Fondamenti teorici e programmazione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Fondamenti teorici e programmazione"

Transcript

1 Fondamenti teorici e programmazione FTP(A) - modb Lezione 6 Chiusure Relazioni di equivalenza F.Bonchi Dip.to Informatica Fondamenti teorici e programmazione (A) - modb a.a. 2018/19 pag. 1

2 Chiusure Ogni relazione R su A, può essere estesa (aggiungendo delle coppie) in modo da avere una relazione riflessiva, o simmetrica, o transitiva Data R A A, R Id A è sicuramente riflessiva ed è detta la chiusura riflessiva di R. Esempio: Sia A = {a, b, c} e R = {(a, b), (b, c)}. La chiusura riflessiva di R è la relazione {(a, b), (b, c), (a, a), (b, b), (c, c)} Data R A A, R R op è sicuramente simmetrica ed è detta la chiusura simmetrica di R. Esempio: Sia A = {a, b, c} e R = {(a, b), (b, c)}. La chiusura simmetrica di R è la relazione {(a, b), (b, c), (b, a), (c, b)} F.Bonchi Dip.to Informatica Fondamenti teorici e programmazione (A) - modb a.a. 2018/19 pag. 2

3 Chiusure Per la transitività, si vorrebbe procedere in modo analogo, ma R R; R non è sempre transitiva. Esempio: Sia A = {a, b, c, d} e R = {(a, b), (b, c), (c, d)}. Si ha che R; R = {(a, c), (b, d)}, ma R R; R = {(a, b), (b, c), (c, d), (a, c), (b, d)} non è transitiva perchè (a, c) R e (c, d) R ma (a, d) / R. In questo caso, è necessario aggiungere ad R R; R anche (R; R); R = {(a, d)}. In generale, è necessario aggiungere ad R, tutte le possibili composizioni di R con se stessa: R; R, (R; R); R, ((R; R); R); R,... La chiusura transitiva di R è R (R; R) ((R; R); R) (((R; R); R); R)... Esempio, la chiusura riflessiva di R definita nell esempio precedente è {(a, b), (b, c), (c, d), (a, c), (b, d), (a, d)} Particolarmente importante è la chiusura riflessiva e transitiva, definita per ogni R su A, come R = Id A R (R; R) ((R; R); R) (((R; R); R); R)... F.Bonchi Dip.to Informatica Fondamenti teorici e programmazione (A) - modb a.a. 2018/19 pag. 3

4 Algebra di relazioni su un insieme Fissati un insieme A, le relazioni su A hanno a disposizione degli operatori in più rispetto alle relazioni tra A e B Le operazioni sono: quelle dei sottoinsiemi:,,, composizione ; relazione opposta op chiusura riflessiva e transitiva Le costanti sono: relazione vuota relazione completa A A la relazione identità IdA. Esistono due frammenti degli di nota: Algebra di Kleene: Id A, ;,,, Allegorie: Id A, ;,, A A, op F.Bonchi Dip.to Informatica Fondamenti teorici e programmazione (A) - modb a.a. 2018/19 pag. 4

5 Relazioni di equivalenza Classi di Equivalenze Definizione: Sia R una relazione su un insieme A. Sia a A un elemento di A. La classe di equivalenza di a, scritto [a], è l insieme di tutti i b A tali che (a, b) R. In simboli Esempio: si consideri la relazione [a] = {b A (a, b) R}. {(a, b) a, b N, a + b è un numero pari}. Questa divide l insieme dei numeri naturali in due classi di equivalenza: i numeri pari e i numeri dispari. Infatti: [0] = {0, 2, 4,... } [1] = {1, 3, 5,... } F.Bonchi Dip.to Informatica Fondamenti teorici e programmazione (A) - modb a.a. 2018/19 pag. 5

6 Relazioni di equivalenza Relazioni di Equivalenze e Partizioni Teorema: Sia A un insieme. Esiste una bigiezione tra partizioni di A e relazioni di equivalenza su A. Non diamo la dimostrazione, ma l intuizione è che l insieme della classi di equivalenza forma una partizione. Esempio: Sia A = {a, b, c, d, e, f, g, h, i, l, m, n, o, p} e R = {(a, b), (a, c), (d, f ), (e, g), (e, h), (i, l), (i, m), (n, o)}. La relazione (R R op ) è una relazione di equivalenza. L insieme delle sue classi di equivalenza induce una partizione dell insieme A. [a] = {a, b, c} [d] = {d, f } [e] = {e, g, h} [i] = {i, l, m} [n] = {n, o} [p] = {p} F.Bonchi Dip.to Informatica Fondamenti teorici e programmazione (A) - modb a.a. 2018/19 pag. 6

Fondamenti teorici e programmazione

Fondamenti teorici e programmazione Fondamenti teorici e programmazione FTP(A) - modb Lezione 7 F.Bonchi Dip.to Informatica Fondamenti teorici e programmazione (A) - modb a.a. 08/9 pag. Introduzione I grafi sono ovunque... Rete Ferroviaria

Dettagli

Fondamenti teorici e programmazione

Fondamenti teorici e programmazione Fondamenti teorici e programmazione FTP(A) - modb Lezione 11 Operazioni su linguaggi Espressioni Regolari F.Bonchi Dip.to Informatica Fondamenti teorici e programmazione (A) - modb a.a. 2018/19 pag. 1

Dettagli

Fondamenti teorici e programmazione

Fondamenti teorici e programmazione Fondamenti teorici e programmazione FTP(A) - modb Lezione 10 Alfabeti Parole (o stringhe) Linguaggi F.Bonchi Dip.to Informatica Fondamenti teorici e programmazione (A) - modb a.a. 2018/19 pag. 1 Alfabeto

Dettagli

Fondamenti teorici e programmazione

Fondamenti teorici e programmazione Fondamenti teorici e programmazione FTP(A) - modb Lezione 8 F.Bonchi Dip.to Informatica Fondamenti teorici e programmazione (A) - modb a.a. 2018/19 pag. 1 Ragionamento formale Comprendere le basi del ragionamento

Dettagli

$marina/did/md

$marina/did/md Matematica Discreta (elementi) E-O CdL Informatica Relazioni di equivalenza 26 novembre 2003 Marina Cazzola (marina@matapp.unimib.it) Dipartimento di Matematica e Applicazioni Università di Milano Bicocca

Dettagli

Fondamenti teorici e programmazione

Fondamenti teorici e programmazione Fondamenti teorici e programmazione FTP(A) - modb Lezione 3 Definizioni estensionali e intensionali Operzioni di base sugli insiemi Cardinalità, Partizioni e Insieme potenza Il paradosso di Russell F.Bonchi

Dettagli

Fondamenti teorici e programmazione

Fondamenti teorici e programmazione Fondamenti teorici e programmazione FTP(A) - modb Lezione 17 Soluzione dell esercizio 16.1 Grammatiche ambigue La grammatica di un semplice linguaggio imperativo F.Bonchi Dip.to Informatica Fondamenti

Dettagli

$marina/did/mdis03/ $marina/did/md $marina/did/mdis03/

$marina/did/mdis03/   $marina/did/md   $marina/did/mdis03/ 1 2 vvertenze Matematica Discreta (elementi E-O CdL Informatica 26 novembre 2003 Queste fotocopie sono distribuite solo come indicazione degli argomenti svolti a lezione e NON sostituiscono in alcun modo

Dettagli

R = {(0, 0), (1, 1), (2, 2), (3, 3),... }. Esempio 2. L insieme

R = {(0, 0), (1, 1), (2, 2), (3, 3),... }. Esempio 2. L insieme Definizione 1. Siano A e B insiemi. Si definisce prodotto cartesiano l insieme: A B = {(a, b) : a A b B}. Osservazione 1. Si osservi che nella Definizione 1. le coppie sono ordinate, vale a dire (x, y)

Dettagli

Fondamenti teorici e programmazione

Fondamenti teorici e programmazione Fondamenti teorici e programmazione FTP(A) - modb Lezione 16 Grammatiche Libere da Contesto Alberi di derivazione sintattica Linguaggio generato F.Bonchi Dip.to Informatica Fondamenti teorici e programmazione

Dettagli

Fondamenti teorici e programmazione

Fondamenti teorici e programmazione Fondamenti teorici e programmazione FTP(A) - modb Lezione 12 Automi deterministici Currying Funzioni caratteristiche Linguaggio accettato da un automa Teorema di Kleene F.Bonchi Dip.to Informatica Fondamenti

Dettagli

Fondamenti teorici e programmazione

Fondamenti teorici e programmazione Fondamenti teorici e programmazione FTP(A) - modb Lezione 9 di ricerca binaria F.Bonchi Dip.to Informatica Fondamenti teorici e programmazione (A) - modb a.a. 2018/19 pag. 1 liberi Un albero libero è un

Dettagli

ALGEBRA. Claudia Malvenuto Canale A-L Scheda esercizi n ottobre 2011

ALGEBRA. Claudia Malvenuto Canale A-L Scheda esercizi n ottobre 2011 ALGEBRA Claudia Malvenuto Canale A-L Scheda esercizi n. 1 3 ottobre 2011 È un tempio la Natura, dove a volte parole escono confuse da viventi pilastri e che l uomo attraversa tra foreste di simboli che

Dettagli

Lavoro di Gruppo - I

Lavoro di Gruppo - I Lavoro di Gruppo - I Fulvio Bisi 1 Anna Torre 1 1 Dipartimento di Matematica - Università di Pavia Stage Orientamento 14 giugno 2016 Bisi-Torre (Dip. Mate UniPV) Lavoro di Gruppo I Stage 14 giu 2016 1

Dettagli

Logica per la Programmazione

Logica per la Programmazione Logica per la Programmazione Lezione 10 Logica del Primo Ordine con Insiemi ed Intervalli Formalizzazione di Enunciati: Array e Sequenze A. Corradini e F.Levi Dip.to Informatica Logica per la Programmazione

Dettagli

Algebra e Logica Matematica. Insiemi, relazioni

Algebra e Logica Matematica. Insiemi, relazioni Università di Bergamo Anno accademico 2015 2016 Ingegneria Informatica Foglio 1 Algebra e Logica Matematica Insiemi, relazioni Esercizio 1.1. Mostrare che per tutti gli insiemi A e B, (A\B) (B\A) = (A

Dettagli

marina/did/mdis03/ marina/did/mdis03/ marina/did/mdis03/

marina/did/mdis03/   marina/did/mdis03/   marina/did/mdis03/ Relazioni su un insieme Matematica Discreta (elementi) E-O CdL Informatica 19 novembre 2003 Marina Cazzola (marina@matapp.unimib.it) Dipartimento di Matematica e Applicazioni Università di Milano Bicocca

Dettagli

1 Relazioni. Definizione Una relazione R su un insieme A si dice relazione d ordine se gode delle proprietà 1), 3), 4).

1 Relazioni. Definizione Una relazione R su un insieme A si dice relazione d ordine se gode delle proprietà 1), 3), 4). 1 Relazioni 1. definizione di relazione; 2. definizione di relazione di equivalenza; 3. definizione di relazione d ordine Definizione Una corrispondenza tra due insiemi A e B è un sottoinsieme R del prodotto

Dettagli

3. Relazioni su un insieme

3. Relazioni su un insieme 3. Relazioni su un insieme Per introdurre il concetto di relazione su un insieme, conviene partire dal concetto di grafico associato alla relazione. Definizione 1. Sia A un insieme non vuoto. Ogni sottoinsieme

Dettagli

Teoria degli Insiemi

Teoria degli Insiemi Teoria degli Insiemi Docente: Francesca Benanti Ottobre 2017 1 Teoria degli Insiemi La Teoria degli Insiemi è una branca della matematica creata alla fine del diciannovesimo secolo principalmente dal matematico

Dettagli

Teoria degli Insiemi

Teoria degli Insiemi Teoria degli Insiemi Docente: Francesca Benanti Ottobre 2015 1 Teoria degli Insiemi La Teoria degli Insiemi è una branca della matematica creata alla fine del diciannovesimo secolo principalmente dal matematico

Dettagli

Elementi di Algebra e di Matematica Discreta Insiemi, relazioni

Elementi di Algebra e di Matematica Discreta Insiemi, relazioni Elementi di Algebra e di Matematica Discreta Insiemi, relazioni Cristina Turrini UNIMI - 2017/2018 Cristina Turrini (UNIMI - 2017/2018) Elementi di Algebra e di Matematica Discreta 1 / 63 index Matematica

Dettagli

METODI MATEMATICI PER L INFORMATICA. Canale E O a.a Docente: C. Malvenuto Prova intermedia 12 novembre 2009

METODI MATEMATICI PER L INFORMATICA. Canale E O a.a Docente: C. Malvenuto Prova intermedia 12 novembre 2009 METODI MATEMATICI PER L INFORMATICA Canale E O a.a. 2009 10 Docente: C. Malvenuto Prova intermedia 12 novembre 2009 Esercizio 1. (10 punti) 1. Siano A = {1, 2, 3} e B = {1, 3, 5, 7}. Determinare il prodotto

Dettagli

ESERCIZI sulle RELAZIONI - 2 Fabio GAVARINI. N.B.: il simbolo contrassegna gli esercizi (relativamente) più complessi.

ESERCIZI sulle RELAZIONI - 2 Fabio GAVARINI. N.B.: il simbolo contrassegna gli esercizi (relativamente) più complessi. ESERCIZI sulle RELAZIONI - 2 Fabio GAVARINI NB: il simbolo contrassegna gli esercizi relativamente più complessi 1 Siano E 1 ed E 2 due insiemi non vuoti, nei quali siano date rispettivamente la relazione

Dettagli

$marina/did/md $marina/did/mdis03/ $marina/did/mdis03/

$marina/did/md   $marina/did/mdis03/   $marina/did/mdis03/ 1 2 Avvertenze Matematica Discreta (elementi) E-O CdL Informatica 3 dicembre 2003 Queste fotocopie sono distribuite solo come indicazione degli argomenti svolti a lezione e NON sostituiscono in alcun modo

Dettagli

$marina/did/md

$marina/did/md Matematica Discreta (elementi) E-O CdL Informatica Strutture algebriche 3 dicembre 2003 Marina Cazzola (marina@matapp.unimib.it) Dipartimento di Matematica e Applicazioni Università di Milano Bicocca Matematica

Dettagli

ESERCIZI sulle RELAZIONI - 1 Fabio GAVARINI. N.B.: il simbolo contrassegna gli esercizi (relativamente) più complessi.

ESERCIZI sulle RELAZIONI - 1 Fabio GAVARINI. N.B.: il simbolo contrassegna gli esercizi (relativamente) più complessi. ESERCIZI sulle RELAZIONI - 1 Fabio GAVARINI N.B.: il simbolo contrassegna gli esercizi (relativamente più complessi. 1 Sia S l insieme degli stati della Terra, e sia κ la relazione di confinanza in S,

Dettagli

I Esonero di Matematica Discreta - a.a. 06/07 Versione C

I Esonero di Matematica Discreta - a.a. 06/07 Versione C I Esonero di Matematica Discreta - a.a. 06/07 Versione C 1. a. Sono dati gli insiemi A = 1, 2, 3,, 5, 6} e B = numeri naturali dispari}. Determinare A B, A B, B C N (A), C N (A B), P(A B), P(A) P(B). b.

Dettagli

Elementi di Algebra e di Matematica Discreta Insiemi, relazioni

Elementi di Algebra e di Matematica Discreta Insiemi, relazioni Elementi di Algebra e di Matematica Discreta Insiemi, relazioni Cristina Turrini UNIMI - 2015/2016 Cristina Turrini (UNIMI - 2015/2016) Elementi di Algebra e di Matematica Discreta 1 / 65 index Matematica

Dettagli

Appunti del corso Fondamenti di Analisi e Didattica

Appunti del corso Fondamenti di Analisi e Didattica Appunti del corso Fondamenti di Analisi e Didattica (PAS 2013-2014, Classe A049, docente prof. L. Chierchia) redatti da: A. Damiani, V. Pantanetti, R. Caruso, M. L. Conciatore, C. De Maggi, E. Becce e

Dettagli

ALGEBRE DI BOOLE. (d) x, y X x y oppure y x.

ALGEBRE DI BOOLE. (d) x, y X x y oppure y x. ALGEBRE DI BOOLE Un insieme parzialmente ordinato è una coppia ordinata (X, ) dove X è un insieme non vuoto e " " è una relazione binaria definita su X tale che (a) x X x x (riflessività) (b) x, y, X se

Dettagli

Indice. 1 Cenni di logica. 2 Elementi di teoria degli insiemi. 3 Relazioni e funzioni. 4 Strutture algebriche

Indice. 1 Cenni di logica. 2 Elementi di teoria degli insiemi. 3 Relazioni e funzioni. 4 Strutture algebriche Indice 1 Cenni di logica 2 Elementi di teoria degli insiemi 3 Relazioni e funzioni 4 Strutture algebriche Silvia Pianta - Laura Montagnoli Geometria I - Prerequisiti - UCSC A.A. 2015/2016 1 / 36 1. Cenni

Dettagli

Programma definitivo del corso MATEMATICA DISCRETA C.L.T. Informatica a.a. 2016/17

Programma definitivo del corso MATEMATICA DISCRETA C.L.T. Informatica a.a. 2016/17 Programma definitivo del corso MATEMATICA DISCRETA C.L.T. Informatica a.a. 2016/17 DOCENTE: Luigia Di Terlizzi, Studio n. 19, 3 o piano, Dip. di Matematica anno di corso: primo, semestre: primo N o ore

Dettagli

Relazioni e Principio di Induzione

Relazioni e Principio di Induzione Relazioni e Principio di Induzione Giovanna Carnovale October 12, 2011 1 Relazioni Dato un insieme S, un sottoinsieme fissato R del prodotto cartesiano S S definisce una relazione ρ tra gli elementi di

Dettagli

concetti matematici di base

concetti matematici di base concetti matematici di base Fabrizio d Amore Università La Sapienza, Dip. Informatica e Sistemistica A. Ruberti settembre 2008 concetti elementari di insiemistica Sia A un insieme x A significa che l elemento

Dettagli

METODI MATEMATICI PER L INFORMATICA. Canale E O a.a Docente: C. Malvenuto Primo compito di esonero 26 novembre 2008

METODI MATEMATICI PER L INFORMATICA. Canale E O a.a Docente: C. Malvenuto Primo compito di esonero 26 novembre 2008 METODI MATEMATICI PER L INFORMATICA Canale E O a.a. 2008 09 Docente: C. Malvenuto Primo compito di esonero 26 novembre 2008 Istruzioni. Completare subito la parte inferiore di questa pagina con il proprio

Dettagli

ESEMPIO Un esempio di insieme vuoto è l insieme dei numeri reali di quadrato 4. B A

ESEMPIO Un esempio di insieme vuoto è l insieme dei numeri reali di quadrato 4. B A TEORI DEGLI INSIEMI GENERLIT Un insieme è un ente costituito da oggetti. Il concetto di insieme e di oggetto si assumono come primitivi. Se un oggetto a fa parte di un insieme si dice che esso è un suo

Dettagli

Capitolo 1: Concetti matematici di base

Capitolo 1: Concetti matematici di base Capitolo 1: Concetti matematici di base 1 Insiemi x A x é elemento dell insieme A. B A B é un sottoinsieme di A. B A B é un sottoinsieme proprio di A. A costituito da n elementi A = n é la sua cardinalitá.

Dettagli

CAPITOLO SECONDO APPLICAZIONI TRA INSIEMI E RELAZIONI DI EQUIVALENZA

CAPITOLO SECONDO APPLICAZIONI TRA INSIEMI E RELAZIONI DI EQUIVALENZA CAPITOLO SECONDO APPLICAZIONI TRA INSIEMI E RELAZIONI DI EQUIVALENZA 1 Applicazioni tra insiemi Siano A, insiemi. Una corrispondenza tra A e è un qualsiasi sottoinsieme del prodotto cartesiano A ; Se D

Dettagli

Relazioni e Rappresentazioni. 1 Una relazione (binaria) R su

Relazioni e Rappresentazioni. 1 Una relazione (binaria) R su S Modica 19.III.1999 Relazioni e Rappresentazioni. 1 Una relazione (binaria) R su un insieme X è un sottoinsieme di X 2 (X 2 = X X, prodotto cartesiano): R X 2. Per l appartenenza (x, y) R useremo il sinonimo

Dettagli

Alcuni Preliminari. Prodotto Cartesiano

Alcuni Preliminari. Prodotto Cartesiano Prodotto Cartesiano Dati due insiemi A e B, si definisce il loro prodotto cartesiano A x B come l insieme di tutte le coppie ordinate (a,b) con a A e b B. Es: dati A= {a,b,c} e B={1,2,3} A x B = {(a,1),(b,1),(c,1),(a,2),(b,2),(c,2),(a,3),(b,3),(c,3)

Dettagli

Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}.

Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}. Teoria degli insiemi Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: A = {a, b, c} B = {1, 2} C = {2, 4, 6, 8, 10,...}. 2. Enunciando una proprietà che è

Dettagli

Lezione I Vettori geometrici e spazi vettoriali

Lezione I Vettori geometrici e spazi vettoriali .. Lezione I Vettori geometrici e spazi vettoriali A. Bertapelle 2 ottobre 2012 Vettori geometrici Definizione naïf di vettore Un vettore geometrico è un ente dotato di direzione, lunghezza e verso. Si

Dettagli

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1 Corso integrato di Matematica per le scienze naturali ed applicate Materiale integrativo Paolo Baiti 1 Lorenzo Freddi 1 1 Dipartimento di Matematica e Informatica, Università di Udine, via delle Scienze

Dettagli

G. Pareschi RELAZIONI D ORDINE

G. Pareschi RELAZIONI D ORDINE G. Pareschi RELAZIONI D ORDINE 1 Definizione 1.1. Sia X un insieme. Una relazione su X è detta una relazione d ordine o un ordinamento di X se è riflessiva, antisimmetrica e transitiva. Un insieme X, munito

Dettagli

1.1 Esempio. Siano A = {11, f, β,,, } e B = {x, 11,,,, α, γ} e le seguenti leggi:

1.1 Esempio. Siano A = {11, f, β,,, } e B = {x, 11,,,, α, γ} e le seguenti leggi: 1. Relazioni. 1 Dati due insiemi possiamo stabilire in modo del tutto arbitrario una legge che associ elementi di un insieme ad elementi dell altro insieme. Ovviamente, data la totale arbitrarietà di tale

Dettagli

Corso di ALGEBRA (M-Z) INSIEMI PARZIALMENTE ORDINATI E RETICOLI

Corso di ALGEBRA (M-Z) INSIEMI PARZIALMENTE ORDINATI E RETICOLI Corso di ALGEBRA (M-Z) 2013-14 INSIEMI PARZIALMENTE ORDINATI E RETICOLI Sia P un insieme non vuoto. Una relazione d ordine su P è una relazione riflessiva, antisimmetrica e transitiva. La coppia (P,) si

Dettagli

$marina/did/md

$marina/did/md Matematica Discreta (elementi) E-O CdL Informatica Insiemi (parzialmente) ordinati 10 dicembre 00 Marina Cazzola (marina@matapp.unimib.it) Dipartimento di Matematica e Applicazioni Università di Milano

Dettagli

DIARIO DEL CORSO DI ALGEBRA A A.A. 2015/16 DOCENTE: ANDREA CARANTI

DIARIO DEL CORSO DI ALGEBRA A A.A. 2015/16 DOCENTE: ANDREA CARANTI DIARIO DEL CORSO DI ALGEBRA A A.A. 2015/16 DOCENTE: ANDREA CARANTI Lezione 1. martedí 16 febbraio 2015 (2 ore) Presentazione del corso. Esercizio: cosa succede a moltiplicare per 2, 3, 4,... il numero

Dettagli

623 = , 413 = , 210 = , 203 =

623 = , 413 = , 210 = , 203 = Elementi di Algebra e Logica 2008. 3. Aritmetica dei numeri interi. 1. Determinare tutti i numeri primi 100 p 120. Sol. :) :) :) 2. (i) Dimostrare che se n 2 non è primo, allora esiste un primo p che divide

Dettagli

Precorsi di matematica

Precorsi di matematica Precorsi di matematica Francesco Dinuzzo 12 settembre 2005 1 Insiemi Il concetto di base nella matematica moderna è l insieme. Un insieme è una collezione di elementi. Gli elementi di un insieme vengono

Dettagli

Le relazioni tra due insiemi

Le relazioni tra due insiemi 1 Le relazioni tra due insiemi DEFINIZIONE. Quando tra due insiemi A e B si individua una proprietà che associa agli elementi di A gli elementi di B, tra i due insiemi si stabilisce una corrispondenza;

Dettagli

Indice. 1. Cenni di logica 2. Elementi di teoria degli insiemi 3. Relazioni e funzioni 4. Strutture algebriche. 1 Cenni di logica

Indice. 1. Cenni di logica 2. Elementi di teoria degli insiemi 3. Relazioni e funzioni 4. Strutture algebriche. 1 Cenni di logica Indice 1 Cenni di logica 2 Elementi di teoria degli insiemi 3 Relazioni e funzioni 4 Strutture algebriche Cenni di logica Dispongo queste quattro carte da gioco davanti a voi, due coperte e due scoperte

Dettagli

Tecniche di conteggio

Tecniche di conteggio Tecniche di conteggio 9 Ottobre 2003 Principio della somma Il numero di elementi dell unione di una famiglia di insiemi disgiunti è la somma del numero di elementi contenuti in ogni singolo insieme F =

Dettagli

Appunti del corso Fondamenti di Analisi e Didattica

Appunti del corso Fondamenti di Analisi e Didattica Appunti del corso Fondamenti di Analisi e Didattica (PAS 2013-2014, Classe A049, docente prof. L. Chierchia) redatti da: A. Damiani, V. Pantanetti, R. Caruso, M. L. Conciatore, C. De Maggi, E. Becce e

Dettagli

DIARIO DEL CORSO DI ALGEBRA A A.A. 2017/18 DOCENTE: ANDREA CARANTI

DIARIO DEL CORSO DI ALGEBRA A A.A. 2017/18 DOCENTE: ANDREA CARANTI DIARIO DEL CORSO DI ALGEBRA A A.A. 2017/18 DOCENTE: ANDREA CARANTI Nota. La descrizione di lezioni non ancora svolte si deve intendere come una previsione/pianificazione. Lezione 1. martedí 20 febbraio

Dettagli

Teoria dei Numeri. Lezione del 15/12/2009. Stage di Treviso Progetto Olimpiadi

Teoria dei Numeri. Lezione del 15/12/2009. Stage di Treviso Progetto Olimpiadi Teoria dei Numeri Lezione del 15/12/2009 Stage di Treviso Progetto Olimpiadi Criteri di Divisibilità 2: ultima cifra pari 3: somma (o somma della somma) delle cifre divisibile per 3 4: ultima due cifre

Dettagli

MATEMATICA DEL DISCRETO (Informatica) Docenti BONZINI e TURRINI esercizi di preparazione alla prova di metà corso

MATEMATICA DEL DISCRETO (Informatica) Docenti BONZINI e TURRINI esercizi di preparazione alla prova di metà corso MATEMATICA DEL DISCRETO (Informatica) Docenti BONZINI e TURRINI esercizi di preparazione alla prova di metà corso NOTA - Negli esercizi che seguono verranno adottate le seguenti notazioni: il simbolo Z

Dettagli

Logica per la Programmazione

Logica per la Programmazione Logica per la Programmazione Lezione 4 Dimostrazione di Implicazioni Tautologiche Principio di sostituzione per l implicazione Occorrenze positive e negative Altre tecniche di dimostrazione Forme Normali

Dettagli

Ottimizzazione Combinatoria Proprietà dei Grafi. Ottimizzazione Combinatoria

Ottimizzazione Combinatoria Proprietà dei Grafi. Ottimizzazione Combinatoria Ottimizzazione Combinatoria Ottimizzazione Combinatoria Proprietà dei Grafi ANTONIO SASSANO Università di Roma La Sapienza Dipartimento di Informatica e Sistemistica Corso di Laurea in Ingegneria Gestionale

Dettagli

NON SFOGLIARE IL TESTO PRIMA CHE VENGA DATO UFFICIAMENTE INIZIO ALLA PROVA DAL DOCENTE

NON SFOGLIARE IL TESTO PRIMA CHE VENGA DATO UFFICIAMENTE INIZIO ALLA PROVA DAL DOCENTE AL110 - Algebra 1 - A.A. 2014/2015 Valutazione in itinere - I Prova (Novembre 2014) Matricola (O ALTRO IDENTIFICATIVO) Cognome:...................................... Nome:......................................

Dettagli

Programma definitivo del corso MATEMATICA DISCRETA C.L.T. Informatica (A) a.a. 2016/17. SITO UFFICIALE:

Programma definitivo del corso MATEMATICA DISCRETA C.L.T. Informatica (A) a.a. 2016/17. SITO UFFICIALE: Programma definitivo del corso MATEMATICA DISCRETA C.L.T. Informatica (A) a.a. 2016/17 DOCENTE: LUIGIA DI TERLIZZI SITO UFFICIALE: http://www.dm.uniba.it/ diterlizzi anno di corso: primo semestre: primo

Dettagli

Seconda prova in itinere. Logica e Algebra. 10 luglio Esercizio 1 Si considerino le seguenti formule della logica del primo ordine:

Seconda prova in itinere. Logica e Algebra. 10 luglio Esercizio 1 Si considerino le seguenti formule della logica del primo ordine: Seconda prova in itinere Logica e Algebra luglio 5 Esercizio Si considerino le seguenti formule della logica del primo ordine: a) x y A x, aa y, a A f x, y, b) z A f x, z, b c) x y A x, aa y, a A f x,

Dettagli

Capitolo 1. Gli strumenti. 1.1 Relazioni

Capitolo 1. Gli strumenti. 1.1 Relazioni Capitolo 1 Gli strumenti Consideriamo un insieme X. In geometria siamo abituati a considerare insiemi i cui elementi sono punti ad esempio, la retta reale, il piano cartesiano. Più in generale i matematici

Dettagli

VETTORI. OPERAZIONI CON I VETTORI. RAPPRESENTAZIONE CARTESIANA DEI VETTORI. APPLICAZIONI.

VETTORI. OPERAZIONI CON I VETTORI. RAPPRESENTAZIONE CARTESIANA DEI VETTORI. APPLICAZIONI. VETTORI. OPERAZIONI CON I VETTORI. RAPPRESENTAZIONE CARTESIANA DEI VETTORI. APPLICAZIONI. Sia AB un segmento orientato. Ad esso è possibile associare: 1) la direzione, cioè la direzione della retta su

Dettagli

Università degli Studi di Roma Tor Vergata Corso di Laurea in Matematica. Argomenti: spazi vettoriali di vettori geometrici, relazioni

Università degli Studi di Roma Tor Vergata Corso di Laurea in Matematica. Argomenti: spazi vettoriali di vettori geometrici, relazioni Università degli Studi di oma Tor Vergata Corso di Laurea in Matematica Geometria 1 a.a. 016-17 seconda settimana rgomenti: spazi vettoriali di vettori geometrici, relazioni.1) Nel piano euclideo, considera

Dettagli

Formali. Corso di Automi e Linguaggi. Gennaio- Marzo Docente: Francesca Rossi,

Formali. Corso di Automi e Linguaggi. Gennaio- Marzo Docente: Francesca Rossi, Corso di Automi e Linguaggi Formali Gennaio- Marzo 2004 Docente: Francesca Rossi, frossi@math.unipd.it Corso di Automi e Linguaggi Formali Gennaio-Marzo 2004 p.1/30 Dati del corso Orario: Lunedi 15:50-17:30,

Dettagli

NON SFOGLIARE IL TESTO PRIMA CHE VENGA DATO UFFICIAMENTE INIZIO ALLA PROVA DAL DOCENTE

NON SFOGLIARE IL TESTO PRIMA CHE VENGA DATO UFFICIAMENTE INIZIO ALLA PROVA DAL DOCENTE AL110 - Algebra 1 - A.A. 2014/2015 Appello B (Febbraio 2015) Matricola (O ALTRO IDENTIFICATIVO) Cognome:...................................... Nome:...................................... esercizio 1.1

Dettagli

Programma del Corso di Matematica Discreta (Elementi) anno accademico 2005/2006

Programma del Corso di Matematica Discreta (Elementi) anno accademico 2005/2006 Programma del Corso di Matematica Discreta (Elementi) lettere M-Z anno accademico 2005/2006 2 febbraio 2006 1. Logica 2. Insiemi e Funzioni 3. Numeri naturali 4. Numeri interi 5. Relazioni 6. Classi di

Dettagli

ELEMENTI di TEORIA degli INSIEMI

ELEMENTI di TEORIA degli INSIEMI ELEMENTI di TEORI degli INSIEMI & 1. Nozioni fondamentali. ssumeremo come primitivi il concetto di insieme e di elementi di un insieme. Nel seguito gli insiemi saranno indicati con lettere maiuscole (,,C,...)

Dettagli

1 o ESONERO DI ALGEBRA (Studenti di Informatica canale D Andrea) 7 novembre 2018

1 o ESONERO DI ALGEBRA (Studenti di Informatica canale D Andrea) 7 novembre 2018 1 o ESONERO DI ALGEBRA (Studenti di Informatica canale D Andrea) 7 novembre 2018 Cognome e Nome: Matricola: L iniziale del mio cognome è compresa tra A e L. 1. Dire quali dei seguenti sottoinsiemi H G

Dettagli

NON SFOGLIARE IL TESTO PRIMA CHE VENGA DATO UFFICIAMENTE INIZIO ALLA PROVA DAL DOCENTE

NON SFOGLIARE IL TESTO PRIMA CHE VENGA DATO UFFICIAMENTE INIZIO ALLA PROVA DAL DOCENTE AL110 - Algebra 1 - A.A. 2011/2012 Valutazione in itinere - I Prova Cognome:...................................... Nome:...................................... Matricola (O ALTRO IDENTIFICATIVO) UTILIZZARE

Dettagli

Strutture algebriche. Leggi di composizione. Leggi di composizione. Gruppi Insiemi di numeri Polinomi

Strutture algebriche. Leggi di composizione. Leggi di composizione. Gruppi Insiemi di numeri Polinomi Introduzione S S S S Le strutture algebriche sono date da insiemi con leggi di composizione binarie (operazioni) ed assiomi (proprietà) Una legge di composizione binaria è una funzione : I J K, una legge

Dettagli

Congruenze e Classi. Gregorio D Agostino. 24 marzo 2017

Congruenze e Classi. Gregorio D Agostino. 24 marzo 2017 Congruenze e Classi Gregorio D Agostino 24 marzo 2017 Equivalenze Equivalenza Un equivalenza è una relazione tra gli elementi di un insieme che gode di tre proprietà: Riflessiva: Ogni elemento è equivalente

Dettagli

Errata corrige del libro Introduzione alla logica e al linguaggio matematico

Errata corrige del libro Introduzione alla logica e al linguaggio matematico Errata corrige del libro Introduzione alla logica e al linguaggio matematico 28 gennaio 2009 Capitolo 1 Pag. 7, Definizione 6. Il complemento di un sottoinsieme A di I è il sottoinsieme A = {x I : x /

Dettagli

Risposte non motivate non verranno giudicate

Risposte non motivate non verranno giudicate Istituzioni di Matematiche 12/01/2016 Ver.1 SECONDO PARZIALE Gli studenti della laurea quadriennale svolgono gli esercizi 1,2,3,5 e gli studenti della laurea quinquennale gli esercizi 1,2,3,4 1. 2. 3.

Dettagli

INSIEMI ORDINATI, RETICOLI. N.B.: il simbolo contrassegna gli esercizi (relativamente) più complessi.

INSIEMI ORDINATI, RETICOLI. N.B.: il simbolo contrassegna gli esercizi (relativamente) più complessi. ESERCIZI SU INSIEMI ORDINATI, RETICOLI N.B.: il simbolo contrassegna gli esercizi relativamente più complessi. Siano E ed E due insiemi non vuoti, nei quali siano date rispettivamente la relazione ω e

Dettagli

Relazioni e funzioni

Relazioni e funzioni Relazioni e funzioni Relazioni binarie Ogni sottoinsieme del prodotto cartesiano tra due insiemi e è una relazione binaria tra e. Se = si parla di relazione in un insieme Rappresentazione Elencazione Proprietà

Dettagli

interpretazione astratta

interpretazione astratta interpretazione astratta Cosimo Laneve interpretazione astratta una tecnica utilizzata da 30 anni (Patrick e Radhia Cousot nel 1977) per trattare in modo sistematico astrazioni e approssimazioni nata per

Dettagli

1 Relazione di congruenza in Z

1 Relazione di congruenza in Z 1 Relazione di congruenza in Z Diamo ora un esempio importante di relazione di equivalenza: la relazione di congruenza modn in Z. Definizione 1 Sia X = Z, a,b Z ed n un intero n > 1. Si dice a congruo

Dettagli

RELAZIONI, FUNZIONI, INSIEMI NUMERICI. 1. Relazioni. Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano

RELAZIONI, FUNZIONI, INSIEMI NUMERICI. 1. Relazioni. Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano RELAZIONI, FUNZIONI, INSIEMI NUMERICI C. FRANCHI 1. Relazioni Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano X Y := {(x, y) x X, y Y } dove con (x, y) si intende la coppia ordinata

Dettagli

Algebra delle matrici

Algebra delle matrici Algebra delle matrici Metodo di Gauss-Jordan per l inversione di una matrice. Nella lezione scorsa abbiamo visto che un modo per determinare l eventuale inversa di una matrice quadrata A consiste nel risolvere

Dettagli

ERRATA CORRIGE e AGGIUNTE: Traccia delle lezioni del corso di Analisi Matematica 2, A.A. 2013/14, aggiornata il 04 novembre 2013

ERRATA CORRIGE e AGGIUNTE: Traccia delle lezioni del corso di Analisi Matematica 2, A.A. 2013/14, aggiornata il 04 novembre 2013 1 ERRATA CORRIGE e AGGIUNTE: Traccia delle lezioni del corso di Analisi Matematica 2, A.A. 2013/14, aggiornata il 04 novembre 2013 p. 2, riga 5 della Osservazione: sostituire modulo norma p. 5, prima dimostrazione:

Dettagli

Proposizione 1 Sia (G, ) un gruppo, g G. delle seguenti possibilità: Allora si ha una. 1. h, k Z g h g k < g > è infinito

Proposizione 1 Sia (G, ) un gruppo, g G. delle seguenti possibilità: Allora si ha una. 1. h, k Z g h g k < g > è infinito Proposizione 1 Sia (G, ) un gruppo, g G. delle seguenti possibilità: Allora si ha una 1. h, k Z g h g k < g > è infinito 2. h, k Z g h = g k < g > è finito. Definizione 2 Sia (G, ) un gruppo, g G. Si dice

Dettagli

LIBRO ADOTTATO. G.M. PIACENTINI CATTANEO: MATEMATICA DISCRETA, ed. ZANICHELLI LIBRI CONSIGLIATI

LIBRO ADOTTATO. G.M. PIACENTINI CATTANEO: MATEMATICA DISCRETA, ed. ZANICHELLI LIBRI CONSIGLIATI LIBRO ADOTTATO G.M. PIACENTINI CATTANEO: MATEMATICA DISCRETA, ed. ZANICHELLI LIBRI CONSIGLIATI A. FACCHINI: ALGEBRA E MATEMATICA DISCRETA, ed. ZANICHELLI M.G. BIANCHI, A. GILLIO: INTRODUZIONE ALLA MA-

Dettagli

Fondamenti di Informatica B

Fondamenti di Informatica B Fondamenti di Informatica B Lezione n.3 Fondamenti di Informatica B Forme canoniche Trasformazioni Esercizi In questa lezione verranno considerate le proprietà dell'algebra booleana che saranno poi utili

Dettagli

Richiami di Matematica. 1. Insiemi, relazioni, funzioni. 2. Cardinalitá degli insiemi infiniti e numerabilitá. 3. Notazione asintotica.

Richiami di Matematica. 1. Insiemi, relazioni, funzioni. 2. Cardinalitá degli insiemi infiniti e numerabilitá. 3. Notazione asintotica. Richiami di Matematica 1. Insiemi, relazioni, funzioni. 2. Cardinalitá degli insiemi infiniti e numerabilitá. 3. Notazione asintotica. Insiemi Definizioni di base Dato un insieme A: x A: elemento x appartenente

Dettagli

LOGICA E ALGEBRA. 8 settembre 2014 PARTE DI ALGEBRA. (m,n) R (p,q) se e solo m q = n p

LOGICA E ALGEBRA. 8 settembre 2014 PARTE DI ALGEBRA. (m,n) R (p,q) se e solo m q = n p LOGICA E ALGEBRA 8 settembre 014 PARTE DI ALGEBRA Esercizio 1 Si consideri l insieme X = (,1),(1,8),(1,10),(5,0),(,16),(,0),(6,48),(,18) e la relazione R su X così definita (m, R (p,q) se e solo m q =

Dettagli

1. Le Relazioni Le Funzioni Dominio, Codominio, variabili Funzioni iniettive, suriettive, biiettive...

1. Le Relazioni Le Funzioni Dominio, Codominio, variabili Funzioni iniettive, suriettive, biiettive... Sommario 1. Le Relazioni... 2 2. Le Funzioni... 4 2.1. Dominio, Codominio, variabili... 5 2.2. Funzioni iniettive, suriettive, biiettive... 5 D.ssa Mimma Errichiello Secondo anno - Appunti di Algebra Lezione

Dettagli

LOGICA MATEMATICA. Canale E O a.a Docente: C. Malvenuto Primo compito di esonero 10 novembre 2006

LOGICA MATEMATICA. Canale E O a.a Docente: C. Malvenuto Primo compito di esonero 10 novembre 2006 LOGICA MATEMATICA Canale E O a.a. 2006 07 Docente: C. Malvenuto Primo compito di esonero 10 novembre 2006 Istruzioni. Completare subito la parte inferiore di questa pagina con il proprio nome, cognome

Dettagli

AL210 - Appunti integrativi - 3

AL210 - Appunti integrativi - 3 AL210 - Appunti integrativi - 3 Prof. Stefania Gabelli - a.a. 2016-2017 Nello studio delle strutture algebriche, sono interessanti le relazioni che sono compatibili con le operazioni. Vogliamo dimostrare

Dettagli

Elementi di Algebra e di Matematica Discreta Strutture algebriche: gruppi

Elementi di Algebra e di Matematica Discreta Strutture algebriche: gruppi Elementi di Algebra e di Matematica Discreta Strutture algebriche: gruppi Cristina Turrini UNIMI - 2015/2016 Cristina Turrini (UNIMI - 2015/2016) Elementi di Algebra e di Matematica Discreta 1 / 34 index

Dettagli

LOGICA E ALGEBRA. 5 febbraio Parte di Logica

LOGICA E ALGEBRA. 5 febbraio Parte di Logica LOGICA E ALGEBRA 5 febbraio 2016 Parte di Logica In logica proposizionale siano A,B,C le formule di un opportuno linguaggio proposizionale che traducono le frasi Se Carlo ha vinto la gara, allora Mario

Dettagli

ELEMENTI DI GEOMETRIA EUCLIDEA NELLO SPAZIO

ELEMENTI DI GEOMETRIA EUCLIDEA NELLO SPAZIO LICEO SCIENTIFICO L.B. ALBERTI - MINTURNO ELEMENTI DI GEOMETRIA EUCLIDEA NELLO SPAZIO a cura del Prof. Gionta Filippo LO SPAZIO EUCLIDEO Lo spazio euclideo è un insieme infinito di elementi detti punti

Dettagli