Interpolazione e metodo dei minimi quadrati
|
|
|
- Angela Cecchini
- 6 anni fa
- Visualizzazioni
Transcript
1 A. A Interpolazione e metodo dei minimi quadrati prof. ing. Antonio Comi Department of Enterprise Engineering Tor Vergata University of Rome
2 Relazioni tra variabili Molto spesso si verifica che esiste una relazione tra due (o più) variabili. Per esempio: il tempo di percorrenza di un arco e il numero di veicoli che lo utilizzano È frequente desiderabile esprimere questa relazione in forma matematica determinando una relazione che leghi le varibili
3 Interpolazione Per determinare una relazione che leghi le variabili, un primo passo è la raccolta di dati che mostrino valori corrispondenti delle variabili considerate. Per esempio, supponiamo che X e Y indichino rispettivamente il flusso su un genero arco e il tempo di percorrenza. Allora un campione di N osservazioni fornirebbe i valori di flusso X1, X,.. XN ed i corrispondenti tempi di percorrenza Y1, Y, YN. Il passo seguente è quello di riportare i punti (X1, Y1), (X, Y),, (XN, YN) su un sistema di coordinate cartesiane. Il diagramma corrispondente è detto diagramma a dispersione. 3
4 Interpolazione Esempio di diagramma di dispersione Curva interpolante Curva interpolante Esempio di relazione lineare Esempio di relazione non-lineare Il problema di trovare l'equazione di una curva che interpoli i dati è detto interpolazione 4
5 Esempi di equazioni interpolanti Le variabili X ed Y sono chiamate variabile indipendente e variabile dipendente Retta Y = a1x + a0 Parabola o curva quadratica Y = a0 + a1* X + a *X.. 5
6 Metodo dei Minimi Quadrati (1/) Consideriamo di aver più osservazioni dello stesso fenomeno. Per un dato valore di X, ad esempio X1, ci potrà essere una differenza tra il valore di Y1 ed il corrispondente valore determinando con la curva C. Indichiamo con D1 questa differenza (errore) che può essere positiva o negativa o nulla. Analogamente otteniamo le deviazioni per tutti i punti sperimentali (Di) Curva interpolante (C) (Xi, Yi) Di (X1, Y1) D
7 Metodo dei Minimi Quadrati (/) Una misura della "bontà di interpolazione" effettuata per mezzo della curva C è fornita dalla somma D D i + D N. L'interpolazione è tanto migliore quanto più piccola è tale somma. La curva che è la migliore interpolante è detta curva dei minimi quadrati. RETTA DEI MINIMI QUADRATI 7
8 Retta minimi quadrati [1/3] La retta dei minimi quadrati interpolante l'insieme di punti (X1, Y1), (X, Y),, (XN, YN) può essere espressa nella forma Y = a0 + a1 * X dove a0 e a1 sono costanti che vengono determinate risolvendo simultaneamente le equazioni 0 1 Y = a N + a X = XY a X a X che sono dette equazioni normali della retta dei minimi quadrati 8
9 Retta minimi quadrati [/3] Le equazioni normali possono essere trovate per mezzo delle seguenti espressioni a a = ( Y ) ( X ) ( X ) ( XY ) N X ( X ) 0 = ( ) ( ) N X ( X ) N XY X Y 1 le sommatorie sono estese da 1 a N 9
10 Retta minimi quadrati [3/3] Mediante una opportuna trasformazione, le equazioni normali possono essere scritte come segue: ( xy) ( x ) ( xy ) ( x ) y = x oppure y = x con x = X X e y = Y Y In particolare, se X è tale che X = 0, cioè X = 0, si ha Y XY = Y + X X 10
11 Y Esempio [1/3] Si costruisca la retta che interpoli i dati di cui in tabella X Y X Y = a0 + a1 * X 11
12 X Y Esempio [/3] X= 56 Y= 40 X XY Y X = 54 XY= 364 Y = 56 Y = a N + a X 0 1 = XY a X a X N = 8 40 = a 8 + a = a 56 + a a a 0 1 = =
13 Esempio [3/3] a XY ˆ 364 = = = Xˆ 54 1 a 1 = Xˆ = X X Ricordando che la retta ottenuta è parallela a quella iniziale e che la traslazione è stata effettuata di una quantità pari al valore della media di X (=7), si ha: 5 = a a 0 = =
14 Indicatore di bontà di accostamento R = coefficiente di determinazione devianza totale di Y è la somma dei quadrati degli scarti dei valori di Y dalla media Y devianza totale = devianza residua = devianza spiegata = ( Y Y) ( Y Yˆ ) ( Yˆ Y), dove è il valore di Y stimato, dove è il valore di Y stimato devianza spiegata R = devianza totale 14
15 Esempio Coefficiente di determinazione devianza totale Y stimato devianza spiegata 16,000 1,18 14,579 9,000,455 6,479 1,000 3,091 3,645 1,000 4,364 0,405 0,000 5,636 0,405 4,000 6,73 1,60 9,000 7,545 6,479 16,000 9,455 19,843 = 56 = 40 = 53,454 devianza spiegata 53, 454 R = = = 0,954 devianza totale 56 15
Regressione Lineare Semplice e Correlazione
Regressione Lineare Semplice e Correlazione 1 Introduzione La Regressione è una tecnica di analisi della relazione tra due variabili quantitative Questa tecnica è utilizzata per calcolare il valore (y)
Il METODO DEI MINIMI QUDRATI
Il METODO DEI MINIMI QUDRATI Nelle scienze sperimentali si osserva o si ipotizza l esistenza di relazioni fra due o più grandezze. Limitando lo studio a problemi che stabiliscono relazioni fra due sole
Statistica - metodologie per le scienze economiche e sociali /2e S. Borra, A. Di Ciaccio - McGraw Hill
Statistica - metodologie per le scienze economiche e sociali /e S Borra, A Di Ciaccio - McGraw Hill Es 6 Soluzione degli esercizi del capitolo 6 In base agli arrotondamenti effettuati nei calcoli, si possono
La media e la mediana sono indicatori di centralità, che indicano un centro dei dati.
La media e la mediana sono indicatori di centralità, che indicano un centro dei dati. Un indicatore che sintetizza in un unico numero tutti i dati, nascondendo quindi la molteplicità dei dati. Per esempio,
Indipendenza, Dipendenza e interdipendenza
Indipendenza, Dipendenza e interdipendenza In analisi bivariata la tabella di contingenza consente di esaminare congiuntamente due variabili consente di rilevare le relazioni esistenti tra le variabili
Indici di Dispersione
Indici di Dispersione Si cercano indici di dispersione che: utilizzino tutti i dati {x 1, x 2,..., x n } siano basati sulla nozione di scarto (distanza) dei dati rispetto a un centro d i = x i C ad esempio,
INTERPOLAZIONE. Introduzione
Introduzione INTERPOLAZIONE Quando ci si propone di indagare sperimentalmente la legge di un fenomeno, nel quale intervengono due grandezze x, y simultaneamente variabili, e una dipendente dall altra,
1 Ampliamento del piano e coordinate omogenee
1 Ampliamento del piano e coordinate omogenee Vogliamo dare una idea, senza molte pretese, dei concetti che stanno alla base di alcuni calcoli svolti nella classificazione delle coniche. Supponiamo di
REGRESSIONE E CORRELAZIONE
REGRESSIONE E CORRELAZIONE Nella Statistica, per studio della connessione si intende la ricerca di eventuali relazioni, di dipendenza ed interdipendenza, intercorrenti tra due variabili statistiche 1.
Interpolazione Statistica
Interpolazione Statistica Come determinare una funzione che rappresenti la relazione tra due grandezze x e y a cura di Roberto Rossi novembre 2008 Si parla di INTERPOLAZIONE quando: Note alcune coppie
Metodo dei Minimi Quadrati. Dott. Claudio Verona
Metodo dei Minimi Quadrati Dott. Claudio Verona E in generale interessante studiare l andamento di una variabile in funzione di un altra e capire se c è una funzione matematica che le lega. Viceversa è
Rappresentazioni grafiche di distribuzioni doppie
Rappresentazioni grafiche di distribuzioni doppie Distribuzione doppia di frequenze Tabella di contingenza Tabella di correlazione Stereogramma Distribuzione unitaria doppia di 2 caratteri quantitativi
Lezione 10: Interpolazione lineare Corso di Statistica Facoltà di Economia Università della Basilicata. Prof. Massimo Aria
Lezione 10: Interpolazione lineare Corso di Statistica Facoltà di Economia Università della Basilicata Prof. Massimo Aria [email protected] Il concetto di interpolazione In matematica, e in particolare in
ESERCITAZIONE 9 : FUNZIONI QUADRATICHE
ESERCITAZIONE 9 : FUNZIONI QUADRATICHE e-mail: [email protected] web: www.dm.unipi.it/ tommei Ricevimento: Martedi 16-18 Dipartimento di Matematica, piano terra, studio 126 4 Dicembre 2012 L espressione
LA PARABOLA. Prof. Walter Pugliese
LA PARABOLA Prof. Walter Pugliese Che cos è la parabola Scegliamo sul piano un punto! e una retta ". Possiamo tracciare sul piano i punti equidistanti da! e da ". DEFINIZIONE Si chiama parabola la curva
Esercitazione del
Esercizi sulla regressione lineare. Esercitazione del 21.05.2013 Esercizio dal tema d esame del 13.06.2011. Si consideri il seguente campione di n = 9 osservazioni relative ai caratteri ed Y: 7 17 8 36
Statistica. Matematica con Elementi di Statistica a.a. 2017/18
Statistica La statistica è la scienza che organizza e analizza dati numerici per fini descrittivi o per permettere di prendere delle decisioni e fare previsioni. Statistica descrittiva: dalla mole di dati
1 Fit di dati sperimentali: il χ 2. Il metodo dei minimi quadrati.
1 Fit di dati sperimentali: il χ 2. Il metodo dei minimi quadrati. Per comprendere dei fenomeni fisici, non basta raccogliere buoni dati sperimentali, occorre anche interpretarli. Molto spesso lo scopo
Taratura statica. Laboratorio n. 3 a.a. 2004-2005. Sito di Misure: http://misure.mecc.polimi.it
Laboratorio n. 3 a.a. 2004-2005 Taratura statica Prof. Alfredo Cigada 02-2399.8487 [email protected] Ing. Alessandro Basso 02-2399.8488 [email protected] Ing. Massimiliano Lurati 02-2399.8448
Statistica. Alfonso Iodice D Enza
Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 33 Outline 1 2 3 4 5 6 () Statistica 2 / 33 Misura del legame Nel caso di variabili quantitative
Il metodo dei minimi quadrati e la retta di regressione
Il metodo dei minimi quadrati e la retta di regressione Dipartimento di Matematica e Informatica Università della Calabria, 8736 Rende (CS), Italia Nuovo Progetto Lauree Scientifiche 3/4/6 Che cos è l
Statistica Un Esempio
Statistica Un Esempio Un indagine sul peso, su un campione di n = 100 studenti, ha prodotto il seguente risultato. I pesi p sono espressi in Kg e sono stati raggruppati in cinque classi di peso. classe
Statistica. Capitolo 12. Regressione Lineare Semplice. Cap. 12-1
Statistica Capitolo 1 Regressione Lineare Semplice Cap. 1-1 Obiettivi del Capitolo Dopo aver completato il capitolo, sarete in grado di: Spiegare il significato del coefficiente di correlazione lineare
Università del Piemonte Orientale Specializzazioni di area sanitaria Statistica Medica
Università del Piemonte Orientale Specializzazioni di area sanitaria Statistica Medica Regressione Lineare e Correlazione Argomenti della lezione Determinismo e variabilità Correlazione Regressione Lineare
Statistica. Alfonso Iodice D Enza
Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 24 Outline 1 2 3 4 5 () Statistica 2 / 24 Dipendenza lineare Lo studio della relazione tra caratteri
Statistica Descrittiva Soluzioni 7. Interpolazione: minimi quadrati
ISTITUZIONI DI STATISTICA A. A. 2007/2008 Marco Minozzo e Annamaria Guolo Laurea in Economia del Commercio Internazionale Laurea in Economia e Amministrazione delle Imprese Università degli Studi di Verona
Lab. 2 - Excel. Prof. De Michele e Farina
Lab. 2 - Excel Prof. De Michele e Farina 1 Utilizzo avanzato di un foglio elettronico: - Utilizzo di funzioni Regressioni lineari Istogrammi 2 La funzione somma restituisce la somma dei valori dei propri
Circonferenze del piano
Circonferenze del piano 1 novembre 1 Circonferenze del piano 1.1 Definizione Una circonferenza è il luogo dei punti equidistanti da un punto fisso, detto centro. La distanza di un qualunque punto della
Statistica. Alfonso Iodice D Enza
Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 1 Outline 1 () Statistica 2 / 1 Outline 1 2 () Statistica 2 / 1 Outline 1 2 3 () Statistica 2 / 1
ˆ b, si usa la convenzione di prendere. come verso positivo quello antiorario e come verso negativo quello orario.
Capitolo 4 Le rotazioni 4.1 Richiami di teoria E' opportuno ricordare che, dato un angolo orientato ao ˆ b, si usa la convenzione di prendere come verso positivo quello antiorario e come verso negativo
Regressione Mario Guarracino Laboratorio di Sistemi Informativi Aziendali a.a. 2006/2007
Regressione Esempio Un azienda manifatturiera vuole analizzare il legame che intercorre tra il costo mensile Y di produzione e il corrispondente volume produttivo X per uno dei propri stabilimenti. Volume
Statistica. Matematica con Elementi di Statistica a.a. 2015/16
Statistica La statistica è la scienza che organizza e analizza dati numerici per fini descrittivi o per permettere di prendere delle decisioni e fare previsioni. Statistica descrittiva: dalla mole di dati
9.3 Il metodo dei minimi quadrati in formalismo matriciale
8 CAPIOLO 9. IMA DEI PARAMERI MEODO DEI MINIMI QADRAI 9.3 Il metodo dei minimi quadrati in formalismo matriciale Nel caso si debba applicare il metodo minimi quadrati con molti parametri risulta vantaggioso
Capitolo 12 La regressione lineare semplice
Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 12 La regressione lineare semplice Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università
Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 2016/2017 Prof.ssa Migliaccio Gabriella CLASSE III
Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 016/017 Prof.ssa Migliaccio Gabriella CLASSE III Gli esercizi vanno svolti e consegnati, anche su un quaderno, il giorno dell esame per il
Minimi quadrati ordinari Interpretazione geometrica. Eduardo Rossi
Minimi quadrati ordinari Interpretazione geometrica Eduardo Rossi Il MRLM Il modello di regressione lineare multipla è usato per studiare le relazioni tra la variabile dipendente e diverse variabili indipendenti
II Università degli Studi di Roma
Versione preliminare gennaio TOR VERGATA II Università degli Studi di Roma Dispense di Geometria. Capitolo 3. 7. Coniche in R. Nel Capitolo I abbiamo visto che gli insiemi di punti P lineare di primo grado
Ellisse riferita a rette parallele ai suoi assi
prof. F. Buratti Liceo della Comunicazione G. Toniolo (versione 0.3.6 venerdì 22 marzo 2007) 1 Premessa Finora abbiamo studiato l equazione di un ellisse riferita al centro e agli assi. Consideriamo ora
Minimi quadrati pesati per la Regressione Lineare
Minimi quadrati pesati per la Regressione Lineare Salto in alto oltre le formule Ing. Ivano Coccorullo Perchè? La tabella che segue riporta il raggio medio dell orbita R ed il periodo di rivoluzione T
Regressione e Correlazione (cap. 11) Importazione dati da file di testo
Regressione e Correlazione (cap. 11) Importazione dati da file di testo Introduzione Nella statistica applicata si osserva la relazione (dipendenza) tra due o più grandezze. Esigenza: determinare una funzione
EQUAZIONE DELLA RETTA
EQUAZIONE DELLA RETTA EQUAZIONE DEGLI ASSI L equazione dell asse x è 0. L equazione dell asse y è 0. EQUAZIONE DELLE RETTE PARALLELE AGLI ASSI L equazione di una retta r parallela all asse x è cioè è uguale
2. APPUNTI SUI FASCI DI CIRCONFERENZE (raccolti dal prof. G. Traversi)
2. APPUNTI SUI FASCI DI CIRCONFERENZE (raccolti dal prof. G. Traversi) La circonferenza è la curva di 2^ grado che viene individuata univocamente da tre punti non allineati e possiede la seguente proprietà:
PROBABILITÀ ELEMENTARE
Prefazione alla seconda edizione XI Capitolo 1 PROBABILITÀ ELEMENTARE 1 Esperimenti casuali 1 Spazi dei campioni 1 Eventi 2 Il concetto di probabilità 3 Gli assiomi della probabilità 3 Alcuni importanti
9.3 Il metodo dei minimi quadrati in formalismo matriciale
9.3. IL METODO DEI MINIMI QUADRATI IN FORMALISMO MATRICIALE 121 9.3 Il metodo dei minimi quadrati in formalismo matriciale Per applicare il MMQ a funzioni polinomiali, ovvero a dipendenze di una grandezza
SCOPO DELL ANALISI DI CORRELAZIONE
CORRELAZIONE 1 SCOPO DELL ANALISI DI CORRELAZIONE STUDIARE LA RELAZIONE TRA DUE VARIABILI X E Y 2 diagrammi di dispersione un diagramma di dispersione (o grafico di dispersione) èuna rappresentazione grafica
Regressione lineare. Lo studio della relazione lineare tra due variabili. X e Y caratteri entrambi quantitativi. variabile dipendente
Regressione lineare Se la correlazione misura l intensità e il segno del legame lineare tra due variabili, l obiettivo delle tecniche di regressione è, invece, quello di individuare il tipo di relazione
Scale Logaritmiche. Matematica con Elementi di Statistica a.a. 2015/16
Scale Logaritmiche Scala Logaritmica: sull asse prescelto (ad esempio, l asse x) si rappresenta il punto di ascissa = 0 0 nella direzione positiva si rappresentano, a distanze uguali fra di loro, i punti
Covarianza, correlazione e retta di regressione. Paola Lecca, CIBIO UNITN Corso di Matematica e Statistica 2
Covarianza, correlazione e retta di regressione Paola Lecca, CIBIO UNITN Corso di Matematica e Statistica 2 Questa presentazione è stata preparata attingendo dai seguenti testi S. M. Iacus, Statistica,
Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) CONICHE DI
Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) CONICHE DI R. Docente: Prof. F. Flamini Esercizi Riepilogativi Svolti Esercizio
Lezioni di Statistica del 15 e 18 aprile Docente: Massimo Cristallo
UIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECOOMIA Corso di laurea in Economia Aziendale anno accademico 2012/2013 Lezioni di Statistica del 15 e 18 aprile 2013 Docente: Massimo Cristallo LA RELAZIOE
STATISTICA esercizi svolti su: INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE
STATISTICA esercizi svolti su: INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE 1 1 INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE 2 1 INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE 1.1
La regressione lineare. Rappresentazione analitica delle distribuzioni
La regressione lineare Rappresentazione analitica delle distribuzioni Richiamiamo il concetto di dipendenza tra le distribuzioni di due caratteri X e Y. Ricordiamo che abbiamo definito dipendenza perfetta
