1 1 2 Il complemento algebrico dell'elemento a 3 2 = 0 è C 2,3 = ( 1) = 1. a j i C i,j. Valutiamo i complementi algebrici C 3,2, C 3,3 :

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "1 1 2 Il complemento algebrico dell'elemento a 3 2 = 0 è C 2,3 = ( 1) = 1. a j i C i,j. Valutiamo i complementi algebrici C 3,2, C 3,3 :"

Transcript

1 Esercizi di Geometria 1 1. Si calcoli il determinante della seguente matrice, utilizzando il metodo di Laplace: B = Richiamo Sia A = (a j i ) i,j {1...n} matrice in M n (C). Allora, per ogni i, j {1... n}, si denisce complemento algebrico dell'elemento a j i il determinante della sottomatrice che si ottiene eliminando i-sima riga e j-sima colonna, moltiplicato per ( 1) i+j. Esempio Sia A = Il complemento algebrico dell'elemento a 3 2 = 0 è C 2,3 = ( 1) = 1. ( ) a b Supponiamo A M 2 (C); quindi A è del tipo A =. c d Allora risulta det(a) = a d b c. Se la matrice A è di ordine n 3 è possibile calcolare il determinante della matrice A utilizzando lo sviluppo di Laplace: si procede scegliendo arbitrariamente una riga, la i-sima (oppure una colonna), quella contenente più zeri; allora risulta det(a) = j=1 a j i C i,j dove C i,j denota il complemento algebrco dell'elemento a j i. Per calcolare lo sviluppo di Laplace della matrice B scegliamo la terza riga poichè è quella contente il maggior numero di zero. Allora det(b) = 0 C 3,1 4 C 3,2 + 1 C 3,3 = 4 C 3,2 + 1 C 3,3. Valutiamo i complementi algebrici C 3,2, C 3,3 : C 3,2 = ( 1) = 1; C 3,3 = ( 1) = 3 Otteniamo quindi det(b) = = 7. 1

2 2. Considerato lo spazio vettoriale complesso C 3, si verichi che i vettori v 1 = (1, 0, i), v 2 = (i, 0, 1), v 3 = (1, i, 0) sono linearmente indipendenti. Sia 1 i 1 B = 0 0 i i 1 0 la matrice avente come colonne i vettori v 1, v 2, v 3. Vericare che i tre vettori sono linearmente indipendenti equivale a vericare che il rango della matrice A è massimo, cioè uguale a tre. Richiamo Il rango di una matrice A M m n (C) è si denota con rg(a) ed è l'ordine massimo di minore non nullo, dove per minore di ordine di j si intende una sottomatrice quadrata di A di ordine j. Consideriamo ad esempio la matrice A = Per valutare il rango della matrice procediamo nel seguente modo: - Consideriamo un minore M 1 non nullo della matrice; nel nostro caso consideriamo M 1 = det(a 1 1) = 1. Essendo M 1 0 risulta rg(a) 1; - Cerchiamo, se esiste, un minore di ordine 2 contenente M 1. Prendiamo ad esempio M 2 = = 4 0. Essendo M 2 0 risulta rg(a) 2; - si noti che non è possibile considerare una sottomatrice quadrata di A di ordine 3 contenente M 2 ed avente determinante non nullo. Ciò ci porta a concludere che rg(a) = 2. Calcoliamo il determinante della nostra matrice utilizzando lo sviluppo di Laplace rispetto alla prima seconda riga: detb = i ( 1) i i 1 = 2i detb 0, quindi i tre vettori sono linearmente indipendenti. 2

3 Sia V = {(x, y, z) R 3 x z = 0} Si verichi che V è un sottospazio vettoriale di R 3 Si trovi una base per V Si dimostri che R 3 = V U dove U = (1, 1, 0). Determinare un supplementare di U diverso da V. Utilizziamo la seguente caratterizzazione: Proposition 0.1. Sia V spazio vettoriale reale e W V, W. Allora W è sottospazio vettoriale di V se e solo se a w 1 + b w 2 W per ogni a, b R e per ogni w 1, w 2 W. Siano a, b R e w 1 = (x 1, y 1, z 1 ), w 2 = (x 2, y 2.z 2 ) V. Allora otteniamo e risulta aw 1 + bw 2 = (ax 1 + bx 2, ay 1 + by 2, az 1 + bz 2 ) ax 1 + bx 2 (az 1 + bz 2 ) = a(x 1 z 1 ) + b(x 2 z 2 ) = 0. Quindi aw 1 + bw 2 V. Troviamo un sistema di generatori per V : V = {(x, y, z) R 3 x z = 0} = {(x, y, x) x, y R} = {x (1, 0, 1) + y (0, 1, 0) x, y R}. Siano v 1 = (1, 0, 1), v 2 = (0, 1, 0). Quindi risulta V = v 1, v 2. I vettori v 1 e v 2 sono linearmente indipendenti, infatti la matrice , contenente i vettori v1 e v 2, ha rango massimo essendo = 1 0. Quindi una base per V è B 1 = {v 1, v 2 }. Dobbiamo vericare le seguenti due proprietá: - U V = {0}; - U + V = R 3. - Sia u U ; allora esiste a R tale che u = (a, a, 0). Allora u V se e solo se a = 0. Segue che l'intersezione è ridotta al solo 0. - Vericare la seconda proprietà equivale a dimostrare che B = {B 1 (1, 1, 0)} è un sistema di generatori, e quindi una base per R 3. 3

4 Siano Sia v 3 = (1, 1, 0). Proviamo che i vettori v 1, v 2, v 3 sono linearmente indipendenti: risulta = 1 ( 1) = 1 0. Quindi i vettori di B sono tre vettori linearmente indipendenti di R 3 e quindi B risulta essere una sua base. Per trovare un supplementare di U completiamo la base B 2 = {v 3 } ad una base B di R 3. Utilizziamo la base canonica, B c = {e 1 = (1, 0, 0), e 2 = (0, 1, 0), e 3 = (0, 0, 1)}. Risulta v 3 = e 1 + e 2, e dunque B = {v 3, e 2, e 3 } è ancora una base per R 3. Un supplementare di U è dato da W = e 2, e 3. Si noti che W V infatti e 3 / V. U = {(x, y, z, t) R 4 x + z = 0, y = 0} V = (0, 2, 1, 0), (1, 2, 0, 3) (1, 4, 1, 3). Si determini dimensione e una base per ognuno dei seguenti sottospazi U, V, U V, U + V. - Costruiamo un sistema di generatori per U U = {(x, y, z, t) R 4 x + z = 0, y = 0} = {(x, 0, z, x) x, z R} = {x(1, 0, 0, 1) + z(0, 0, 1, 0) x, z R} Quindi u 1 = (1, 0, 0, 1) e u 2 = (0, 0, 1, 0) costituiscono un sistema di generatori per U. Essi ( sono linearmente ) indipendenti, infatti il rango della matrice è massimo essendo = 1 0 Quindi U ha dimensione due e base B U = {u 1, u 2 } Valutiamo il rango della matrice B = , contenente i generatori di V. M 1 = a 1 2 = 1; (1) M 2 = = 2 0 (2) 4

5 Si noti che = = 0. Quindi il sottospazio vettoriale V ha dimensione due. Due vettori linearmente indipendenti sono quelli che individuano il minore M 2, ossia v 1 = (1, 2, 0, 3) e v 2 = (1, 4, 1, 3). Quindi una base per V è B V = {v 1, v 2 }. - Sia v V ; allora esistono a, b R tale che v = av 1 + bv 2 = (a + b, 2a + 4b, b, 3a + 3b). Risulta che v U se e solo se { a + 2b = 0 2a + 4b = 0 e quindi a = 2b. Da ció otteniamo U V = {b( 1, 0, 1, 3) b R} = ( 1, 0, 1, 3). Quindi U V ha dimensione 1 e una sua base è B U V = {( 1, 0, 1, 3)}. Per determinare la dimensione sfruttiamo la seguente formula di Grassmann dim(u + V ) = dimu + dimv dim(u V ). Da tale formula otteniamo dim(u + V ) = = 3. Una base è costituita dai vettori linearmente indipendenti di B U B V = {(1, 0, 0, 1), (0, 0, 1, 0), (1, 2, 0, 3), (1, 4, 1, 3)}. Consideriamo la matrice e individuiamo un minore di ordine 3: risulta M 3 = = 2. Quindi una base per U + V è B U+V = {(1, 0, 0, 1), (0, 0, 1, 0), (1, 2, 0, 3)}. 5

Esercizi di geometria per Fisica / Fisica e Astrofisica

Esercizi di geometria per Fisica / Fisica e Astrofisica Esercizi di geometria per Fisica / Fisica e Astrofisica Foglio 3 - Soluzioni Esercizio. Stabilire se i seguenti sottoinsiemi di R 3 sono sottospazi vettoriali: (a) S = {(x y z) R 3 : x + y + z = }. (b)

Dettagli

1. [15 punti] Calcolare il rango della seguente matrice a coefficienti reali: ( 1/2) 1 (1/2)

1. [15 punti] Calcolare il rango della seguente matrice a coefficienti reali: ( 1/2) 1 (1/2) Università di Modena e Reggio Emilia Facoltà di Scienze MM.FF.NN. PROVA DI ALGEBRA LINEARE del 17 febbraio 011 ISTRUZIONI PER LO SVOLGIMENTO. Scrivere cognome, nome, numero di matricola in alto a destra

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prima prova di esonero TESTO E SOLUZIONI

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prima prova di esonero TESTO E SOLUZIONI UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a. 2017-2018 Prima prova di esonero TESTO E SOLUZIONI 1. Determinare, utilizzando esclusivamente operazioni elementari,

Dettagli

0.1 Soluzioni Esercitazione III, del 21/10/2008

0.1 Soluzioni Esercitazione III, del 21/10/2008 1 0.1 Soluzioni Esercitazione III, del 21/10/2008 Esercizio 0.1.1. Risolvere il sistema lineare x + y + z = 1 2x + 3y + 2z = 0 x + 2y z = 0 Il determinante della matrice incompleta è 2 e quindi il sistema

Dettagli

CORSO DI LAUREA IN INGEGNERIA. k R 1 2k 3 0. Il rango di una matrice A corrisponde al massimo ordine di una sottomatrice quadrata di A con deteminante

CORSO DI LAUREA IN INGEGNERIA. k R 1 2k 3 0. Il rango di una matrice A corrisponde al massimo ordine di una sottomatrice quadrata di A con deteminante CORSO DI LAUREA IN INGEGNERIA. FOGLIO DI ESERCIZI 6 GEOMETRIA E ALGEBRA LINEARE 00/ Esercizio 6. (6.3). Calcolare il rango della seguente matrice A, utilizzando il calcolo del determinante. k + 0 A = k

Dettagli

0.1 Soluzioni esercitazione IV, del 28/10/2008

0.1 Soluzioni esercitazione IV, del 28/10/2008 1 0.1 Soluzioni esercitazione IV, del 28/10/2008 Esercizio 0.1.1. Risolvere, usando il teorema di Cramer, i seguenti sistemi lineari 2x + y + z = 0 x + 3z = 1 x y z = 1 kx + y z = 1 x y + 2z = 1 2x + 2y

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 4: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 4: soluzioni Corso di Geometria - BIAR, BSIR Esercizi : soluzioni Esercizio. Sono dati i seguenti sistemi lineari omogenei nelle incognite x, y, z: { x + y z = x + y z = x + y z = S : x y + z =, S :, S 3 : x 3y =,

Dettagli

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA FOGLIO DI ESERCIZI 4 GEOMETRIA 2008/09 Esercizio 4.1 (5.10). Dati i vettori di R 3 : v 1 (1, 1, 2), v 2 (2, 4, 6), v 3 ( 1, 2, 5), v 4 (1, 1, 10) determinare

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE0 - Geometria a.a. 07-08 Prova scritta del 7-7-08 TESTO E SOLUZIONI Svolgere tutti gli esercizi.. Per R considerare il sistema lineare X

Dettagli

1 Spazi vettoriali. Sottospazi.

1 Spazi vettoriali. Sottospazi. CORSO DI ALGEBRA LINEARE. A.A. 004-005. Esercitazione del 10 Gennaio 005. (Prof. Mauro Saita, e-mail: maurosaita@tiscalinet.it) 1 Spazi vettoriali. Sottospazi. Esercizio 1.1 Siano v 1 = (, 5, 1, 3), v

Dettagli

Prova scritta di Geometria 1 Docente: Giovanni Cerulli Irelli 20 Gennaio 2017

Prova scritta di Geometria 1 Docente: Giovanni Cerulli Irelli 20 Gennaio 2017 Prova scritta di Geometria Docente: Giovanni Cerulli Irelli Gennaio 7 Esercizio. Si considerino i seguenti tre punti dello spazio euclideo: P :=, Q :=, R :=.. Dimostrare che P, Q ed R non sono collineari.

Dettagli

1.[25 punti] Risolvere il seguente sistema di equazioni lineari al variare del parametro reale λ: X +Y +Z = 2. X 2Y +λz = 2

1.[25 punti] Risolvere il seguente sistema di equazioni lineari al variare del parametro reale λ: X +Y +Z = 2. X 2Y +λz = 2 Università di Modena e Reggio Emilia Facoltà di Scienze MM.FF.NN. PROVA SCRITTA DI GEOMETRIA A del 27 giugno 2011 ISTRUZIONI PER LO SVOLGIMENTO. Scrivere cognome, nome, numero di matricola in alto a destra

Dettagli

ESAMI DI MATEMATICA DISCRETA 2009/2010

ESAMI DI MATEMATICA DISCRETA 2009/2010 ESAMI DI MATEMATICA DISCRETA 2009/2010 09/06/2009 (1) In R 4 si considerino il sottospazio vettoriale W k = Span{(2, 1, 0, 1), (1, 1, 1, 1), (k, 1, 0, 1)} e il sottospazio vettoriale U dato da tutti i

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere

Dettagli

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni Corso di Geometria Ing. Informatica e Automatica Test : soluzioni k Esercizio Data la matrice A = k dipendente dal parametro k, si consideri il k sistema lineare omogeneo AX =, con X = x x. Determinare

Dettagli

Argomento 12 Matrici

Argomento 12 Matrici Argomento 2 Matrici 2 Vettori di R n eoperazioni I Vettore di R n : x =(x i ) i=n =(x i ) n i=,conx i R componenti di x I R n = spazio dei vettori reali a n componenti = spazio vettoriale reale n-dimensionale

Dettagli

Rango di una matrice e teorema di Rouché-Capelli

Rango di una matrice e teorema di Rouché-Capelli Rango di una matrice e teorema di Rouché-Capelli Sappiamo che a una matrice m n, A, è associata l applicazione lineare L A : R n R m, L A (X) = AX, X R n. Definizione 1. Lo spazio nullo di A, N (A), è

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a. 2011-2012 Prova scritta del 28-1-2013 TESTO E SOLUZIONI 1. Per k R considerare il sistema lineare X 1 X 2 + kx 3 =

Dettagli

Ingegneria Gestionale - Corso di Analisi II e Algebra anno accademico 2008/2009

Ingegneria Gestionale - Corso di Analisi II e Algebra anno accademico 2008/2009 Ingegneria Gestionale - Corso di Analisi II e Algebra anno accademico 28/29 Dire se le seguenti proposizioni sono vere o false: ESERCITAZIONE. Proposizione Vera Falsa f : R R 4 rk(f f : R 4 R rk(f f :

Dettagli

Corso di Geometria - CdL triennale in Ingegneria a.a

Corso di Geometria - CdL triennale in Ingegneria a.a Corso di Geometria - CdL triennale in Ingegneria a.a. 208-9 C. Liverani, J. Garofali Tutorato del 7/05/9 Geometria analitica nel piano e nello spazio. Tra tutte le rette parallele a r : x 2y = 0 trovare

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a. 014-01 Prova scritta del 1-6-01 TESTO E SOLUZIONI Avvertenze: A. Per il recupero del primo esonero svolgere gli esercizi

Dettagli

Sistemi Lineari. Andrea Galasso

Sistemi Lineari. Andrea Galasso Sistemi Lineari Andrea Galasso Esercizi svolti Teorema. (Rouché-Capelli. Un sistema lineare Ax = b ammette soluzioni se e solo se il rango della matrice dei coefficienti A è uguale al rango della matrice

Dettagli

PROBLEMA. Costruire matrici quadrate contenute. Fare i determinanti delle matrici quadrate contenute in A

PROBLEMA. Costruire matrici quadrate contenute. Fare i determinanti delle matrici quadrate contenute in A A = PROBLEMA 0 1 2 7 2 5 3 0 (2 4) Costruire matrici quadrate contenute in A (possibili solo matrici quadrate 2 2 e 1 1) Fare i determinanti delle matrici quadrate contenute in A Questo porta al concetto

Dettagli

Università di Modena e Reggio Emilia Facoltà di Scienze MM.FF.NN. PROVA DI ALGEBRA LINEARE (esercitazione del 18 gennaio 2011)

Università di Modena e Reggio Emilia Facoltà di Scienze MM.FF.NN. PROVA DI ALGEBRA LINEARE (esercitazione del 18 gennaio 2011) Università di Modena e Reggio Emilia Facoltà di Scienze MM.FF.NN. PROVA DI ALGEBRA LINEARE (esercitazione del 18 gennaio 2011) ISTRUZIONI PER LO SVOLGIMENTO. Scrivere cognome, nome, numero di matricola

Dettagli

Esempio. L immagine di f è l insieme dei vettori w = (w 1, w 2 ) R 2 che hanno w 1 = w 2. Quindi:

Esempio. L immagine di f è l insieme dei vettori w = (w 1, w 2 ) R 2 che hanno w 1 = w 2. Quindi: Nucleo, immagine e loro proprietà [Abate, 5.2] Data una applicazione lineare f : V W, chiamiamo nucleo di f l insieme N(f) := { v V : f(v) = 0 W } Se S V è un sottoinsieme del dominio, indichiamo con f(s)

Dettagli

Geometria BAER I canale Foglio esercizi 3

Geometria BAER I canale Foglio esercizi 3 Geometria BAER I canale Foglio esercizi 3 Esercizio. Discutere le soluzioni del seguente sistema lineare nelle incognite,, z al variare del parametro k. 3 + kz = k k + 3z = k k + z = Soluzione: Il determinante

Dettagli

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA FOGLIO DI ESERCIZI # 7 GEOMETRIA 2005/06 Ricordiamo le seguenti formule: L Area di un parallelogramma in R 2, di lati u = (u 1, u 2 ), v = (v 1, v 2 ) è:

Dettagli

I sistemi lineari di n equazioni in n incognite

I sistemi lineari di n equazioni in n incognite I sistemi lineari I sistemi lineari di n equazioni in n incognite I sistemi lineari di n equazioni in n incognite, sono formati da equazioni di primo grado, in cui le incognite hanno tutte esponente uguale

Dettagli

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari Introduzione soft alla matematica per l economia e la finanza Marta Cardin, Paola Ferretti, Stefania Funari Capitolo Sistemi di equazioni lineari.8 Il Teorema di Cramer Si consideri un generico sistema

Dettagli

Esercitazione 6 - Soluzione

Esercitazione 6 - Soluzione Anno Accademico 28-29 Corso di Algebra Lineare e Calcolo Numerico per Ingegneria Meccanica Esercitazione 6 - Soluzione Immagine, nucleo. Teorema di Rouché-Capelli. Esercizio Sia L : R 3 R 3 l applicazione

Dettagli

Algebra lineare Geometria 1 11 luglio 2008

Algebra lineare Geometria 1 11 luglio 2008 Algebra lineare Geometria 1 11 luglio 2008 Esercizio 1. Si considerino la funzione: { R f : 3 R 3 (α, β, γ) ( 2β α γ, (k 1)β + (1 k)γ α, 3β + (k 2)γ ) dove k è un parametro reale, e il sottospazio U =

Dettagli

Sistemi II. Sistemi II. Elisabetta Colombo

Sistemi II. Sistemi II. Elisabetta Colombo Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 2011-2012, http://users.mat.unimi.it/users/colombo/programmabio.html 1 2 3 con R.C.+ o 1.10 Rango massimo e determinante con R.C.+

Dettagli

Definizione 1 Un insieme (V, +, ) dotato delle due operazioni: - + somma di elementi v 1 V, v 2 V ;

Definizione 1 Un insieme (V, +, ) dotato delle due operazioni: - + somma di elementi v 1 V, v 2 V ; Spazi vettoriali Definizione Un insieme (V, +, ) dotato delle due operazioni: - + somma di elementi v V, v V ; - prodotto per uno scalare λ K, (K campo); e chiuso rispetto ad esse, è uno spazio vettoriale

Dettagli

Esercizi di Geometria Spazi vettoriali e sottospazi - indipendenza lineare

Esercizi di Geometria Spazi vettoriali e sottospazi - indipendenza lineare Esercizi di Geometria Spazi vettoriali e sottospazi - indipendenza lineare 1. Quali dei seguenti sottoinsiemi sono sottospazi di R 3? Motivare la risposta. (a) {(x, y, 1) x, y R} (b) {(0, y, 0) y R} (c)

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA II Parziale - Compito C 3/5/25 A. A. 24 25 ) Risolvere il seguente sistema

Dettagli

a + 2b + c 3d = 0, a + c d = 0 c d

a + 2b + c 3d = 0, a + c d = 0 c d SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,

Dettagli

Autovalori, Autovettori, Diagonalizzazione.

Autovalori, Autovettori, Diagonalizzazione. Autovalori Autovettori Diagonalizzazione Autovalori e Autovettori Definizione Sia V uno spazio vettoriale sul campo K = R o C e sia T : V V un endomorfismo Un vettore non nullo v V \ {O} si dice autovettore

Dettagli

Geometria BAER Test di autovalutazione del 31/10/18

Geometria BAER Test di autovalutazione del 31/10/18 Geometria BAER Test di autovalutazione del 3//8 LEGGERE ATTENTAMENTE PRIMA DI ANDARE ALL INIZIO DEL TEST ALLA PAGINA SUCCESSIVA. NON LEGGERE LE DOMANDE PRIMA DI INIZIARE IL TEST Il test NON É VALUTATO

Dettagli

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari Sistemi di equazioni lineari. Rango di matrici Come è noto (vedi [] sez.0.8), ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante

Dettagli

il determinante che si ottiene da A, sopprimendo la i - esima riga e la j - esima colonna. Si definisce complemento algebrico dell'elemento a ij

il determinante che si ottiene da A, sopprimendo la i - esima riga e la j - esima colonna. Si definisce complemento algebrico dell'elemento a ij Determinanti Sia data la matrice quadrata a... a n a a n =...... a... a n nn Chiamiamo determinante di il numero det o che ad essa viene associato. det = a a... a... a... a n n n... a nn Un generico elemento

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA INDUSTRIALE 27 GENNAIO 2014

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA INDUSTRIALE 27 GENNAIO 2014 FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA INDUSTRIALE 27 GENNAIO 2014 DOCENTE: MATTEO LONGO Rispondere alle domande di Teoria in modo esauriente e completo. Svolgere il maggior numero di esercizi

Dettagli

MATRICI E VETTORI APPROFONDIMENTO PER IL CORSO DI LABORATORIO DI INFORMATICA SARA POLTRONIERI

MATRICI E VETTORI APPROFONDIMENTO PER IL CORSO DI LABORATORIO DI INFORMATICA SARA POLTRONIERI MATRICI E VETTORI APPROFONDIMENTO PER IL CORSO DI LABORATORIO DI INFORMATICA SARA POLTRONIERI LE MATRICI DEFINIZIONE: Una matrice è un insieme di numeri disposti su righe e colonne. 1 3 7 M = 2 5 1 M è

Dettagli

Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (nuovo programma) 2 settembre 2013 Tema A

Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (nuovo programma) 2 settembre 2013 Tema A Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (nuovo programma) settembre 013 Tema A Tempo a disposizione: ore e mezza Calcolatrici, libri e appunti non sono ammessi Ogni esercizio

Dettagli

A titolo di esempio proponiamo la risoluzione del sistema sia con il metodo della matrice inversa sia con il metodo di Cramer.

A titolo di esempio proponiamo la risoluzione del sistema sia con il metodo della matrice inversa sia con il metodo di Cramer. ) Trovare le soluzioni del seguente sistema lineare: x+ y+ z = 3x y + z = 0 x + 5y 4z = 5 Osserviamo in primo luogo che il sistema dato è un sistema quadrato di tre equazioni in tre incognite, precisamente

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA II Parziale - Compito B 3/05/005 A. A. 004 005 ) Risolvere il seguente sistema

Dettagli

Determinante e rango

Determinante e rango 1 DETERMINANTE DI UNA MATRICE 1 III-3 Determinante e rango Indice 1 Determinante di una matrice 1 2 Calcolo della matrice inversa 6 3 Calcolo del rango 8 4 Soluzioni degli esercizi 12 1 Determinante di

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a. 017-018 Prova scritta del 9-1-019 TESTO E SOLUZIONI Svolgere tutti gli esercizi. 1. Determinare per quali valori k

Dettagli

Nome e cognome e matricola: Domanda 1. Sia z = 1 + i e w = 2 + i. Calcolare z/w. Domanda 2. Calcolare il determinante della seguente matrice A = 1 2 3

Nome e cognome e matricola: Domanda 1. Sia z = 1 + i e w = 2 + i. Calcolare z/w. Domanda 2. Calcolare il determinante della seguente matrice A = 1 2 3 A Compitino di algebra lineare del 19 febbraio 2016: prima parte Istruzioni: Avete 0 minuti di tempo a disposizione. Come prima cosa scrivete nome, cognome e matricola nello spazio qui sotto. Scrivete

Dettagli

, è Det(A) = a 11 a 22 a 12 a 21. ( il determinante della matrice che si ottiene da A. la 1 a riga e la 2 a colonna di A

, è Det(A) = a 11 a 22 a 12 a 21. ( il determinante della matrice che si ottiene da A. la 1 a riga e la 2 a colonna di A G Parmeggiani, 2/12/2013 Algebra Lineare 1 A, corso di laurea SGI, aa 2013/2014 Nota 4: Calcolo di determinanti Sia A una matrice quadrata di ordine n Il determinante di A è un numero che dipende da A

Dettagli

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA FOGLIO DI ESERCIZI GEOMETRIA 009/0 Esercizio. (7.9). Si consideri il sistema di equazioni lineari: x + y + z = x + y + z = x + y + 3z = a) Si dica per quali

Dettagli

Anno 4 Matrice inversa

Anno 4 Matrice inversa Anno 4 Matrice inversa 1 Introduzione In questa lezione parleremo della matrice inversa di una matrice quadrata: definizione metodo per individuarla Al termine della lezione sarai in grado di: descrivere

Dettagli

Determinante. Elisabetta Colombo. Determinante. Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico ,

Determinante. Elisabetta Colombo. Determinante. Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico , Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 2011-2012, 1 n=2 2 3 con le 4 n=2 n=2 con le Ad ogni matrice quadrata A = (a ij ) j=1...n i=1...n di ordine n si può associare

Dettagli

CORSO DI LAUREA IN INGEGNERIA.

CORSO DI LAUREA IN INGEGNERIA. CORSO DI LAUREA IN INGEGNERIA. FOGLIO DI ESERCIZI 9 GEOMETRIA E ALGEBRA LINEARE 2012/13 Esercizio 9.1 (8.40). Sia T : R 2 R 3 l applicazione definita da T(x,y) = (2x,x y,2y), e siano B = {(1,0), (1,1)

Dettagli

UNIVERSITA DEGLI STUDI LA SAPIENZA DI ROMA POLO DI RIETI FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA DELL AMBIENTE E DEL TERRITORIO

UNIVERSITA DEGLI STUDI LA SAPIENZA DI ROMA POLO DI RIETI FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA DELL AMBIENTE E DEL TERRITORIO UNIVERSITA DEGLI STUDI LA SAPIENZA DI ROMA POLO DI RIETI FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA DELL AMBIENTE E DEL TERRITORIO Geometria 9 5 A.A. 5 Cognome Nome Matricola Codice Scrivere in

Dettagli

Tutorato di GE110. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica

Tutorato di GE110. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di GE110 AA 2013-2014 - Docente: Prof Angelo Felice Lopez Tutori: Dario Giannini e Giulia Salustri Soluzioni Tutorato 7 24 Aprile

Dettagli

Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (vecchio programma) 2 settembre 2013 Tema A

Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (vecchio programma) 2 settembre 2013 Tema A Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (vecchio programma) settembre 013 Tema A Tempo a disposizione: ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio

Dettagli

G. Parmeggiani, 17/5/2018 Algebra Lineare, a.a. 2017/2018, numero di MATRICOLA PARI

G. Parmeggiani, 17/5/2018 Algebra Lineare, a.a. 2017/2018, numero di MATRICOLA PARI G Parmeggiani, 17/5/2018 Algebra Lineare, aa 2017/2018, Scuola di Scienze - Corsi di laurea: Studenti: Statistica per l economia e l impresa Statistica per le tecnologie e le scienze numero di MATRICOLA

Dettagli

MATRICI. Matrici Una matrice A con n-righe e m-colonne, ad elementi reali, è una tabella con la seguente forma: a 2 m. a n m) i j R, 1 i n, 1 j m.

MATRICI. Matrici Una matrice A con n-righe e m-colonne, ad elementi reali, è una tabella con la seguente forma: a 2 m. a n m) i j R, 1 i n, 1 j m. MATRICI Matrici Una matrice A con n-righe e m-colonne, ad elementi reali, è una tabella con la seguente forma: 11 a 12 a 1 3 a 1m A=(a a 21 a 2 3 a 2m con a a n1 a n2 a n 3 a nm i j R, 1 i n, 1 j m. per

Dettagli

Capitolo 5 Applicazioni lineari Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti

Capitolo 5 Applicazioni lineari Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti Capitolo 5 Applicazioni lineari Esercizi svolti Tutorato di geometria e algebra lineare Marco Robutti 5 Ottobre 27 Introduzione Gli esercizi di questo capitolo riguardano i seguenti argomenti: Data un

Dettagli

Federica Gregorio e Cristian Tacelli

Federica Gregorio e Cristian Tacelli 1 Sistemi lineari Federica Gregorio e Cristian Tacelli Un sistema lineare m n (m equazioni in n incognite) è un insieme di equazioni lineari che devono essere soddisfatte contemporaneamente a 11 x 1 +

Dettagli

Determinanti. Definizione ed esempi. Definizione ed esempi. Proprietà dei determinanti Rango di matrici

Determinanti. Definizione ed esempi. Definizione ed esempi. Proprietà dei determinanti Rango di matrici Introduzione S S S Rango di matrici Si dice sottomatrice d'una matrice data la matrice ottenuta selezionando un certo numero di righe e di colonne della matrice iniziale. Lezione 24.wpd 08/01/2011 XXIV

Dettagli

Esercizi di Geometria 1 - Foglio 3bis

Esercizi di Geometria 1 - Foglio 3bis Esercizi di Geometria - Foglio 3bis Alessandro Rubin (alex.rubin@outlook.com) Si ringrazia Ricardo Tzantzoglou per il codice L A TEX condiviso dicembre 7 Esercizio. Sia f : V W un applicazione e G = {(v,

Dettagli

Determinante. Sia M(n, n, K) lo spazio delle matrici quadrate n n a coefficienti in un campo K, vogliamo provare il seguente Teorema:

Determinante. Sia M(n, n, K) lo spazio delle matrici quadrate n n a coefficienti in un campo K, vogliamo provare il seguente Teorema: Determinante 1 Proprieta Sia M(n, n, K) lo spazio delle matrici quadrate n n a coefficienti in un campo K, vogliamo provare il seguente Teorema: Theorem 1.1 Esiste un unica mappa F dallo spazio delle matrici

Dettagli

Algebra lineare. {ax 2 + bx + c R 2 [x] : 2a + 3b = 1} a b c d. M(2, 2) : a + c + d = 2. a b. c d

Algebra lineare. {ax 2 + bx + c R 2 [x] : 2a + 3b = 1} a b c d. M(2, 2) : a + c + d = 2. a b. c d Algebra lineare 1. Riconoscere se il seguente insieme costituisce uno spazio vettoriale. In caso affermativo trovarne la dimensione e una base. (R n [x] denota lo spazio dei polinomi nell indeterminata

Dettagli

Capitolo 3 Matrici. Marco Robutti. Facoltà di ingegneria Università degli studi di Pavia. Anno accademico

Capitolo 3 Matrici. Marco Robutti. Facoltà di ingegneria Università degli studi di Pavia. Anno accademico Capitolo 3 Matrici Marco Robutti Facoltà di ingegneria Università degli studi di Pavia Anno accademico 2017-2018 Tutorato di geometria e algebra lineare Definizione (Matrice) Una matrice A M R (k, n) è

Dettagli

APPUNTI DI ALGEBRA LINEARE

APPUNTI DI ALGEBRA LINEARE APPUNTI DI ALGEBRA LINEARE. Definizione Si dice spazio vettoriale (sul campo dei numeri reali R) un insieme V per il quale siano definite l operazione interna di somma (che ad ogni coppia di vettori e

Dettagli

1 settembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

1 settembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof. Fabio Perroni. 5. Rango

Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof. Fabio Perroni. 5. Rango Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof Fabio Perroni 5 Rango Definizione 1 Sia A M m,n (K) una matrice m n a coefficienti nel campo K Il rango

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI Esercizi Esercizio Date le seguenti applicazioni lineari f : R 2 R 3 definita da fx y = x 2y x + y x + y; 2 g : R 3 R 2 definita da gx y z = x + y x y; 3 h : Rx] 2 R 2 definita da

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 3: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 3: soluzioni Corso di Geometria - BIAR, BSIR Esercizi : soluzioni Rango e teorema di Rouché-Capelli Esercizio. Calcolare il rango di ciascuna delle seguenti matrici: ( ) ( ) ( ) A =, A =, A =, A 4 = ( ). a a a Soluzione.

Dettagli

CORSO DI ALGEBRA LINEARE Anno Accademico 2004/2005 Appunti su SISTEMI di EQUAZIONI LINEARI

CORSO DI ALGEBRA LINEARE Anno Accademico 2004/2005 Appunti su SISTEMI di EQUAZIONI LINEARI CORSO DI ALGEBRA LINEARE Anno Accademico 2004/2005 Appunti su SISTEMI di EQUAZIONI LINEARI Lo studente ha forse già incontrato i sistemi di equazioni lineari alla scuola secondaria Con il termine equazione

Dettagli

CORSI DI LAUREA IN MATEMATICA E FISICA

CORSI DI LAUREA IN MATEMATICA E FISICA CORSI DI LAUREA IN MATEMATICA E FISICA FOGLIO DI ESERCIZI # 6 GEOMETRIA 1 Esercizio 6.1 (Esercizio 5.1). Scrivere un vettore w R 3 linearmente dipendente dal vettore v ( 1, 9, 0). Per esempio il vettore

Dettagli

CORSO DI LAUREA IN INGEGNERIA DELLE TELECOMUNICAZIONI

CORSO DI LAUREA IN INGEGNERIA DELLE TELECOMUNICAZIONI CORSO DI LAUREA IN INGEGNERIA DELLE TELECOMUNICAZIONI FOGLIO DI ESERCIZI # 4 GEOMETRIA E ALGEBRA LINEARE 009/0 Esercizio 4. (Esercizio 7.3). Calcolare l inversa delle matrici (invertibili) [ ] 3 A = B

Dettagli

CORSO DI LAUREA IN INGEGNERIA DELLE TELECOMUNICAZIONI

CORSO DI LAUREA IN INGEGNERIA DELLE TELECOMUNICAZIONI CORSO DI LAUREA IN INGEGNERIA DELLE TELECOMUNICAZIONI FOGLIO DI ESERCIZI # GEOMETRIA E ALGEBRA 009/0 Esercizio.. Dati i vettori di R : v (,, ), v (, 4, 6), v (,, 5), v 4 (,, 0) determinare se v 4 è combinazione

Dettagli

0.1 Complemento diretto

0.1 Complemento diretto 1 0.1 Complemento diretto Dato U V, un complemento diretto di U é un sottospazio W V tale che U W = {0} U + W = V cioé la somma di U con il suo complemento diretto é diretta, e dá tutto lo spazio vettoriale

Dettagli

Esame di Geometria e Algebra Lineare Politecnico di Milano Ingegneria informatica Appello 30 Aprile 2015 Cognome: Nome: Matricola:

Esame di Geometria e Algebra Lineare Politecnico di Milano Ingegneria informatica Appello 30 Aprile 2015 Cognome: Nome: Matricola: Esame di Geometria e Algebra Lineare Politecnico di Milano Ingegneria informatica Appello 3 Aprile 25 Cognome: Nome: Matricola: Tutte le risposte devono essere motivate. Gli esercizi vanno svolti su questi

Dettagli

Argomento 13 Sistemi lineari

Argomento 13 Sistemi lineari Sistemi lineari: definizioni Argomento Sistemi lineari Un equazione nelle n incognite x,, x n della forma c x + + c n x n = b ove c,, c n sono numeri reali (detti coefficienti) e b è un numero reale (detto

Dettagli

1 Esercizi 13. 3x + λy + 2z = 0 (1 λ)x + 5y + 3z = 0 3x + 2y + z = 0

1 Esercizi 13. 3x + λy + 2z = 0 (1 λ)x + 5y + 3z = 0 3x + 2y + z = 0 1 Esercizi 13 1. Discutere le soluzioni del sistema seguente al variare del parametro λ R. 3x + λy + 2z 0 (1 λ)x + 5y + 3z 0 3x + 2y + z 0 Soluzione. Si tratta di un SLO 3 3 e sappiamo che tale sistema

Dettagli

Prodotto scalare, ortogonalitá e basi ortonormali

Prodotto scalare, ortogonalitá e basi ortonormali CAPITOLO 0 Prodotto scalare, ortogonalitá e basi ortonormali Esercizio 0.. Dati i seguenti vettori di R si calcoli il prodotto scalare (v i,v j per i,j =,,...,6: v = (6,3 v = (,0 v 3 = (, v 4 = (,0 v 5

Dettagli

1 Determinante di una matrice 1. 2 Calcolo della matrice inversa 7. 3 Calcolo del rango 8. 4 Soluzioni degli esercizi 12. n! = n.

1 Determinante di una matrice 1. 2 Calcolo della matrice inversa 7. 3 Calcolo del rango 8. 4 Soluzioni degli esercizi 12. n! = n. 1 DETERMINANTE DI UNA MATRICE 1 Determinante e rango Indice 1 Determinante di una matrice 1 2 Calcolo della matrice inversa 7 3 Calcolo del rango 8 4 Soluzioni degli esercizi 12 1 Determinante di una matrice

Dettagli

r 2 r 2 2r 1 r 4 r 4 r 1

r 2 r 2 2r 1 r 4 r 4 r 1 SPAZI R n 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x, y, z)

Dettagli

Intersezione e somma di sottospazi vettoriali

Intersezione e somma di sottospazi vettoriali Capitolo 7 Intersezione e somma di sottospazi vettoriali 7.1 Introduzione Ricordiamo le definizioni di intersezione e somma di due sottospazi vettoriali. Anche in questo caso rimandiamo al testo di geometria

Dettagli

Fondamenti di Algebra Lineare e Geometria TEMA A

Fondamenti di Algebra Lineare e Geometria TEMA A Fondamenti di Algebra Lineare e Geometria Ingegneria Aerospaziale ed Ingegneria dell Energia - Canale B Secondo Appello - luglio TEMA A Risolvere i seguenti esercizi motivando adeguatamente ogni risposta.

Dettagli

x 1 x 2 x 3 x 4 x 3 x 1 + x 3

x 1 x 2 x 3 x 4 x 3 x 1 + x 3 a.a. -6 Esercizi. Applicazioni lineari. Soluzioni. Sia : R 4 R 4 l applicazione lineare data da e siano dati i sottospazi + x ( x ) = +, + x 4 + x 4 U = span{, } W = span{, }. (i) Determinare ker e dire

Dettagli

1 Equazioni parametriche e cartesiane di sottospazi affini di R n

1 Equazioni parametriche e cartesiane di sottospazi affini di R n 2 Trapani Dispensa di Geometria, Equazioni parametriche e cartesiane di sottospazi affini di R n Un sottospazio affine Σ di R n e il traslato di un sottospazio vettoriale. Cioe esiste un sottospazio vettoriale

Dettagli

GEOMETRIA I Prima Prova Intermedia 3 Novembre 2017

GEOMETRIA I Prima Prova Intermedia 3 Novembre 2017 Corso di Laurea in Fisica GEOMETRIA I Prima Prova Intermedia Novembre 017 Cognome: Nome: Matricola: PARTE 1 Test a risposta multipla Una ed una sola delle quattro affermazioni è corretta. Indicarla con

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a. 2015-2016 Prova scritta del 16-9-2016 TESTO E SOLUZIONI Svolgere tutti gli esercizi. 1. Per k R considerare il sistema

Dettagli

Intersezione e somma di sottospazi vettoriali

Intersezione e somma di sottospazi vettoriali Capitolo 6 Intersezione e somma di sottospazi vettoriali 6.1 Introduzione Ricordiamo le definizioni di intersezione e somma di due sottospazi vettoriali. Anche in questo caso rimandiamo al testo di geometria

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - CCS Edilizia ed Edile/Architettura

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - CCS Edilizia ed Edile/Architettura Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - CCS Edilizia ed Edile/Architettura I Appello corso di Geometria a.a. 0/3 Docente F. Flamini NORME SVOLGIMENTO Negli appositi spazi scrivere

Dettagli

ESERCIZI DI MATEMATICA DISCRETA ANNO 2006/2007

ESERCIZI DI MATEMATICA DISCRETA ANNO 2006/2007 ESERCIZI DI MATEMATICA DISCRETA ANNO 6/7 //7 () Ridurre la seguente matrice ad una a scala ridotta utilizzando il metodo di Gauss-Jordan. Soluzione. () Determinare quante e quali sono le matrici a scala

Dettagli

LeLing12: Ancora sui determinanti.

LeLing12: Ancora sui determinanti. LeLing2: Ancora sui determinanti. Ārgomenti svolti: Sviluppi di Laplace. Prodotto vettoriale e generalizzazioni. Rango e determinante: i minori. Il polinomio caratteristico. Ēsercizi consigliati: Geoling

Dettagli

18 gennaio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

18 gennaio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Geometria BAER A.A. Canale I Foglio esercizi 4

Geometria BAER A.A. Canale I Foglio esercizi 4 Geometria BAER A.A. Canale I Foglio esercizi 4 Esercizio. Si trovino basi degli spazi delle soluzioni dei seguenti sistemi lineari Soluzione: Sol(S ) = L[ x + 3x x 3 + 5x 4 = S : x + 3x x 3 + x 4 = S x

Dettagli

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n SPAZI E SOTTOSPAZI 1 SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n Spazi di matrici. Spazi di polinomi. Generatori, dipendenza e indipendenza lineare, basi e dimensione. Intersezione e somma di sottospazi,

Dettagli

determinante della sottomatrice ottenuta da A cancellando la i-esima riga e la j-esima colonna

determinante della sottomatrice ottenuta da A cancellando la i-esima riga e la j-esima colonna Data una matrice quadrata A di ordine n si definisce minore complementare m ij dell elemento generico a ij della matrice A il determinante della sottomatrice ottenuta da A cancellando la i-esima riga e

Dettagli

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli

Nozioni e notazioni: concetti primitivi di insieme, elemento ed appartenenza.

Nozioni e notazioni: concetti primitivi di insieme, elemento ed appartenenza. Geometria I lezione del 30 settembre 2013 Presentazione del corso. Nozioni e notazioni: concetti primitivi di insieme, elemento ed appartenenza. Insiemi numerici: i numeri naturali, gli interi, i numeri

Dettagli

1 Caratteristica di una matrice

1 Caratteristica di una matrice Università Bergamo Primo anno Ingegneria Geometria e Algebra Lineare Anno accademico 207208 Domande su: Caratteristica una matrice; sottospazi vettoriali, basi e mensione; sistemi lineari. Caratteristica

Dettagli

Esercizio (n.5 I prova intermedia fila 1) Sia data la matrice

Esercizio (n.5 I prova intermedia fila 1) Sia data la matrice Esercizio (n.5 I prova intermedia --8 fila ) Sia data la matrice k k A k k k, al variare del parametro reale k si determinino: a) i valori di k per i quali A k ammette almeno due autovalori uguali; b)

Dettagli

Insiemi di generatori, dipendenza lineare e basi

Insiemi di generatori, dipendenza lineare e basi Insiemi di generatori, dipendenza lineare e basi July 4, 2015 1 Insiemi di generatori Nel seguito V è uno spazio vettoriale sul campo K. Definizione. Una combinazione lineare di vettori v 1, v 2,..., v

Dettagli