Algoritmi. Matricole dispari Prof.ssa Anselmo. Appello straordinario del 17 Aprile Attenzione:

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Algoritmi. Matricole dispari Prof.ssa Anselmo. Appello straordinario del 17 Aprile Attenzione:"

Transcript

1 COGNOME: Nome: Algoritmi Matricole dispari Prof.ssa Anselmo Appello straordinario del 17 Aprile 2015 Attenzione: Inserire i propri dati nell apposito spazio soprastante e sottostante. Non voltare la pagina finché non sarà dato il via. Dal via avrai 2 ore di tempo per rispondere alle domande. La prova consta di 8 domande a risposta multipla e 3 domande aperte. Per le domande a risposta multipla occorre rispondere inserendo la lettera scelta nell apposito quadratino accanto al numero della domanda. In caso di ripensamento, cancellare la risposta data e disegnare accanto un nuovo quadratino con la lettera scelta. Inoltre: ogni risposta esatta vale 4 punti; ogni risposta errata vale 1 punto; ogni domanda lasciata in bianco vale 0 punti. Le domande a risposta multipla valgono in tutto 32 punti, quelle aperte 68 punti, per un totale di 100 punti. Si è ammessi all orale se si totalizzano almeno 40/100 punti di cui almeno 10/32 nelle domande a risposta multipla. COGNOME:... Nome:... Numero di matricola:... multiple/32 quesito1 /22 quesito2 /24 quesito3 /22 Totale/100

2 1) 1 Qual è la corretta successione delle funzioni seguenti affinché compaiano da sinistra a destra in ordine crescente di crescita asintotica (si supponga che la base del logaritmo sia 2): n 4 +log n, (log n) 2, 2 log n? A. n 4 +log n, (log n) 2, 2 log n C. n 4 +log n, 2 log n, (log n) 2 B. (log n) 2, 2 log n, n 4 +log n D. Nessuna delle risposte precedenti. 2) 2 Qual è il tempo di esecuzione del seguente frammento di pseudocodice? for i=1 to n/2 A. O(log n) if x>y then B. (n) x=x-y C. (n 2 ) return x D. Nessuna delle risposte precedenti 3) 3 Se T(n) = 2 T(n 1) + 3, con T(1) = 1, allora A. T(4) = 28 C. T(4) = 5 B. T(4) = 26 D. Nessuna delle risposte precedenti 4) 4 Il tempo di esecuzione dell algoritmo MERGESORT è: A. (n log n) C. (n log n), ma non (n log n) B. O(n log n), ma non (n log n) D. Nessuna delle risposte precedenti 5) 5 L algoritmo di Huffman calcola un codifica prefissa binaria γ per un alfabeto C con frequenze f, che minimizza: A. ( c ) C. c C c C B. c C f ( c) ( c) f ( c) ( c) D. Nessuna delle risposte precedenti. 6) 6 Un minimo albero di copertura (MST) per un grafo pesato G=(V,E) è: A. Un sottografo di peso totale minimo B. Un insieme aciclico di archi di peso totale minimo C. Un albero col minimo numero di archi il cui insieme di vertici è V D. Nessuna delle risposte precedenti 7) 7 Se un algoritmo di programmazione dinamica lavora con una tabella di dimensione (n 2 ), il suo tempo di esecuzione sarà A. (n 2 ) B. O(n 2 ) C. O(n 4 ) D. (n 3 ) 8) 8 Gli algoritmi di Dijkstra e di Bellman-Ford risolvono il problema dei cammini minimi in un grafo orientato e pesato. Inoltre: A. Entrambi funzionano correttamente per qualsiasi tipo di grafo (orientato e pesato) B. L algoritmo di Dijkstra funziona correttamente per tutti i grafi (orientati e pesati) in cui non vi siano cicli di costo negativo C. L algoritmo di Bellman-Ford funziona correttamente per tutti i grafi (orientati e pesati) in cui non vi siano archi di costo negativo D. Nessuna delle risposte precedenti

3 Quesito 1 (22 punti) Si consideri il problema di determinare se, dato un array M[1,, n] di caratteri dell alfabeto italiano A e un carattere x di A, esiste o meno un indice i tale che M[i] = x, per qualche i=1,, n. a) Descrivere almeno due algoritmi che risolvono il problema. Gli algoritmi devono essere sostanzialmente diversi. b) Analizzare il tempo di esecuzione di ogni algoritmo. c) Confrontare gli algoritmi per valutare quale (se ve ne è uno) possa essere considerato il migliore.

4 Quesito 2 (24 punti) E domenica pomeriggio, piove e non avete voglia di studiare (né di vedere le partite!). Coi vostri amici decidete di fare una maratona di film. Potete scegliere fra un certo numero di film, di cui conoscete la durata esatta, e volete vedere il maggior numero di film possibili nelle ore che avete a disposizione. Il vostro problema è ora di selezionare i film. Ognuno di voi ha un idea differente, dalla più semplice alla più complicata, ma nessuno riesce a convincere gli altri che la propria soluzione è la migliore. E il tempo passa. Vi ricordate allora che al corso di Algoritmi vi avevano tempestato con le varie tecniche di progettazione di algoritmi, sui modi per dimostrarne la correttezza e valutarne la bontà: potranno esservi utili (almeno una volta nella vita)? Formalizzate il problema reale in un problema computazionale e risolvetelo nella maniera più efficiente possibile e in modo che, soprattutto, riusciate a convincere gli altri che la vostra soluzione funziona perfettamente. Giustificate le risposte.

5 Quesito 3 (22 punti) a) Definire cos'è un grafo bipartito. b) Definire cos'è un matching massimale in un grafo bipartito. Si consideri il grafo G =(V,E) con V={1, 2, 3, 4, 5, 6, 7}, definito dalla seguente matrice di adiacenza: c) Dimostrare che G è bipartito, eseguendo l'algoritmo di test studiato. d) Determinare un matching massimale di G, eseguendo l'algoritmo studiato.

6 Pagina per appunti

Algoritmi. Matricole dispari Prof.ssa Anselmo. Appello del 29 Gennaio Attenzione:

Algoritmi. Matricole dispari Prof.ssa Anselmo. Appello del 29 Gennaio Attenzione: COGNOME: Nome: Algoritmi Matricole dispari Prof.ssa Anselmo Appello del 29 Gennaio 2015 Attenzione: Inserire i propri dati nell apposito spazio soprastante e sottostante. Non voltare la pagina finché non

Dettagli

Algoritmi. Matricole dispari Prof.ssa Anselmo. Appello del 9 Luglio Attenzione:

Algoritmi. Matricole dispari Prof.ssa Anselmo. Appello del 9 Luglio Attenzione: COGNOME: Nome: Algoritmi Matricole dispari Prof.ssa Anselmo Appello del 9 Luglio 2015 Attenzione: Inserire i propri dati nell apposito spazio soprastante e sottostante. Non voltare la pagina finché non

Dettagli

Algoritmi. Classe 3 (matricole congrue 2 modulo 3) Prof.ssa Anselmo. Appello del 6 Aprile Attenzione:

Algoritmi. Classe 3 (matricole congrue 2 modulo 3) Prof.ssa Anselmo. Appello del 6 Aprile Attenzione: COGNOME: Nome: Algoritmi Classe 3 (matricole congrue 2 modulo 3) Prof.ssa Anselmo Appello del 6 Aprile 2016 Attenzione: Inserire i propri dati nell apposito spazio soprastante e sottostante. Non voltare

Dettagli

Progettazione di Algoritmi. Classe 3 (matricole congrue 2 modulo 3) Prof.ssa Anselmo. Appello del 22 Febbraio Attenzione:

Progettazione di Algoritmi. Classe 3 (matricole congrue 2 modulo 3) Prof.ssa Anselmo. Appello del 22 Febbraio Attenzione: COGNOME: Nome: Progettazione di Algoritmi Classe 3 (matricole congrue 2 modulo 3) Prof.ssa Anselmo Appello del 22 Febbraio 2016 Attenzione: Inserire i propri dati nell apposito spazio soprastante e sottostante.

Dettagli

Progettazione di algoritmi. Classe 3 (matricole congrue 2 modulo 3) Prof.ssa Anselmo. Appello del 15 Novembre Attenzione:

Progettazione di algoritmi. Classe 3 (matricole congrue 2 modulo 3) Prof.ssa Anselmo. Appello del 15 Novembre Attenzione: COGNOME: Nome: Progettazione di algoritmi Classe 3 (matricole congrue 2 modulo 3) Prof.ssa Anselmo Appello del 15 Novembre 2016 Attenzione: Inserire i propri dati nell apposito spazio soprastante e sottostante.

Dettagli

Progettazione di Algoritmi. Classe 3 (matricole congrue 2 modulo 3) Prof.ssa Anselmo. Appello del 19 Febbraio Attenzione:

Progettazione di Algoritmi. Classe 3 (matricole congrue 2 modulo 3) Prof.ssa Anselmo. Appello del 19 Febbraio Attenzione: COGNOME: Nome: Progettazione di Algoritmi Classe 3 (matricole congrue 2 modulo 3) Prof.ssa Anselmo Appello del 19 Febbraio 2018 Attenzione: Inserire i propri dati nell apposito spazio soprastante e sottostante.

Dettagli

Progettazione di Algoritmi. Classe 3 (matricole congrue 2 modulo 3) Prof.ssa Anselmo. Preappello del 12 giugno Attenzione:

Progettazione di Algoritmi. Classe 3 (matricole congrue 2 modulo 3) Prof.ssa Anselmo. Preappello del 12 giugno Attenzione: COGNOME: Nome: Progettazione di Algoritmi Classe 3 (matricole congrue 2 modulo 3) Prof.ssa Anselmo Preappello del 12 giugno 2017 Attenzione: Inserire i propri dati nell apposito spazio soprastante e sottostante.

Dettagli

Progettazione di Algoritmi (4, 6, 9 CFU) Classe 3 (matricole congrue 2 modulo 3) Prof.ssa Anselmo. Appello del 30 Gennaio 2019.

Progettazione di Algoritmi (4, 6, 9 CFU) Classe 3 (matricole congrue 2 modulo 3) Prof.ssa Anselmo. Appello del 30 Gennaio 2019. COGNOME: Nome: Progettazione di Algoritmi (4, 6, 9 CFU) Classe 3 (matricole congrue 2 modulo 3) Prof.ssa Anselmo Appello del 30 Gennaio 2019 Attenzione: Inserire i propri dati nell apposito spazio soprastante

Dettagli

Progettazione di Algoritmi (9 CFU) Classe 3 (matricole congrue 2 modulo 3) Prof.ssa Anselmo. Appello del 27 Giugno 2018.

Progettazione di Algoritmi (9 CFU) Classe 3 (matricole congrue 2 modulo 3) Prof.ssa Anselmo. Appello del 27 Giugno 2018. COGNOME: Nome: Progettazione di Algoritmi (9 CFU) Classe 3 (matricole congrue 2 modulo 3) Prof.ssa Anselmo Appello del 27 Giugno 2018 Attenzione: Inserire i propri dati nell apposito spazio soprastante

Dettagli

Progettazione di Algoritmi

Progettazione di Algoritmi Corso di laurea in Informatica Prova scritta del: Progettazione di Algoritmi 1/01/016 Prof. De Prisco Inserire i propri dati nell apposito spazio. Non voltare la finché non sarà dato il via. Dal via avrai

Dettagli

Progettazione di Algoritmi

Progettazione di Algoritmi Corso di laurea in Informatica Prova scritta del: Progettazione di Algoritmi 0/06/06 Prof. De Prisco Inserire i propri dati nell apposito spazio. Non voltare la finché non sarà dato il via. Dal via avrai

Dettagli

Progettazione di Algoritmi

Progettazione di Algoritmi Corso di laurea in Informatica Prova scritta del: Progettazione di Algoritmi 06/07/2016 Prof. De Prisco Inserire i propri dati nell apposito spazio. Non voltare la finché non sarà dato il via. Dal via

Dettagli

Algoritmi. Matricole dispari Prof.ssa Anselmo. Pre-appello del 15 Gennaio 2015. Attenzione:

Algoritmi. Matricole dispari Prof.ssa Anselmo. Pre-appello del 15 Gennaio 2015. Attenzione: COGNOME: Nome: Algoritmi Matricole dispari Prof.ssa Anselmo Pre-appello del 15 Gennaio 2015 Attenzione: Inserire i propri dati nell apposito spazio soprastante e sottostante. Non voltare la pagina finché

Dettagli

Progettazione di Algoritmi

Progettazione di Algoritmi Corso di laurea in Informatica Prova scritta del: Progettazione di Algoritmi 29/01/2016 Prof. De Prisco Inserire i propri dati nell apposito spazio. Non voltare la finché non sarà dato il via. Dal via

Dettagli

Architettura degli Elaboratori. Classe 3 Prof.ssa Anselmo. Appello del 25 Febbraio Attenzione:

Architettura degli Elaboratori. Classe 3 Prof.ssa Anselmo. Appello del 25 Febbraio Attenzione: Cognome... Nome.. Architettura degli Elaboratori Classe 3 Prof.ssa Anselmo Appello del 25 Febbraio 2014 Attenzione: Inserire i propri dati nell apposito spazio sottostante e in testa a questa pagina. Preparare

Dettagli

Algoritmi e Strutture Dati. Capitolo 13 Cammini minimi: Algoritmo di Bellman e Ford

Algoritmi e Strutture Dati. Capitolo 13 Cammini minimi: Algoritmo di Bellman e Ford Algoritmi e Strutture Dati Capitolo 13 Cammini minimi: Algoritmo di Bellman e Ford Cammini minimi in grafi: una trilogia Cammini minimi in grafi: Episodio II: cammini minimi a singola sorgente (per grafi

Dettagli

Architettura degli Elaboratori. Classe 3 Prof.ssa Anselmo. Appello del 10 Febbraio Attenzione:

Architettura degli Elaboratori. Classe 3 Prof.ssa Anselmo. Appello del 10 Febbraio Attenzione: Cognome.. Nome.... Architettura degli Elaboratori Classe 3 Prof.ssa Anselmo Appello del 10 Febbraio 2017 Attenzione: Inserire i propri dati nell apposito spazio sottostante e in testa a questa pagina.

Dettagli

Algoritmi 25 Febbraio Rispondere alle domande usando lo spazio designato. NON USARE ALTRI FOGLI.

Algoritmi 25 Febbraio Rispondere alle domande usando lo spazio designato. NON USARE ALTRI FOGLI. Algoritmi 25 Febbraio 2011 Prof.ssa M. Anselmo Università di Salerno Cognome: Nome: Matricola: Rispondere alle domande usando lo spazio designato. NON USARE ALTRI FOGLI. Spazio riservato alla correzione

Dettagli

Architettura degli Elaboratori. Classe 3 Prof.ssa Anselmo. Appello del 8 novembre Attenzione:

Architettura degli Elaboratori. Classe 3 Prof.ssa Anselmo. Appello del 8 novembre Attenzione: Cognome.. Nome.... Architettura degli Elaboratori Classe 3 Prof.ssa Anselmo Appello del 8 novembre 2018 Attenzione: Inserire i propri dati nell apposito spazio sottostante e in testa a questa pagina. Preparare

Dettagli

Architettura degli Elaboratori. Classe 3 Prof.ssa Anselmo. Appello del 22 giugno Attenzione:

Architettura degli Elaboratori. Classe 3 Prof.ssa Anselmo. Appello del 22 giugno Attenzione: Cognome.. Nome.... Architettura degli Elaboratori Classe 3 Prof.ssa Anselmo Appello del 22 giugno 2017 Attenzione: Inserire i propri dati nell apposito spazio sottostante e in testa a questa pagina. Preparare

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Minimo albero ricoprente Domenico Fabio Savo 1 Albero ricoprente Sia G=(V,E) un grafo non orientato e connesso. Un albero ricoprente di G è un sottografo T G tale che: T è un

Dettagli

Algoritmi e strutture dati

Algoritmi e strutture dati Algoritmi e Strutture Dati Cammini minimi Definizioni Sia G = (V,E) un grafo orientato pesato sugli archi. Il costo di un cammino π = è dato da: Un cammino minimo tra una coppia di

Dettagli

Cognome e Nome: Numero di Matricola: Spazio riservato alla correzione

Cognome e Nome: Numero di Matricola: Spazio riservato alla correzione Cognome e Nome: Numero di Matricola: Spazio riservato alla correzione 1 2 3 4 Bonus Totale /25 /25 /25 /25 /100 1. Grafi a) Si scriva lo pseudocodice dell'algoritmo BFS che utilizza un array Discovered

Dettagli

Programmazione Dinamica (PD)

Programmazione Dinamica (PD) Programmazione Dinamica (PD) Altra tecnica per risolvere problemi di ottimizzazione, piu generale degli algoritmi greedy La programmazione dinamica risolve un problema di ottimizzazione componendo le soluzioni

Dettagli

Appunti lezione Capitolo 13 Programmazione dinamica

Appunti lezione Capitolo 13 Programmazione dinamica Appunti lezione Capitolo 13 Programmazione dinamica Alberto Montresor 12 Novembre, 2015 1 Domanda: Fattore di crescita dei numeri catalani Vogliamo dimostrare che cresce almeno come 2 n. La nostra ipotesi

Dettagli

Ricordo che è ammesso alla prova scritta solo chi ha già consegnato ed avuto approvato il progetto.

Ricordo che è ammesso alla prova scritta solo chi ha già consegnato ed avuto approvato il progetto. Ricordo che è ammesso alla prova scritta solo chi ha già consegnato ed avuto approvato il progetto. NON CORREGGERÒ il compito a chi non ha consegnato il progetto Esercizio 1 (possibili più risposte esatte

Dettagli

Architettura degli Elaboratori. Classe 3 Prof.ssa Anselmo. Appello del 18 Febbraio Attenzione:

Architettura degli Elaboratori. Classe 3 Prof.ssa Anselmo. Appello del 18 Febbraio Attenzione: Cognome.. Nome.... Architettura degli Elaboratori Classe 3 Prof.ssa Anselmo Appello del 18 Febbraio 2015 Attenzione: Inserire i propri dati nell apposito spazio sottostante e in testa a questa pagina.

Dettagli

Cammini minimi in grafi:

Cammini minimi in grafi: Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Cammini minimi in grafi: una trilogia Cammini minimi in grafi: Episodio III: la fine della trilogia Input: nelle puntate

Dettagli

Grafi (orientati): cammini minimi

Grafi (orientati): cammini minimi Grafi (orientati): cammini minimi Una breve presentazione Definizioni Sia G=(V,E) un grafo orientato con costi w sugli archi. Il costo di un cammino π= è dato da: Un cammino minimo tra

Dettagli

Architettura degli Elaboratori. Classe 3 Prof.ssa Anselmo. Appello del 12 Gennaio Attenzione:

Architettura degli Elaboratori. Classe 3 Prof.ssa Anselmo. Appello del 12 Gennaio Attenzione: Cognome.. Nome.... Architettura degli Elaboratori Classe 3 Prof.ssa Anselmo Appello del 12 Gennaio 2017 Attenzione: Inserire i propri dati nell apposito spazio sottostante e in testa a questa pagina. Preparare

Dettagli

Architettura degli Elaboratori. Classe 3 Prof.ssa Anselmo. Pre-appello del 14 Gennaio Attenzione:

Architettura degli Elaboratori. Classe 3 Prof.ssa Anselmo. Pre-appello del 14 Gennaio Attenzione: Cognome.. Nome.... Architettura degli Elaboratori Classe 3 Prof.ssa Anselmo Pre-appello del 14 Gennaio 2015 Attenzione: Inserire i propri dati nell apposito spazio sottostante e in testa a questa pagina.

Dettagli

Architettura degli Elaboratori. Classe 3 Prof.ssa Anselmo. Appello del 26 Gennaio Attenzione:

Architettura degli Elaboratori. Classe 3 Prof.ssa Anselmo. Appello del 26 Gennaio Attenzione: Cognome.. Nome.... Architettura degli Elaboratori Classe 3 Prof.ssa Anselmo Appello del 26 Gennaio 2018 Attenzione: Inserire i propri dati nell apposito spazio sottostante e in testa a questa pagina. Preparare

Dettagli

Architettura degli Elaboratori. Classe 3 Prof.ssa Anselmo. Pre-appello del 17 Gennaio Attenzione:

Architettura degli Elaboratori. Classe 3 Prof.ssa Anselmo. Pre-appello del 17 Gennaio Attenzione: Cognome... Nome.. Architettura degli Elaboratori Classe 3 Prof.ssa Anselmo Pre-appello del 17 Gennaio 2014 Attenzione: Inserire i propri dati nell apposito spazio sottostante e in testa a questa pagina.

Dettagli

Architettura degli Elaboratori. Classe 3 Prof.ssa Anselmo. Appello del 19 Febbraio Attenzione:

Architettura degli Elaboratori. Classe 3 Prof.ssa Anselmo. Appello del 19 Febbraio Attenzione: Cognome.. Nome.... Architettura degli Elaboratori Classe 3 Prof.ssa Anselmo Appello del 19 Febbraio 2016 Attenzione: Inserire i propri dati nell apposito spazio sottostante e in testa a questa pagina.

Dettagli

Architettura degli Elaboratori. Classe 3 Prof.ssa Anselmo. Pre-appello del 12 Gennaio Attenzione:

Architettura degli Elaboratori. Classe 3 Prof.ssa Anselmo. Pre-appello del 12 Gennaio Attenzione: Cognome.. Nome.... Architettura degli Elaboratori Classe 3 Prof.ssa Anselmo Pre-appello del 12 Gennaio 2018 Attenzione: Inserire i propri dati nell apposito spazio sottostante e in testa a questa pagina.

Dettagli

Cammini minimi. Definizioni. Distanza fra vertici. Proprietà dei cammini minimi. Algoritmi e Strutture Dati

Cammini minimi. Definizioni. Distanza fra vertici. Proprietà dei cammini minimi. Algoritmi e Strutture Dati Algoritmi e Strutture Dati Definizioni Sia G=(V,E) un grafo orientato con costi w sugli archi. Il costo di un cammino π= è dato da: Cammini minimi Un cammino minimo tra una coppia di

Dettagli

Architettura degli Elaboratori. Classe 3 Prof.ssa Anselmo. Appello dell 11 Settembre Attenzione:

Architettura degli Elaboratori. Classe 3 Prof.ssa Anselmo. Appello dell 11 Settembre Attenzione: Cognome.. Nome.... Architettura degli Elaboratori Classe 3 Prof.ssa Anselmo Appello dell 11 Settembre 2015 Attenzione: Inserire i propri dati nell apposito spazio sottostante e in testa a questa pagina.

Dettagli

Cammini Minimi. Algoritmo di Dijkstra. Cammino in un grafo

Cammini Minimi. Algoritmo di Dijkstra. Cammino in un grafo Cammini Minimi Algoritmo di Dijkstra Cammino in un grafo Dato un grafo G=(V,E), un Cammino (Percorso) in G è un insieme di vertici v 1, v 2,.., v k tali che (v i, v i+1 ) E v 1 v 2 v 3 v k In un grafo

Dettagli

Esercizi Union-Find e su Grafi. Ugo Vaccaro

Esercizi Union-Find e su Grafi. Ugo Vaccaro Progettazione di Algoritmi Anno Accademico 0 07 Esercizi Union-Find e su Grafi. Ugo Vaccaro. Esercizio: Scrivere pseudocodice per Make-Set, Union, e Find-Set usando la rappresentazione attraverso liste

Dettagli

Grafi pesati Minimo albero ricoprente

Grafi pesati Minimo albero ricoprente Algoritmi e Strutture Dati Definizioni Grafi pesati Minimo albero ricoprente Sia G=(V,E) un grafo non orientato e connesso. Un albero ricoprente di G è un sottografo T G tale che: T è un albero; T contiene

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Capitolo 3 Cammini minimi: algoritmo di Dijkstra Cammini minimi in grafi: cammini minimi a singola sorgente (senza pesi negativi) Cammini minimi in grafi pesati Sia G=(V,E,w)

Dettagli

PROBLEMA DEI CAMMINI MINIMI [CORMEN ET AL. CAP. 24] Il costo di cammino minimo da un vertice u ad un vertice v è definito nel seguente modo:

PROBLEMA DEI CAMMINI MINIMI [CORMEN ET AL. CAP. 24] Il costo di cammino minimo da un vertice u ad un vertice v è definito nel seguente modo: PROBLEMA DEI CAMMINI MINIMI [CORMEN ET AL. CAP. 24] Sia G = (V,E) un grafo orientato ai cui archi è associato un costo W(u,v). Il costo di un cammino p = (v 1,v 2,...,v k ) è la somma dei costi degli archi

Dettagli

Cammini Minimi. Algoritmo di Dijkstra

Cammini Minimi. Algoritmo di Dijkstra Cammini Minimi Algoritmo di Dijkstra Cammino in un grafo Dato un grafo G=(V,E), un Cammino (Percorso) in G è un insieme di vertici v 1, v 2,.., v k tali che (v i, v i+1 ) E v 1 v 2 v 3 v k In un grafo

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Minimo albero ricoprente Fabio Patrizi 1 Albero ricoprente Sia G=(V,E) un grafo non orientato e connesso. Un albero ricoprente di G è un sottografo T G tale che: T è un albero;

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Capitolo 13 Cammini minimi: Algoritmo di Dijkstra (*) (ACM in grafi diretti e non diretti senza archi di peso negativo) Punto della situazione Algoritmo basato sull ordinamento

Dettagli

Richiami di matematica discreta: grafi e alberi. Paolo Camurati Dip. Automatica e Informatica Politecnico di Torino

Richiami di matematica discreta: grafi e alberi. Paolo Camurati Dip. Automatica e Informatica Politecnico di Torino Richiami di matematica discreta: grafi e alberi Paolo Camurati Dip. Automatica e Informatica Politecnico di Torino Grafi Definizione: G = (V,E) V: insieme finito di vertici E: insieme finito di archi,

Dettagli

Appunti del corso di Informatica 1 (IN110 Fondamenti) 7 Grafi e alberi: introduzione

Appunti del corso di Informatica 1 (IN110 Fondamenti) 7 Grafi e alberi: introduzione Università di Roma Tre Dipartimento di Matematica e Fisica Corso di Laurea in Matematica Appunti del corso di Informatica (IN0 Fondamenti) Grafi e alberi: introduzione Marco Liverani (liverani@mat.uniroma.it)

Dettagli

Esercizi Capitolo 11 - Strutture di dati e progettazione di algoritmi

Esercizi Capitolo 11 - Strutture di dati e progettazione di algoritmi Esercizi Capitolo 11 - Strutture di dati e progettazione di algoritmi Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore

Dettagli

Problemi, istanze, soluzioni

Problemi, istanze, soluzioni lgoritmi e Strutture di Dati II 2 Problemi, istanze, soluzioni Un problema specifica una relazione matematica tra dati di ingresso e dati di uscita. Una istanza di un problema è formata dai dati di un

Dettagli

Esercitazione 3. Osserviamo che, dato un grafo con pesi distinti, questo ammette un unico MST.

Esercitazione 3. Osserviamo che, dato un grafo con pesi distinti, questo ammette un unico MST. Esercitazione 3 Problema 6: Sia G = (V, E) un grafo con pesi distinti sugli archi ed e E un arco di G. Progettare un algoritmo lineare in grado di determinare se esiste un MST di G che contiene l arco

Dettagli

Architettura degli Elaboratori. Classe 3 Prof.ssa Anselmo. Appello del 20 Giugno Attenzione:

Architettura degli Elaboratori. Classe 3 Prof.ssa Anselmo. Appello del 20 Giugno Attenzione: Cognome.. Nome.... Architettura degli Elaboratori Classe 3 Prof.ssa Anselmo Appello del 20 Giugno 2016 Attenzione: Inserire i propri dati nell apposito spazio sottostante e in testa a questa pagina. Preparare

Dettagli

ESERCIZI SULLA TECNICA Greedy

ESERCIZI SULLA TECNICA Greedy ESERCIZI SULLA TECNICA Greedy 1. [FILE] Si supponga di avere n files di lunghezze l 1,..., l n (interi positivi) che bisogna memorizzare su un disco di capacità data D. Si assuma che la somma delle lunghezze

Dettagli

Algoritmi e Strutture dati Mod B. Grafi Percorsi Minimi: algoritmi esatti e algoritmi euristici (A*)

Algoritmi e Strutture dati Mod B. Grafi Percorsi Minimi: algoritmi esatti e algoritmi euristici (A*) Algoritmi e Strutture dati Mod B Grafi Percorsi Minimi: algoritmi esatti e algoritmi euristici (A*) Grafi: Percorsi minimi Un percorso minimo in un grafo G= grafo pesato orientato, con funzione di

Dettagli

Analisi e progetto di algoritmi: soluzioni degli esercizi

Analisi e progetto di algoritmi: soluzioni degli esercizi Analisi e progetto di algoritmi: soluzioni degli esercizi Daniele Turato 24 giugno 2008 Indice 1 Esercizi assegnati in classe 2 1.1 Lezione 1: nozioni basilari sui grafi................. 2 1.1.1 Esercizio

Dettagli

1 TEORIA DELLE RETI 1. 1 Teoria delle reti. 1.1 Grafi

1 TEORIA DELLE RETI 1. 1 Teoria delle reti. 1.1 Grafi 1 TEORIA DELLE RETI 1 1 Teoria delle reti 1.1 Grafi Intuitivamente un grafo è un insieme finito di punti (nodi o vertici) ed un insieme di frecce (archi) che uniscono coppie di punti Il verso della freccia

Dettagli

POLITECNICO DI MILANO ESAME DI INFORMATICA 3 Prof.ssa Sara Comai Laurea On Line Anno Accademico 2003/2004 II Prova in itinere

POLITECNICO DI MILANO ESAME DI INFORMATICA 3 Prof.ssa Sara Comai Laurea On Line Anno Accademico 2003/2004 II Prova in itinere POLITECNICO DI MILANO ESAME DI INFORMATICA Prof.ssa Sara Comai Laurea On Line Anno Accademico 00/00 II Prova in itinere È sconsigliato l uso di libri e appunti. Salvare il file con nome: COGNOME.cpp, dove

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Cognome................................ Nome................................... Matricola............................... Algoritmi e Strutture Dati Prova scritta del 24 febbraio 2017 TEMPO DISPONIBILE:

Dettagli

Teoria dei Grafi Parte I. Alberto Caprara DEIS - Università di Bologna

Teoria dei Grafi Parte I. Alberto Caprara DEIS - Università di Bologna Teoria dei Grafi Parte I Alberto Caprara DEIS - Università di Bologna acaprara@deis.unibo.it Teoria dei Grafi Paradigma di rappresentazione di problemi Grafo G : coppia (V,E) V = insieme di vertici E =

Dettagli

Algoritmi e strutture dati

Algoritmi e strutture dati Algoritmi e Strutture Dati Minimo albero ricoprente Sia G = (V, E) un grafo connesso non orientato. Definizioni Un albero ricoprente di G è un sottografo T G tale che: T è un albero; T contiene tutti i

Dettagli

Esercizio. 2 i=i*2) j=j*2)

Esercizio. 2 i=i*2) j=j*2) Esercizio 1 Esercizio 2 i=i*2) j=j*2) Soluzione Il frammento è composto da due parti quasi identiche. L unica differenza è il modo in cui crescono i contatori. Nella prima parte la crescita è lineare mentre

Dettagli

Teoria dei Grafi Parte I

Teoria dei Grafi Parte I Teoria dei Grafi Parte I Daniele Vigo D.E.I.S. - Università di Bologna dvigo@deis.unibo.it Teoria dei Grafi Paradigma di rappresentazione di problemi Grafo G : coppia (V,E) V = insieme di vertici E = insieme

Dettagli

Algoritmi e Strutture dati Mod B. Grafi: Percorsi Minimi (parte I)

Algoritmi e Strutture dati Mod B. Grafi: Percorsi Minimi (parte I) Algoritmi e Strutture dati Mod B Grafi: Percorsi Minimi (parte I) Grafi: Percorsi minimi Un percorso minimo in un grafo G= grafo pesato orientato, con funzione di peso w: E fi che mappa archi in pesi

Dettagli

ALGORITMI CORSO DI STUDIO IN INFORMATICA (laurea triennale) UNIVERSITÀ DEGLI STUDI DI CATANIA ANNO ACCADEMICO 2014/15

ALGORITMI CORSO DI STUDIO IN INFORMATICA (laurea triennale) UNIVERSITÀ DEGLI STUDI DI CATANIA ANNO ACCADEMICO 2014/15 ANNO ACCADEMICO 2014/15 1 a prova in itinere 13 gennaio 2015 ESERCIZIO 1 Si risolva l equazione di ricorrenza al variare del parametro reale a>1. T (n) = 27 n a T + n 2 log n a ESERCIZIO 2 Si ordinino

Dettagli

Grafi (non orientati e connessi): minimo albero ricoprente

Grafi (non orientati e connessi): minimo albero ricoprente Grafi (non orientati e connessi): minimo albero ricoprente Una breve presentazione Definizioni Sia G=(V,E) un grafo non orientato e connesso. Un albero ricoprente di G è un sottografo T G tale che: T è

Dettagli

A-2 a PI. Esercizio 2. Domanda 3

A-2 a PI. Esercizio 2. Domanda 3 A-2 a PI Ricerca Operativa 1 Seconda prova intermedia È dato il problema di PL in figura. 1. Facendo uso delle condizioni di ortogonalità, dimostrare o confutare l ottimalità della soluzione x = 1; x =

Dettagli

Domini di funzioni di due variabili. Determinare i domini delle seguenti funzioni di due variabili (le soluzioni sono alla fine del fascicolo):

Domini di funzioni di due variabili. Determinare i domini delle seguenti funzioni di due variabili (le soluzioni sono alla fine del fascicolo): UNIVERSITA DEGLI STUDI DI SALERNO C.d.L. in INGEGNERIA GESTIONALE Esercizi di Ricerca Operativa Prof. Saverio Salerno Corso tenuto nell anno solare 2009 I seguenti esercizi sono da ritenersi di preparazione

Dettagli

Filtering: A Method for Solving Graph Problems in MapReduce

Filtering: A Method for Solving Graph Problems in MapReduce Filtering: A Method for Solving Graph Problems in MapReduce S. Lattanzi B. Moseley S. Suri S. Vassilvitskii Giulio Ardito Sommario 1 Introduzione 2 Definizioni 3 Minumum Spanning Tree Unweighted Maximal

Dettagli

Ordinamenti. Grafo : definizione. Un grafo G = (V,E)è composto da: V: insieme di vertici E V V: insieme di archi (edge) che connettono i vertici

Ordinamenti. Grafo : definizione. Un grafo G = (V,E)è composto da: V: insieme di vertici E V V: insieme di archi (edge) che connettono i vertici Ordinamenti 1 Vittorio Maniezzo Università di Bologna Grafo : definizione Un grafo G = (V,E)è composto da: V: insieme di vertici E V V: insieme di archi (edge) che connettono i vertici Un arco a= {u,v}

Dettagli

Lezioni di Ricerca Operativa

Lezioni di Ricerca Operativa Lezioni di Ricerca Operativa Estratto per la parte di programmazione lineare e ottimizzazione sui grafi Corso di Metodi di Ottimizzazione per l'ingegneria della Sicurezza Laurea Magistrale in Ingegneria

Dettagli

2 OTTIMIZZAZIONE SU GRAFI. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

2 OTTIMIZZAZIONE SU GRAFI. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 2 OTTIMIZZAZIONE SU GRAFI E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Molti problemi decisionali possono essere formulati utilizzando il linguaggio della teoria dei grafi. Esempi: - problemi di

Dettagli

Algoritmi & Laboratorio

Algoritmi & Laboratorio Acknowledgement Lucidi da F. Damiani, a.a. 2004-2005 C. Demetrescu et al, Algoritmi e strutture dati, McGraw-Hill M. Zacchi, a.a. 2003-2004 I lucidi non sono un sostituto per il libro di testo non contengono

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboratorio di Algoritmi e Strutture Dati Prof. Aniello Murano Componenti fortemente connesse e Alberi minimi di copertura Corso di Laurea Codice insegnamento Email docente Anno accademico Informatica

Dettagli

Ordinamenti. Vittorio Maniezzo Università di Bologna

Ordinamenti. Vittorio Maniezzo Università di Bologna Ordinamenti 1 Vittorio Maniezzo Università di Bologna Grafo : definizione Un grafo G = (V,E)è composto da: V: insieme di vertici E V V: insieme di archi (edge) che connettono i vertici Un arco a= {u,v}

Dettagli

Università Roma Tre - PAS Classe A048 "Matematica Applicata" - Corso di Informatica a.a. 2013/2014

Università Roma Tre - PAS Classe A048 Matematica Applicata - Corso di Informatica a.a. 2013/2014 Università Roma Tre Dipartimento di Matematica e Fisica Percorso Abilitante Speciale Classe A08 Matematica Applicata Corso di Informatica Algoritmi su Grafi Marco Liverani (liverani@mat.uniroma.it) Sommario

Dettagli

11.4 Chiusura transitiva

11.4 Chiusura transitiva 6 11.4 Chiusura transitiva Il problema che consideriamo in questa sezione riguarda il calcolo della chiusura transitiva di un grafo. Dato un grafo orientato G = hv,ei, si vuole determinare il grafo orientato)

Dettagli

K 4 è planare? E K 3,3 e K 5 sono planari? Sì! No! (Teorema di Kuratowski) K 5. Camil Demetrescu, Irene Finocchi, Giuseppe F.

K 4 è planare? E K 3,3 e K 5 sono planari? Sì! No! (Teorema di Kuratowski) K 5. Camil Demetrescu, Irene Finocchi, Giuseppe F. K 4 è planare? Sì! E K 3,3 e K 5 sono planari? K 5 No! (Teorema di Kuratowski) 1 Un albero è un grafo bipartito? SÌ! Ma un grafo bipartito è sempre un albero?? 2 Algoritmi e Strutture Dati Capitolo 11

Dettagli

Algoritmi e Strutture Dati 2/ed Quiz a risposta multipla

Algoritmi e Strutture Dati 2/ed Quiz a risposta multipla Camil Demetrescu Irene Finocchi Giuseppe F. Italiano Algoritmi e Strutture Dati 2/ed Quiz a risposta multipla Indice 1 Un introduzione informale agli algoritmi 1 2 Modelli di calcolo e metodologie di

Dettagli

Algoritmi. Esercizi di esame. Marcella Anselmo

Algoritmi. Esercizi di esame. Marcella Anselmo Algoritmi Esercizi di esame Marcella Anselmo a partire da Gennaio 00 Appello Gennaio 00. Utilizzando lo spazio a disposizione, spiegare in maniera precisa, cosa e un algoritmo, a cosa serve, e quali sono

Dettagli

Algoritmi e Strutture Dati. Capitolo 12 Minimo albero ricoprente: Algoritmo di Kruskal

Algoritmi e Strutture Dati. Capitolo 12 Minimo albero ricoprente: Algoritmo di Kruskal Algoritmi e Strutture Dati Capitolo 12 Minimo albero ricoprente: Algoritmo di Kruskal Progettare una rete stradale Supponiamo di dover progettare una rete stradale in cui il costo di costruzione di un

Dettagli

Cammini minimi con sorgente singola

Cammini minimi con sorgente singola Cammini minimi con sorgente singola Vittorio Maniezzo - Università di Bologna Cammini minimi con sorgente singola Dato: un grafo(orientatoo non orientato) G= (V,E,W) con funzionedi peso w:e R un particolarevertices

Dettagli

Analisi e implementazione dell algoritmo di Dijkstra (Parte 1)

Analisi e implementazione dell algoritmo di Dijkstra (Parte 1) Analisi e implementazione dell algoritmo di Dijkstra (Parte 1) Algoritmicamente August 1, 2009 http://algoritmicamente.wordpress.com/ 1 Concetti fondamentali Definizione 1 Un grafo è un insieme di vertici

Dettagli

Grafi diretti. Un grafo diretto (o grafo orientato) G è una coppia (V,E) dove. V è u n i n s i e m e d i nodi (o vertici);

Grafi diretti. Un grafo diretto (o grafo orientato) G è una coppia (V,E) dove. V è u n i n s i e m e d i nodi (o vertici); Algoritmi e Strutture di Dati II 2 Grafi diretti Un grafo diretto (o grafo orientato) G è una coppia (V,E) dove V è u n i n s i e m e d i nodi (o vertici); E µ V V è u n i n s i e m e d i archi. Denotiamo

Dettagli

Corso di Algoritmi e Strutture Dati Informatica per il Management Prova Scritta, 12/1/2017

Corso di Algoritmi e Strutture Dati Informatica per il Management Prova Scritta, 12/1/2017 Corso di Algoritmi e Strutture Dati Informatica per il Management Prova Scritta, 12/1/2017 Chi deve recuperare il progetto del modulo 1 ha 1 ora e 30 minuti per svolgere gli esercizi 1, 2, 3 Chi deve recuperare

Dettagli

7.1 Progettare un algoritmo per costruire ciclo euleriano di un grafo non orientato.

7.1 Progettare un algoritmo per costruire ciclo euleriano di un grafo non orientato. Capitolo 7 Grafi 7.1 Progettare un algoritmo per costruire ciclo euleriano di un grafo non orientato. 7.3 Un grafo a torneo è un grafo orientato G in cui per ogni coppia di vertici x e y esiste un solo

Dettagli

2 OTTIMIZZAZIONE SU GRAFI. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

2 OTTIMIZZAZIONE SU GRAFI. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 2 OTTIMIZZAZIONE SU GRAFI E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Molti problemi decisionali possono essere formulati utilizzando il linguaggio della teoria dei grafi. Esempi: - problemi di

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Capitolo 13 Cammini minimi: Ordinamento topologico Grafo pesato: è un grafo G=(V,E,w) in cui ad ogni arco viene associato un valore definito dalla funzione peso w (definita su

Dettagli

Esercizi per il corso di Algoritmi, anno accademico 2011/12

Esercizi per il corso di Algoritmi, anno accademico 2011/12 Esercizi per il corso di Algoritmi, anno accademico 2011/12 Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, nè in C++, etc. ). Di tutti gli

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 20 giugno 2014

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 20 giugno 2014 A Ricerca Operativa 1 Seconda prova intermedia Un tifoso di calcio in partenza da Roma vuole raggiungere Rio De Janeiro per la finale del mondiale spendendo il meno possibile. Sono date le seguenti disponibilità

Dettagli

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Scopo: Stimare l onere computazionale per risolvere problemi di ottimizzazione e di altra natura

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 17 giugno 2013

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 17 giugno 2013 A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa Seconda prova intermedia 7 giugno 0 Nome: Cognome: Matricola: Orale /06/0 ore aula N Orale 0/07/0 ore aula N

Dettagli

UNIVERSITA DEGLI STUDI DI PERUGIA

UNIVERSITA DEGLI STUDI DI PERUGIA UNIVERSITA DEGLI STUDI DI PERUGIA REGISTRO DELLE LEZIONI E DELLE ALTRE ATTIVITÀ DIDATTICHE Anno accademico 2006-2007 Dott./Prof. Pinotti Maria Cristina Settore scientifico-disciplinare INF01 Facoltà Scienze

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Introduzione al Corso Emanuela Merelli Università di Camerino 23 ottobre 2017 Struttura del corso Il corso consiste di 42 ore di lezione 2 ore di ricevimento settimanali Il corso viene valutato in 6 CFU

Dettagli

Progettazione di Algoritmi. a.a. 2015/16 Classe 3: matricole congrue 2 modulo 3

Progettazione di Algoritmi. a.a. 2015/16 Classe 3: matricole congrue 2 modulo 3 Progettazione di Algoritmi a.a. 2015/16 Classe 3: matricole congrue 2 modulo 3 Marcella Anselmo Presentazioni Info: http://www.di.unisa.it/professori/anselmo/ Orario ricevimento: Martedì 16:00-17:00 Venerdì

Dettagli

Esercizi (esercizi 1, 2, 3 e 4) Totale /6 /12 /6 /6 /30

Esercizi (esercizi 1, 2, 3 e 4) Totale /6 /12 /6 /6 /30 Laboratorio di Algoritmi e Strutture Dati Docente: A. Murano Appello del 22 Gennaio 2007 Laurea in Informatica Università degli Studi di Napoli Federico II Nome e Cognome Numero di Matricola: Esercizi

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboratorio di Algoritmi e Strutture Dati Aniello Murano http://people.na.infn.it people.na.infn.it/~murano/ Grafi pesati e alberi minimi di copertura Riepilogo delle lezioni precedenti Definizione di

Dettagli

Cammini di costo minimo

Cammini di costo minimo Cammini di costo minimo Ivan Lanese Dipartimento di Informatica Scienza e Ingegneria Università di Bologna ivan.lanese@gmail.com http://www.cs.unibo.it/~lanese/ Cammini di Costo Minimo 2 Definizione del

Dettagli

Soluzioni della settima esercitazione di Algoritmi 1

Soluzioni della settima esercitazione di Algoritmi 1 Soluzioni della settima esercitazione di Algoritmi 1 Beniamino Accattoli 19 dicembre 2007 1 Grafi Un grafo è non orientato se descrivendo un arco come una coppia di vertici (i,j) l ordine è ininfluente

Dettagli

Problema del cammino minimo

Problema del cammino minimo Algoritmi e Strutture di Dati II Problema del cammino minimo Un viaggiatore vuole trovare la via più corta per andare da una città ad un altra. Possiamo rappresentare ogni città con un nodo e ogni collegamento

Dettagli

Esercizio 2. Domanda 3

Esercizio 2. Domanda 3 A-2 a PI Ricerca Operativa 1 Seconda prova intermedia È dato il problema di PL in figura. 1. Facendo uso delle condizioni di ortogonalità, dimostrare o confutare l ottimalità della soluzione 2; 0; 2. Facendo

Dettagli