5 PROGRAMMAZIONE LINEARE INTERA (PLI) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "5 PROGRAMMAZIONE LINEARE INTERA (PLI) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1"

Transcript

1 5 PROGRAMMAZIONE LINEARE INTERA (PLI) E. Amaldi Fondamenti di R.O. Politecnico di Milano

2 Programma lineare intero: (PLI) min c T x Ax b x 0 intero Ipotesi: A, b interi La condizione di interezza non è lineare: sin (π x j ) = 0 j Se x j {0, } j, PL binaria Se non tutte x j intere, PL mista E. Amaldi Fondamenti di R.O. Politecnico di Milano 2

3 Esempio: max z = 2x + x 2 7x + 4x 2 3 x, x 2 0 interi 3 x 2 sol. ottima PL con z PL = sol. ottima PLI con z PLI = 33 Eliminando i vincoli di interezza PL con valore ottimo z PL 2 7x + 4x 2 =3 Regione soluzioni ammissibili PLI = reticolo (finito o infinito) E. Amaldi Fondamenti di R.O. Politecnico di Milano x

4 Def.: Sia z PLI max c T x Ax b (PLI) x 0 intero X PLI Il problema z PL max c T x (PL) Ax b x 0 èil rilassamento continuo. X PL X PLI Proprietà: Per qualsiasi PLI di max si ha z PL z PLI, z PL fornisce un limite superiore al valore ottimo del PLI. NB: Se PLI di min, allora z PL z PLI E. Amaldi Fondamenti di R.O. Politecnico di Milano 4

5 Idea: rilassare i vincoli d interezza di (PLI) e arrotondare la soluzione ottima del rilassamento continuo (PL). Se una sol. ottima di (PL) è intera allora è anche una sol. ottima del (PLI). Spesso però la soluzione arrotondata è: - inammassibile per PLI - inutile (molto diversa dalla soluzione ottima del PLI) E. Amaldi Fondamenti di R.O. Politecnico di Milano 5

6 - Soluzioni non ammissibili c ottimo PL non ammissibili! ottimo PLI - Soluzioni arrotondate inutili Quando le variabili assumono dei valori piccoli all ottimo (ordine delle unità) Ad es. variabili binarie di assegnamento (job alle macchine) o di costruzione (impianti) E. Amaldi Fondamenti di R.O. Politecnico di Milano 6

7 - Soluzioni arrotondate utili Quando le variabili assumono dei valori elevati all ottimo Ad es. quantità di pezzi da produrre NB: dipende anche dai costi unitari (coefficienti della funzione obiettivo) E. Amaldi Fondamenti di R.O. Politecnico di Milano 7

8 Problema dello zaino ( knapsack ) n p j v j b oggetti j =,, n profitto (valore) oggetto j volume (peso) oggetto j capacità massima dello zaino Determinare un sottoinsieme di oggetti che massimizzi il profitto totale senza eccedere la capacità. Variabili: x j = j-esimo oggetto selezionato 0 altrimenti E. Amaldi Fondamenti di R.O. Politecnico di Milano 8

9 max n j= n j= p j x v j x j j b x j {0,} j Numerose applicazioni dirette o indirette: - caricamento (contenitori, veicoli, file, ) - investimenti (p j = redditività, w j = capitale, b = disponibilità) - come sottoproblema E. Amaldi Fondamenti di R.O. Politecnico di Milano 9

10 Problema di assegnamento m persone i =,, m m incarichi j =,, m c ij costo di assegnamento dell incarico j alla persona i Determinare un assegnamento degli incarichi alle persone che minimizzi il costo totale. E. Amaldi Fondamenti di R.O. Politecnico di Milano 0

11 Variabili: x ij = persona i svolge incarico j 0 altrimenti min m m i = j = c ij x ij m i= m x ij = j =,, m una persona per ogni incarico x ij = i =,, m j= x ij {0,} i, j un incarico per ogni persona E. Amaldi Fondamenti di R.O. Politecnico di Milano

12 Problema del trasporto (monoprodotto) m impianti produttivi i =,, m n clienti j =,, n c ij p i d j costo di trasporto di una unità di prodotto dall impianto i al cliente j disponibilità max di prodotto presso l impianto i domanda cliente j q ij massima quantità trasportabile da i a j Determinare un piano di trasporto che minimizzi i costi rispettando le domande e i limiti di disponibilità. E. Amaldi Fondamenti di R.O. Politecnico di Milano 2

13 Ipotesi: m i= p i d n j= Variabili: x ij = quantità trasportata da i a j j min m n i= j= c ij x ij n j= m i= x x ij ij p d i j i =,, m j =,, n vincoli di disponibilità vincoli di domanda 0 x ij q ij i, j intere vincoli di capacità E. Amaldi Fondamenti di R.O. Politecnico di Milano 3

14 Particolarità dei problemi di trasporto e assegnamento: Soluzione ottima del rilassamento continuo soluzione ottima del PLI! Proprietà: Se termini noti interi, tutte le soluzioni di base ammissibili (vertici) del rilassamento continuo sono intere. Matrice m n intera A dei vincoli è speciale ( per trasporto a ij {-, 0, } con esattamente tre coefficienti 0 in ogni colonna ) vettore b dei termini noti intero. E. Amaldi Fondamenti di R.O. Politecnico di Milano 4

15 Soluzione ottima del rilassamento continuo: x * = B 0 b B = det B ( ) α... α m α... α, m mm T ove α ij = (-) i+j det(m ij ) con M ij sottomatrice ottenuta da B eliminando riga i e colonna j B intera α ij interi se det(b) = ± B - intera x * intero In realtà A è totalmente unimodulare, ovvero det(q) = {-,0,} sottomatrice quadrata di A E. Amaldi Fondamenti di R.O. Politecnico di Milano 5

16 Problema di sequenziamento ottimo ( scheduling ) m macchine k =,, m n articoli j =,, n per ogni articolo j : d j = data limite di consegna p jk = tempo di lavorazione di j sulla k-esima macchina Ipotesi: ogni articolo deve passare su ogni macchina secondo ordine degli indici, 2,, m Determinare la sequenza ottimale di lavorazione degli articoli in modo da minimizzare il tempo complessivo rispettando le scadenze. E. Amaldi Fondamenti di R.O. Politecnico di Milano 6

17 Variabili decisione: t jk = istante di inizio lavorazione articolo j sulla macchina k t = istante di completamento di tutti gli articoli y ijk = se lavorazione articolo i precede quella di j sulla macchina k 0 altrimenti e poniamo M n d j j= E. Amaldi Fondamenti di R.O. Politecnico di Milano 7

18 min t t jm + p jm t j tempo complessivo t t jm + p jm d j j rispetto date di consegna t ik + p ik t jk + M (-y ijk ) i,j,k i < j (*) t jk + p jk t ik + M y ijk i,j,k i < j (**) t jk + p jk t j,k+ j,k =,, m- t 0, t jk 0 j,k y ijk {0,} i,j,k lavorazioni nell ordine previsto PLI misto E. Amaldi Fondamenti di R.O. Politecnico di Milano 8

19 (*) e (**) impediscono lavorazioni simultanee di 2 ordini sulla stessa macchina (*) attivo quando y ijk = (i precede j su k) e impone che i sia terminato prima che inizi j (su k) (**) attivo quando y ijk = 0 (j precede i su k) e impone che j sia terminato prima che inizi i (su k) Formulazione si può estendere al caso in cui ogni articolo j deve passare sulle m macchine (o un sottoinsieme di esse) secondo un ordine diverso. E. Amaldi Fondamenti di R.O. Politecnico di Milano 9

20 La maggior parte dei problemi di PLI sono NP-difficili algoritmi efficaci come quello del simplesso se algoritmo polinomiale P = NP! Metodi di tipo enumerazione implicita piani di taglio estremamente improbabile esatti (ottimo globale) euristiche ( greedy, ricerca locale, ) approssimati (ottimo locale) E. Amaldi Fondamenti di R.O. Politecnico di Milano 20

21 Metodi di enumerazione implicita esplorano tutte le soluzioni ammissibile in parte esplicitamente e implicitamente. metodo di Branch & Bound programmazione dinamica (cf. cammini ottimi nei grafi senza circuiti) E. Amaldi Fondamenti di R.O. Politecnico di Milano 2

3.3 Problemi di PLI facili

3.3 Problemi di PLI facili 3.3 Problemi di PLI facili Consideriamo un generico problema di PLI espresso in forma standard min{c t x : Ax = b, x Z n +} (1) dove A Z m n con n m, e b Z m. Supponiamo che A sia di rango pieno. Sia P

Dettagli

Ricerca Operativa A.A. 2007/ Esercitazione di laboratorio: Branch and Bound.

Ricerca Operativa A.A. 2007/ Esercitazione di laboratorio: Branch and Bound. Ricerca Operativa A.A. 2007/2008 17. Esercitazione di laboratorio: Branch and Bound. Luigi De Giovanni - Ricerca Operativa - 17. Esercitazione di laboratorio: Branch and Bound 17.1. Luigi De Giovanni -

Dettagli

Ricerca Operativa A.A. 2007/ Esercitazione di laboratorio: Branch and Bound.

Ricerca Operativa A.A. 2007/ Esercitazione di laboratorio: Branch and Bound. Ricerca Operativa A.A. 2007/2008 17. Esercitazione di laboratorio: Branch and Bound. Luigi De Giovanni - Ricerca Operativa - 17. Esercitazione di laboratorio: Branch and Bound 17.1 . Luigi De Giovanni

Dettagli

Problemi di Ottimizzazione

Problemi di Ottimizzazione Problemi di Ottimizzazione Obiettivo: misura della qualità di una soluzione. Vincoli: condizioni che devono essere soddisfatte per ottenere una soluzione ammissibile. Problema di Ottimizzazione: determina

Dettagli

5.1 Metodo Branch and Bound

5.1 Metodo Branch and Bound 5. Metodo Branch and Bound Consideriamo un generico problema di ottimizzazione min{ c(x) : x X } Idea: Ricondurre la risoluzione di un problema difficile a quella di sottoproblemi più semplici effettuando

Dettagli

ALGORITMI DI OTTIMIZZAZIONE M Esercizi Parte I

ALGORITMI DI OTTIMIZZAZIONE M Esercizi Parte I ALGORITMI DI OTTIMIZZAZIONE M Esercizi Parte I Esercizio 1 Dati n oggetti ed un contenitore, ad ogni oggetto j (j = 1,, n) sono associati un peso p j ed un costo c j (con p j e c j interi positivi). Si

Dettagli

5.1 Metodo Branch and Bound

5.1 Metodo Branch and Bound 5. Metodo Branch and Bound Si consideri il problema min{ c(x) : x X } Idea: Ricondurre la risoluzione di un problema difficile a quella di sottoproblemi più semplici effettuando una partizione (ricorsiva)

Dettagli

5.3 Metodo dei piani di taglio

5.3 Metodo dei piani di taglio 5.3 Metodo dei piani di taglio (PLI) min s.v. c T x Ax b x interi X Ipotesi: a ij, c j e b i interi Osservazione: La regione ammissibile di un PLI può essere descritta mediante dei vincoli più o meno stringenti

Dettagli

4 PROGRAMMAZIONE LINEARE (PL) E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 1

4 PROGRAMMAZIONE LINEARE (PL) E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 1 4 PROGRAMMAZIONE LINEARE (PL) E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 1 Problemi di programmazione matematica: min f () s.v. X n insieme delle soluzioni ammissibili con funzione obiettivo

Dettagli

Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano

Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano Capitolo 3: Ottimizzazione Discreta E. Amaldi DEI, Politecnico di Milano 3.1 Modelli di PLI e PLMI Moltissimi problemi decisionali complessi possono essere formulati come problemi di Programmazione Lineare

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Problema dell assegnamento e matrici totalmente unimodulari

Metodi e Modelli per l Ottimizzazione Combinatoria Problema dell assegnamento e matrici totalmente unimodulari Metodi e Modelli per l Ottimizzazione Combinatoria Problema dell assegnamento e matrici totalmente unimodulari L. De Giovanni G. Zambelli 1 Problema dell assegnamento Sia dato un grafo non orientato bipartito

Dettagli

Ricerca Operativa. G. Liuzzi. Lunedí 20 Aprile 2015

Ricerca Operativa. G. Liuzzi. Lunedí 20 Aprile 2015 1 Lunedí 20 Aprile 2015 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Rilassamento di un problema Rilassare un problema di Programmazione Matematica vuol dire trascurare alcuni (tutti i)

Dettagli

4 PROGRAMMAZIONE LINEARE (PL) E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 1

4 PROGRAMMAZIONE LINEARE (PL) E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 1 4 PROGRAMMAZIONE LINEARE (PL) E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 1 Problemi di programmazione matematica: min s.v. f () X n dove X è la regione delle soluzioni ammissibili con funzione

Dettagli

max z = c T x s.t. Ax b

max z = c T x s.t. Ax b 3 PROGRAMMAZIONE LINEARE A NUMERI INTERI 51 3 Programmazione lineare a numeri interi 3.1 Problemi lineari interi Dato il problema lineare ordinario (PLO): aggiungendo la condizione di integrità: max z

Dettagli

I Appello Ricerca Operativa 2 bis Compito A

I Appello Ricerca Operativa 2 bis Compito A I Appello Ricerca Operativa 2 bis Compito A Cognome e nome:. Esercizio 1. Si consideri il problema del matching di cardinalità massima in un grafo G ed il suo problema di decisione associato: esiste un

Dettagli

Programmazione Lineare Intera

Programmazione Lineare Intera Programmazione Lineare Intera Andrea Scozzari a.a. 2012-2013 May 10, 2013 Andrea Scozzari (a.a. 2012-2013) Programmazione Lineare Intera May 10, 2013 1 / 16 Programmazione Lineare Intera: Metodo dei Piani

Dettagli

Soluzione dei problemi di Programmazione Lineare Intera

Soluzione dei problemi di Programmazione Lineare Intera Fondamenti di Ricerca Operativa T-A a.a. 2014-2015 Soluzione dei problemi di Programmazione Lineare Intera Andrea Lodi, Enrico Malaguti, Daniele Vigo rev. 1.1.a ottobre 2014 Fondamenti di Ricerca Operativa

Dettagli

4.5 Metodo del simplesso

4.5 Metodo del simplesso 4.5 Metodo del simplesso min z = c T x s.v. Ax = b x 0 PL in forma standard Esamina una sequenza di soluzioni di base ammissibili con valori non crescenti della funzione obiettivo fino a raggiungerne una

Dettagli

5.5 Metodi dei piani di taglio

5.5 Metodi dei piani di taglio 5.5 Metodi dei piani di taglio Problema generale di Programmazione Lineare Intera (PLI) max{c t x : x X} dove X = {x Z n + : Ax b}, con A matrice m n e b vettore n 1 razionali Proposizione: conv(x) = {x

Dettagli

4.5 Metodo del simplesso

4.5 Metodo del simplesso 4.5 Metodo del simplesso min z = c T x s.v. Ax = b x PL in forma standard Esamina una sequenza di soluzioni di base ammissibili con valori non crescenti della funzione obiettivo fino a raggiungerne una

Dettagli

Formulazioni. Consideriamo il seguente problema di Knapsack 0-1. max (5x x 2. ) st 3x x 2. < 6 x {0,1} 2

Formulazioni. Consideriamo il seguente problema di Knapsack 0-1. max (5x x 2. ) st 3x x 2. < 6 x {0,1} 2 Formulazioni Consideriamo il seguente problema di Knapsack 0-1 max (5x 1 + 2x 2 ) st 3x 1 + 4x 2 < 6 x {0,1} 2 Insiemi ammissibili F = {(0, 0), (0, 1), (1, 0)} Rappresentiamo sul piano gli insiemi ammissibili.

Dettagli

Introduzione al Column Generation Caso di Studio: il Bin Packing Problem

Introduzione al Column Generation Caso di Studio: il Bin Packing Problem Introduzione al Column Generation Caso di Studio: il Bin Packing Problem November 15, 2014 1 / 26 Introduzione Il column generation è una metodologia che può essere usata per risolvere problemi di ottimizzazione

Dettagli

RICERCA OPERATIVA (a.a. 2018/19)

RICERCA OPERATIVA (a.a. 2018/19) Secondo appello //9 RICERCA OPERATIVA (a.a. 8/9) Nome: Cognome: Matricola: ) Si consideri il seguente problema di PL: min y + y y y y y = y + y y = y, y, y, y Si verifichi se la soluzione ȳ =,,, sia ottima

Dettagli

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Scopo: Stimare l onere computazionale per risolvere problemi di ottimizzazione e di altra natura

Dettagli

4.3 Esempio metodo del simplesso

4.3 Esempio metodo del simplesso 4.3 Esempio metodo del simplesso (P ) min -5x 4x 2 3x 3 s.v. 2x + 3x 2 + x 3 5 4x + x 2 + 2x 3 3x + 4x 2 + 2x 3 8 x, x 2, x 3 Per mettere il problema in forma standard si introducono le variabili di scarto

Dettagli

Soluzione dei problemi di Programmazione Lineare Intera

Soluzione dei problemi di Programmazione Lineare Intera Fondamenti di Ricerca Operativa T-A a.a. 2015-2016 Soluzione dei problemi di Programmazione Lineare Intera Andrea Lodi, Enrico Malaguti, Paolo Tubertini, Daniele Vigo rev. 2. ottobre 2016 Fondamenti di

Dettagli

5.5 Metodi generali per la soluzione di problemi

5.5 Metodi generali per la soluzione di problemi 5.5 Metodi generali per la soluzione di problemi di PLI I problemi di PLI hanno caratteristiche molto diverse dai problemi di PL. In alcuni casi, la soluzione del problema lineare rilassato, ottenuto cioè

Dettagli

Parte IV: Matrici totalmente unimodulari

Parte IV: Matrici totalmente unimodulari Parte IV: Matrici totalmente unimodulari Formulazioni Consideriamo il seguente problema di Knapsack 0-1 max (5x 1 + 2x 2 ) st 3x 1 + 4x 2 < 6 x {0,1} 2 Insiemi ammissibili F = {(0, 0), (0, 1), (1, 0)}

Dettagli

METODI DELLA RICERCA OPERATIVA

METODI DELLA RICERCA OPERATIVA Università degli Studi di Cagliari FACOLTA' DI INGEGNERIA CORSO DI METODI DELLA RICERCA OPERATIVA Dott.ing. Massimo Di Francesco (mdifrance@unica.it) i i Dott.ing. Maria Ilaria Lunesu (ilaria.lunesu@unica.it)

Dettagli

Programmazione Lineare Intera: Piani di Taglio

Programmazione Lineare Intera: Piani di Taglio Programmazione Lineare Intera: Piani di Taglio Andrea Scozzari a.a. 2014-2015 April 22, 2015 Andrea Scozzari (a.a. 2014-2015) Programmazione Lineare Intera: Piani di Taglio April 22, 2015 1 / 23 Programmazione

Dettagli

4.3 Esempio metodo del simplesso

4.3 Esempio metodo del simplesso 4.3 Esempio metodo del simplesso (P ) min -5x 4x 2 3x 3 s.v. 2x + 3x 2 + x 3 5 4x + x 2 + 2x 3 3x + 4x 2 + 2x 3 8 x, x 2, x 3 Per mettere il problema in forma standard si introducono le variabili di scarto

Dettagli

Macchine parallele M 1 M 2 M 3 J 1 J 2 LAVORI J 3 J 4

Macchine parallele M 1 M 2 M 3 J 1 J 2 LAVORI J 3 J 4 Macchine parallele M 1 J 1 J 2 LAVORI M 2 J 3 J 4 M 3 Macchine parallele Scheduling su macchine parallele scorrelate R C max Descrizione del problema n lavori devono essere processati da m macchine diverse

Dettagli

2. Si definisca un algoritmo euristico di tipo greedy per determinare una buona soluzione ammissibile del problema;

2. Si definisca un algoritmo euristico di tipo greedy per determinare una buona soluzione ammissibile del problema; Esercizio 6 Un azienda di trasporti deve affrontare il seguente problema di caricamento. L azienda dispone di n prodotti che possono essere trasportati e di m automezzi con cui effettuare il trasporto.

Dettagli

Lezioni di Ricerca Operativa

Lezioni di Ricerca Operativa Lezioni di Ricerca Operativa Massimo Paolucci Dipartimento di Informatica, Sistemistica e Telematica (DIST) Università di Genova paolucci@dist.unige.it http://www.dattero.dist.unige.it Anno accademico

Dettagli

Teoria della Programmazione Lineare Intera

Teoria della Programmazione Lineare Intera Teoria della Programmazione Lineare Intera Laura Galli Dipartimento di Informatica Largo B. Pontecorvo, 567 Pisa laura.galli@unipi.it http://www.di.unipi.it/~galli 7 Ottobre 0 Ricerca Operativa Laurea

Dettagli

Macchine parallele M 1 M 2 M 3 J 1 J 2 LAVORI J 3 J 4

Macchine parallele M 1 M 2 M 3 J 1 J 2 LAVORI J 3 J 4 Macchine parallele M 1 J 1 J 2 LAVORI M 2 J 3 J 4 M 3 Macchine parallele Scheduling su macchine parallele scorrelate R C max Descrizione del problema n lavori devono essere processati da m macchine diverse

Dettagli

3.6 Metodi basati sui piani di taglio

3.6 Metodi basati sui piani di taglio 3.6 Metodi basati sui piani di taglio Problema generale di Programmazione Lineare Intera (PLI) con A matrice m n e b vettore n 1 razionali min{ c t x : x X = {x Z n + : Ax b} } Sappiamo che esiste una

Dettagli

3.4 Metodo di Branch and Bound

3.4 Metodo di Branch and Bound 3.4 Metodo di Branch and Bound Consideriamo un generico problema di Ottimizzazione Discreta dove X è la regione ammissibile. (P ) z = max{c(x) : x X} Metodologia generale di enumerazione implicita (Land

Dettagli

Algoritmi esatti. La teoria ci dice che per problemi difficili (come il

Algoritmi esatti. La teoria ci dice che per problemi difficili (come il p. 1/4 Algoritmi esatti La teoria ci dice che per problemi difficili (come il KNAPSACK o, ancora di più, il TSP ) i tempi di risoluzione delle istanze, calcolati tramite analisi worst-case, tendono a crescere

Dettagli

Registro dell'insegnamento

Registro dell'insegnamento Registro dell'insegnamento Anno accademico 2016/2017 Prof. MARCO SCIANDRONE Settore inquadramento MAT/09 - RICERCA OPERATIVA REGISTRO Scuola Ingegneria NON CHIUSO Dipartimento Ingegneria dell'informazione

Dettagli

Esame di Ricerca Operativa del 07/09/2016

Esame di Ricerca Operativa del 07/09/2016 Esame di Ricerca Operativa del 0/09/201 (Cognome) (Nome) (Matricola) Esercizio 1. Un industria chimica produce due tipi di fertilizzanti (A e B) la cui lavorazione è affidata ai reparti di produzione e

Dettagli

FONDAMENTI DI RICERCA OPERATIVA Prof. M.Trubian a.a. 2008/09 Prima prova in itinere: 25/11/08

FONDAMENTI DI RICERCA OPERATIVA Prof. M.Trubian a.a. 2008/09 Prima prova in itinere: 25/11/08 FONDAMENTI DI RICERCA OPERATIVA Prof. M.Trubian a.a. 2008/09 Prima prova in itinere: 25/11/08 Nome studente:... Matricola:...... Esercizio 3 4 5 6 Valore % 0.25 0.15 0.15 0.15 0.15 0.15 Valutazione A [1]

Dettagli

3.2 Rilassamenti lineari/combinatori e bounds

3.2 Rilassamenti lineari/combinatori e bounds 3.2 Rilassamenti lineari/combinatori e bounds Consideriamo un problema di Ottimizzazione Discreta min{f(x) : x X} e sia z il valore di una soluzione ottima x X. Metodi di risoluzione spesso generano una

Dettagli

PROGRAMMAZIONE LINEARE A NUMERI INTERI

PROGRAMMAZIONE LINEARE A NUMERI INTERI PROGRAMMAZIONE LINEARE A NUMERI INTERI N.B. Nei seguenti esercizi vengono utilizzate, salvo diversa indicazione, le seguenti notazioni: PLO programma lineare ordinario S a insieme delle soluzioni ammissibili

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities

Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities L. De Giovanni M. Di Summa In questa lezione introdurremo una classe di disuguaglianze, dette cover inequalities, che permettono di

Dettagli

Esercizi sulla Programmazione Lineare Intera

Esercizi sulla Programmazione Lineare Intera Soluzioni 4.7-4.0 Fondamenti di Ricerca Operativa Prof. E. Amaldi Esercizi sulla Programmazione Lineare Intera 4.7 Algoritmo del Simplesso Duale. Risolvere con l algoritmo del simplesso duale il seguente

Dettagli

COMPITO DI RICERCA OPERATIVA. max 5 2x 1 + 3x 2 x 3 = 2 + x 1 5x 2 x 4 = 5 + x 2. x 5 = 1 + x 1 x 2

COMPITO DI RICERCA OPERATIVA. max 5 2x 1 + 3x 2 x 3 = 2 + x 1 5x 2 x 4 = 5 + x 2. x 5 = 1 + x 1 x 2 COMPITO DI RICERCA OPERATIVA ESERCIZIO. ( punti) La riformulazione di un problema di PL rispetto alla base B = {x, x, x } è la seguente: max 2x + x 2 x = 2 + x x 2 x = + x 2 x = 2 + x + x 2 x, x 2, x,

Dettagli

Il problema dello zaino: dalla gita in montagna ai trasporti internazionali. Luca Bertazzi

Il problema dello zaino: dalla gita in montagna ai trasporti internazionali. Luca Bertazzi Il problema dello zaino: dalla gita in montagna ai trasporti internazionali Luca Bertazzi 0 Ricerca Operativa (Operations Research) The Science of Better Modelli e algoritmi per la soluzione di problemi

Dettagli

5.5 Programmazione quadratica (PQ)

5.5 Programmazione quadratica (PQ) 5.5 Programmazione quadratica (PQ Minimizzare una funzione quadratica soggetta a vincoli lineari: 1 min x t Qx + c t x 2 s.v. a t i x b i i D (P a t i x = b i i U x R n dove Q matrice n n, D e U sono gli

Dettagli

Esame di Ricerca Operativa del 12/06/18. Base x Degenere? y Indice Rapporti Indice uscente entrante

Esame di Ricerca Operativa del 12/06/18. Base x Degenere? y Indice Rapporti Indice uscente entrante Esame di Ricerca Operativa del /0/ (Cognome) (Nome) (Numero di Matricola) Esercizio. Effettuare due iterazioni dell algoritmo del simplesso duale: min y + y + y + y + y + y y y y + y +y = y y + y +y y

Dettagli

Un esempio di applicazione della PLI: il Sudoku

Un esempio di applicazione della PLI: il Sudoku Un esempio di applicazione della PLI: il Sudoku 1/14 Risoluzione del Sudoku attraverso la PLI Nel seguito, si descrive come formulare il noto gioco del Sudoku come problema di programmazione lineare intera,

Dettagli

Problemi di Flusso: Il modello del Trasporto

Problemi di Flusso: Il modello del Trasporto Problemi di Flusso: Il modello del rasporto Andrea Scozzari a.a. 2014-2015 April 27, 2015 Andrea Scozzari (a.a. 2014-2015) Problemi di Flusso: Il modello del rasporto April 27, 2015 1 / 25 Problemi su

Dettagli

Esame di Ricerca Operativa del 24/07/18. max 7 x 1 +4 x 2 x 1 +3 x x 1 +x x 1 +x 2 12 x 1 x x 1 3 x 2 2 x 1 2 x 2 14

Esame di Ricerca Operativa del 24/07/18. max 7 x 1 +4 x 2 x 1 +3 x x 1 +x x 1 +x 2 12 x 1 x x 1 3 x 2 2 x 1 2 x 2 14 Esame di Ricerca Operativa del /07/18 Cognome) Nome) Numero di Matricola) Esercizio 1. Effettuare due iterazioni dell algoritmo del simplesso primale per il problema max 7 x 1 + x x 1 + x 6 x 1 +x x 1

Dettagli

Esame di Ricerca Operativa del 17/07/17. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 17/07/17. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 7/07/7 (Cognome) (Nome) (Numero di Matricola) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x +x x + x x x x x x x +x

Dettagli

Matrici unimodulari e totalmente unimodulari

Matrici unimodulari e totalmente unimodulari Matrici unimodulari e totalmente unimodulari Sia una matrice intera di dimensione con, si dice unimodulare se presa una qualsiasi sottomatrice di ordine massimo (di dimensione ) vale det = 1, +1, 0. Una

Dettagli

Programmazione Matematica: Modelli di Programmazione Intera

Programmazione Matematica: Modelli di Programmazione Intera Programmazione Matematica: Modelli di Programmazione Intera Daniele Vigo D.E.I.S. Università di Bologna dvigo@deis.unibo.it rev. 2.0 Aprile 2004 Indagine di Mercato Mix di utenti da intervistare telefonicamente:

Dettagli

COMPITO DI RICERCA OPERATIVA. min 2x 1 x 2 + x 3 x 4 x 1 x 2 + x 3 + x 4 = 5 x 1 + x 2 + x 3 3. x 1, x 2, x 3, x 4, x 5 I

COMPITO DI RICERCA OPERATIVA. min 2x 1 x 2 + x 3 x 4 x 1 x 2 + x 3 + x 4 = 5 x 1 + x 2 + x 3 3. x 1, x 2, x 3, x 4, x 5 I COMPITO DI RICERCA OPERATIVA ESERCIZIO. (8 punti) Sia dato il seguente problema di PL: min x x + x x 4 x x + x + x 4 = 5 x + x + x x, x, x, x 4 0 Lo si trasformi in forma standard ( punto). Si determini

Dettagli

Programmazione Matematica: VI Estensioni dell algoritmo del Simplesso

Programmazione Matematica: VI Estensioni dell algoritmo del Simplesso Programmazione Matematica: VI Estensioni dell algoritmo del Simplesso Daniele Vigo D.E.I.S. Università di Bologna dvigo@deis.unibo.it rev. 1.0 Aprile 2004 Algoritmo del Simplesso L algoritmo del Simplesso

Dettagli

4.4 Programmazione quadratica

4.4 Programmazione quadratica 4.4 Programmazione quadratica Minimizzare una funzione quadratica soggetta a vincoli lineari: min 1 2 xt Qx + c t x s.v. a t i x b i i D (P) a t i x = b i i U x R n dove Q matrice n n, D e U sono gli insiemi

Dettagli

Programmazione Lineare Intera (PLI)

Programmazione Lineare Intera (PLI) PLI.1 Programmazione Lineare Intera (PLI) z P LI = min c T x Ax b x 0 x intero vincoli di interezza non lineari: es. sin(πx) = 0 Rimuovendo il vincolo di interezza PL (rilassamento continuo di PLI), tale

Dettagli

Esame di Ricerca Operativa del 15/01/2015

Esame di Ricerca Operativa del 15/01/2015 Esame di Ricerca Operativa del 1/01/201 (Cognome) (Nome) (Matricola) Esercizio 1. Un azienda produce palloni da calcio e da basket che vende a 1 e 20 euro rispettivamente. L azienda compra ogni settimana

Dettagli

Esame di Ricerca Operativa del 15/01/2015

Esame di Ricerca Operativa del 15/01/2015 Esame di Ricerca Operativa del 1/01/01 (Cognome) (Nome) (Matricola) Esercizio 1. Un azienda produce palloni da basket e da calcio che vende rispettivamente a 1 e euro. L azienda compra ogni settimana 00

Dettagli

Prima prova Intermedia di Ricerca Operativa 2 COMPITO A Esercizio 1 (7 punti): LIFO

Prima prova Intermedia di Ricerca Operativa 2 COMPITO A Esercizio 1 (7 punti): LIFO Prima prova Intermedia di Ricerca Operativa 2 COMPITO A 13 novembre 2015 Nome e Cognome Matricola: Esercizio 1 (7 punti): Si consideri il seguente problema di programmazione lineare intera. max 32x 1 +

Dettagli

Esame di Ricerca Operativa del 19/02/2019. Esercizio 1. Risolvere il seguente problema di programmazione lineare applicando l algoritmo del simplesso:

Esame di Ricerca Operativa del 19/02/2019. Esercizio 1. Risolvere il seguente problema di programmazione lineare applicando l algoritmo del simplesso: Esame di Ricerca Operativa del 9/0/09 (Cognome) (Nome) (Numero di Matricola) Esercizio. Risolvere il seguente problema di programmazione lineare applicando l algoritmo del simplesso: max x x x 0 x + x

Dettagli

Corso di Ricerca Operativa Prova in itinere del 06/11/2015

Corso di Ricerca Operativa Prova in itinere del 06/11/2015 Corso di Ricerca Operativa Prova in itinere del 6/11/215 (Cognome) (Nome) (Matricola) Esercizio 1. Un personal trainer deve preparare un piano di allenamento settimanale di 8 ore combinando diverse attività

Dettagli

Capitolo 5: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano

Capitolo 5: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano Capitolo 5: Ottimizzazione Discreta E. Amaldi DEI, Politecnico di Milano 5.1 Modelli di PLI, formulazioni equivalenti ed ideali Il modello matematico di un problema di Ottimizzazione Discreta è molto spesso

Dettagli

Esame di Ricerca Operativa del 22/01/18

Esame di Ricerca Operativa del 22/01/18 Esame di Ricerca Operativa del /0/8 (Cognome) (Nome) (Numero di Matricola) Esercizio. Un azienda informatica produce tre tipi di processori P, P, P nelle sedi S, S, S. La capacitá di produzione settimanale

Dettagli

Esercizi di PLI. a cura di A. Agnetis. Risolvere il seguente problema di PLI con l algoritmo dei piani di Gomory:

Esercizi di PLI. a cura di A. Agnetis. Risolvere il seguente problema di PLI con l algoritmo dei piani di Gomory: Esercizi di PLI a cura di A. Agnetis Risolvere il seguente problema di PLI con l algoritmo dei piani di Gomory: max z = 40x + 24x 2 + 5x + 8x 4 8x + 6x 2 + 5x + 4x 4 22 x i 0 x i intero Si tratta di un

Dettagli

Esame di Ricerca Operativa del 11/02/2015

Esame di Ricerca Operativa del 11/02/2015 Esame di Ricerca Operativa del /0/0 (Cognome) (Nome) (Matricola) Esercizio. Un azienda produce tipi di TV (, 0, 0 e pollici) ed è divisa in stabilimenti (A e B). L azienda dispone di 0 operai in A e 0

Dettagli

Ottimizzazione e Controllo 2015/2016 ESERCITAZIONE

Ottimizzazione e Controllo 2015/2016 ESERCITAZIONE Ottimizzazione e Controllo 2015/2016 ESERCITAZIONE Esercizio 1. Sono dati 6 job da processare su un centro di lavorazione automatizzato che può eseguire una sola lavorazione alla volta. Di ciascun job

Dettagli

Massimo flusso e matching

Massimo flusso e matching Capitolo Massimo flusso e matching. Problema del massimo matching. Nel problema del massimo matching è dato un grafo non orientato G(V, A); un matching in G è un insieme di archi M A tale che nessuna coppia

Dettagli

Esame di Ricerca Operativa del 22/01/18

Esame di Ricerca Operativa del 22/01/18 Esame di Ricerca Operativa del /0/8 (Cognome) (Nome) (Numero di Matricola) Esercizio. Un azienda informatica produce tre tipi di processori P, P, P nelle sedi S, S, S. La capacitá di produzione settimanale

Dettagli

Tecniche di Decomposizione per Programmazione Lineare Intera (Mista)

Tecniche di Decomposizione per Programmazione Lineare Intera (Mista) Tecniche di Decomposizione per Programmazione Lineare Intera (Mista) Domenico Salvagnin 2011-06-12 1 Introduzione Dato un problema di programmazione lineare intera (mista), non è sempre possibile (o conveniente)

Dettagli

Programmazione Lineare in MATLAB. Ing. Fabio Sciancalepore Politecnico di Bari

Programmazione Lineare in MATLAB. Ing. Fabio Sciancalepore Politecnico di Bari Programmazione Lineare in MATLAB Ing. Fabio Sciancalepore Politecnico di Bari Agenda Introduzione alla Ricerca Operativa Problemi di ottimizzazione Programmazione lineare programmazione a variabili continue

Dettagli

Programmazione Matematica: I - Introduzione

Programmazione Matematica: I - Introduzione Programmazione Matematica: I - Introduzione Daniele Vigo D.E.I.S. Università di Bologna dvigo@deis.unibo.it rev. 3.0 ottobre 2002 Problemi di Ottimizzazione x = (x,, x n ) R n : vettore di variabili decisionali

Dettagli

Esame di Ricerca Operativa del 16/06/2015

Esame di Ricerca Operativa del 16/06/2015 Esame di Ricerca Operativa del 1/0/01 (Cognome) (Nome) (Matricola) Esercizio 1. Una ditta produce vernici in tre diversi stabilimenti (Pisa, Cascina, Empoli) e le vende a tre imprese edili (A, B, C). Il

Dettagli

Esame di Ricerca Operativa del 04/07/17

Esame di Ricerca Operativa del 04/07/17 Esame di Ricerca Operativa del 0/0/ (Cognome) (Nome) (Numero di Matricola) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: min y y + y + y + y + y +9 y y y

Dettagli

Nome Cognome... Firma...

Nome Cognome... Firma... Prova del 2 Dicembre 2013 Compito A A.1). (14 punti) Due elettricisti stanno progettando un nuovo impianto elettrico. Hanno a disposizione 50 componenti, con caratteristiche tecniche diverse, e devono

Dettagli

Metodi di Ottimizzazione per la Logistica e la Produzione

Metodi di Ottimizzazione per la Logistica e la Produzione Metodi di Ottimizzazione per la Logistica e la Produzione Laboratorio Manuel Iori Dipartimento di Scienze e Metodi dell Ingegneria Università di Modena e Reggio Emilia MOLP Parte I 1 / 41 Contenuto della

Dettagli

2.2 Alberi di supporto di costo ottimo

2.2 Alberi di supporto di costo ottimo . Alberi di supporto di costo ottimo Problemi relativi ad alberi hanno numerose applicazioni: progettazione di reti (comunicazione, teleriscaldamento,...) diffusione di messaggi segreti memorizzazione

Dettagli

4. Programmazione Lineare Intera

4. Programmazione Lineare Intera . Programmazione Lineare Intera Programmazione Lineare Intera (ILP) A(m n), b(m), c(n) interi; ILP in forma standard: min c x Ax = b x x intero Forma canonica, forma generale, trasformazioni: come LP.

Dettagli

Algoritmi generali per PLI

Algoritmi generali per PLI Programmazione Lineare Intera: Parte II: Algoritmo Cutting Planes Daniele Vigo D.E.I.S. Università di Bologna dvigo@deis.unibo.it rev. 3.1 ottobre 23 Algoritmi generali per PLI Metodi esatti tradizionali

Dettagli

Esame di Ricerca Operativa del 06/02/17

Esame di Ricerca Operativa del 06/02/17 Esame di Ricerca Operativa del 0/0/7 (Cognome) (Nome) (Numero d Matricola) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max 7 x x x x x x x + x x x 0 x

Dettagli

Esame di Ricerca Operativa del 11/07/2016

Esame di Ricerca Operativa del 11/07/2016 Esame di Ricerca Operativa del /0/01 (Cognome) (Nome) (Matricola) Esercizio 1. Un erboristeria vuole produrre una nuova tisana utilizzando tipi di tisane già in commercio. Tali tisane sono per lo più composte

Dettagli

Fac-simile dell esame di Ricerca Operativa. max 7 x 1 2 x 2 3 x 1 +x 2 2 x 1 2 x 2 3 x x 1 +x x 1 x 2 5

Fac-simile dell esame di Ricerca Operativa. max 7 x 1 2 x 2 3 x 1 +x 2 2 x 1 2 x 2 3 x x 1 +x x 1 x 2 5 Fac-simile dell esame di Ricerca Operativa (Cognome) (Nome) (Numero di Matricola) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x +x x x x x +x x

Dettagli

Esame di Ricerca Operativa del 13/06/17. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 13/06/17. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del /0/ (Cognome) (Nome) (Numero di Matricola) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: min y y + y + y + y y + y y +y +y

Dettagli

Ottimizzazione Combinatoria 2 Presentazione

Ottimizzazione Combinatoria 2 Presentazione Ottimizzazione Combinatoria Presentazione ANTONIO SASSANO Università di Roma La Sapienza Dipartimento di Informatica, Automatica e Gestionale «Antonio Ruberti» Roma, Febbraio Prerequisiti (cosa sapete)

Dettagli

PROVE D'ESAME 1994/95

PROVE D'ESAME 1994/95 PROVE D'ESAME 1994/9 PROVA PARZIALE DEL 21/11/94 1) Sia dato il seguente programma lineare: max 2 x 1 + 3 x 2 - x 3 s.t. 2 x 1 + 3 x 2 - x 3 2 x 1 + x 2 - x 3 4 x 1 - x 2 + x 3 1 x 1, x 2, x 3 0 a - Dire

Dettagli

RICERCA OPERATIVA (a.a. 2017/18) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2017/18) Nome: Cognome: Matricola: Terzo appello //8 RICERCA OPERATIVA (a.a. 7/8) Nome: Cognome: Matricola: ) Si risolva il seguente problema di PL max x x x x x x x x x applicando l algoritmo del Simplesso Primale, per via algebrica, a

Dettagli

Problema Determinare la miscelazione ottimale delle materie prime in modo da massimizzare il profitto complessivo

Problema Determinare la miscelazione ottimale delle materie prime in modo da massimizzare il profitto complessivo Mix Produttivo Si dispone di i=1,...,m risorse produttive (ad esempio, materie prime) in quantità limitata. La massima disponibilità delle risorse è b 1,...,b m Si possono produrre j=1,...,n diversi prodotti

Dettagli

Esame di Ricerca Operativa del 09/06/14. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 09/06/14. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 09/0/ (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x x +x x x x +x x + x x Base

Dettagli

2.3.3 Cammini ottimi nei grafi senza circuiti

2.3.3 Cammini ottimi nei grafi senza circuiti .. Cammini ottimi nei grafi senza circuiti Sia un grafo G = (N, A) orientato senza circuiti e una funzione di costo che assegna un valore c ij R ad ogni arco (i, j) A circuito Proprietà I nodi di un grafo

Dettagli

città

città Esercitazione 11-4-18 Esercizio 1. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella: città 2 3 4 5 1

Dettagli

Teoria della Programmazione Lineare Intera

Teoria della Programmazione Lineare Intera 0 Teoria della Programmazione Lineare Intera 0. INTRODUZIONE Come visto precedentemente, molti problemi particolarmente importanti dal punto di vista applicativo sono riconducibili alla soluzione di un

Dettagli

RICERCA OPERATIVA (a.a. 2011/12) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2011/12) Nome: Cognome: Matricola: 5 o Appello 8/0/0 RICERCA OPERATIVA (a.a. 0/) Nome: Cognome: Matricola: ) Si individui un albero dei cammini minimi di radice sul grafo in figura, utilizzando l algoritmo più appropriato dal punto di vista

Dettagli

Problema del Bin Packing

Problema del Bin Packing M. Monaci - Problema del Bin Packing 1 Problema del Bin Packing Michele Monaci Dipartimento di Ingegneria dell Informazione, Università di Padova Viale Gradenigo, 6/A - 35131 - Padova monaci@dei.unipd.it

Dettagli