiare la covergeza della successioe di fuzioi (f ) N, dove f : [, ] R è defiita poedo f (x) := x +.. Studiare
Cosa vogliamo imparare?
Cosa vogliamo imparare? risolvere i modo approssimato equazioi del tipo f()=0 che o solo risolubili i maiera esatta ed elemetare tramite formule risolutive. Esempio: log( ) 1= 0 Iterpretazioe grafica Come
1 + 1 ) n ] n. < e nα 1 n
Esercizi preparati e i parte svolti martedì 0.. Calcolare al variare di α > 0 Soluzioe: + ) α Per α il ite è e; se α osserviamo che da + /) < e segue che α + ) α [ + ) ] α < e α Per α > le successioi e
Corso Propedeutico di Matematica
POLINOMI RICHIAMI DI TEORIA Defiizioe: u poliomio ( o fuzioe poliomiale) ella variabile x di grado a coefficieti reali ha la forma A = a0 + a1x + + a 1 x, dove a 0, a 1,..., a soo umeri reali assegati
RISOLUZIONE MODERNA DI PROBLEMI ANTICHI
RISOLUZIONE MODERNA DI PROBLEMI ANTICHI L itelletto, duque, che o è la verità, o comprede mai la verità i modo così preciso da o poterla compredere (poi acora) più precisamete, all ifiito, perché sta alla
Esercizi su serie numeriche - svolgimenti
Esercizi su serie umeriche - svolgimeti Osserviamo che vale la doppia diseguagliaza + si, e quidi la serie è a termii positivi Duque la somma della serie esiste fiita o uguale a + Ioltre valgoo le diseguagliaze
Soluzioni degli esercizi del corso di Analisi Matematica I
Soluzioi degli esercizi del corso di Aalisi Matematica I Prof. Pierpaolo Natalii Roberta Biachii & Marco Pezzulla ovembre 015 FOGLIO 1 1. Determiare il domiio e il sego della fuzioe ( ) f(x) = arccos x
SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c)
SERIE NUMERICHE Esercizi risolti. Calcolare la somma delle segueti serie telescopiche: a) b). Verificare utilizzado la codizioe ecessaria per la covergeza) che le segueti serie o covergoo: a) c) ) log
1 Esponenziale e logaritmo.
Espoeziale e logaritmo.. Risultati prelimiari. Lemma a b = a b Lemma Disuguagliaza di Beroulli per ogi α e per ogi ln a k b k. k=0 + α + α Teorema Disuguagliaza delle medie Per ogi ln, per ogi upla {a
Esercizi svolti. 1. Calcolare i seguenti limiti: log(1 + 3x) x 2 + 2x. x 2 + 3 sin 2x. l) lim. b) lim. x 0 sin x. 1 e x2 d) lim. c) lim.
Esercizi svolti. Calcolare i segueti iti: a log + + c ± ta 5 + 5 si π e b + si si e d + f + 4 5 g + 6 4 6 h 4 + i + + + l ± + log + log 7 log 5 + 4 log m + + + o cos + si p + e q si s e ta cos e u siπ
1.6 Serie di potenze - Esercizi risolti
6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo
Esercizi sui limiti di successioni
AM0 - AA 03/4 ALFONSO SORRENTINO Esercizi sui iti di successioi Esercizio svolto a) Usado la defiizioe di ite, dimostare che: + 3 si π cos e ) e b) 0 Soluzioe Comiciamo da a) Vogliamo dimostrare che: ε
n 1 = n b) {( 1) n } = c) {n!} In questo caso la successione è definita per ricorrenza: a 0 = 1, a n = n a n 1 per ogni n 1.
Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi 0: Riferimeti: R.Adams, Calcolo Differeziale - Si cosiglia vivamete di fare gli esercizi del testo. Successioi umeriche:
FUNZIONI SUCCESSIONI PRINCIPIO DI INDUZIONE
FUNZIONI SUCCESSIONI PRINCIPIO DI INDUZIONE. Le Fuzioi L'operazioe di prodotto cartesiao relazioe biaria La relazioe biaria fuzioe Fuzioi iiettive, suriettive, biuivoche Fuzioi ivertibili. Le Successioi
3. Calcolo letterale
Parte Prima. Algera 1) Moomi Espressioe algerica letterale 42 Isieme di umeri relativi, talui rappresetati da lettere, legati fra loro da segi di operazioi. Moomio Espressioe algerica che o cotiee le operazioi
Giulio Cesare Barozzi: Primo Corso di Analisi Matematica Zanichelli (Bologna), 1998, ISBN
Giulio Cesare Barozzi: Primo Corso di Aalisi Matematica Zaichelli (Bologa), 998, ISBN 88-08-069-0 Capitolo NUMERI REALI Soluzioe dei problemi posti al termie di alcui paragrafi. Numeri aturali, iteri,
Principio di induzione: esempi ed esercizi
Pricipio di iduzioe: esempi ed esercizi Pricipio di iduzioe: Se ua proprietà P dipedete da ua variabile itera vale per e se, per ogi vale P P + allora P vale su tutto Variate del pricipio di iduzioe: Se
PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA. A. Induzione matematica: Introduzione
PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA CHU WENCHANG A Iduzioe matematica: Itroduzioe La gra parte delle proposizioi della teoria dei umeri dà euciati che coivolgoo i umeri aturali; per esempio
