Qual è la distanza tra Roma e New York?
|
|
|
- Marisa Rosa
- 9 anni fa
- Visualizzazioni
Transcript
1 Qual è la distanza tra Roma e New York? Abilità Conoscenze Nuclei coinvolti Utilizzare i vettori e il prodotto Elementi di geometria Spazio e figure scalare nello studio di problemi della sfera: del piano e dello spazio. circonferenze e Risolvere analiticamente triangoli sulla sfera; problemi sulla sfera, piani e rette nozione intuitiva di e interpretare le soluzioni. geodetica; coordinate Utilizzare i primi elementi della sulla sfera (latitudine e geometria della sfera in altri longitudine). ambiti (geografia, fisica, astronomia). Collegamenti esterni Geografia Contesto Geometria della sfera. Il contesto dell attività è lo studio delle rotte di navigazione aerea con l utilizzo della geometria sulla sfera. Descrizione dell attività Prima fase L insegnante pone agli studenti il problema di come sia possibile descrivere la rotta aerea tra due città molto lontane, come ad esempio Roma e New York. Per aiutarli a visualizzare il problema ci si può avvalere dell ausilio di un mappamondo, di un planisfero, di fili e di righe graduate. Gli studenti in gruppo provano a individuare i percorsi sul mappamondo e sul planisfero e a confrontarli. Attraverso una discussione guidata si fanno emergere le considerazioni dei vari gruppi. Gli alunni probabilmente considereranno come percorso ottimale solo quello riconducibile ad un segmento. In effetti, una delle proprietà di un segmento è di essere la linea più breve tra due punti: volendo attraversare una piazza, risulta conveniente muoversi in linea retta piuttosto che seguire un qualsiasi altro cammino. Per andare da Roma a New York non si potrà seguire una linea retta, dal momento che la Terra è rotonda e sulla sua superficie non ci sono linee rette. Seconda fase Il docente evidenzia come il problema richieda nuove conoscenze relative al modello geometrico più idoneo per rappresentare il caso in questione. Tale modello è costituito, in prima approssimazione, dalla superficie di una sfera. La geometria della sfera rappresenta un tema importante della matematica sin dall antichità, strumento essenziale per l astronomia, la navigazione, la geografia, la stesura dei calendari e l indicazione dell ora. Al fine di individuare in modo univoco la posizione delle due città sulla superficie della sfera è necessario stabilire su di essa un sistema di riferimento. L insegnante fa osservare come in un mappamondo siano già presenti alcune linee che consentono di individuare le diverse posizioni dei luoghi sulla Terra. Analizzando in dettaglio queste linee si noterà che quelle passanti per i Poli sono circonferenze tutte uguali tra loro, mentre quelle parallele all equatore si presentano parallele e diverse; in particolare le prime sono i meridiani e le seconde i paralleli. Ogni punto della superficie
2 terrestre, tranne i poli, può pertanto essere univocamente associato a una coppia di queste linee (meridiano, parallelo). L insegnante può sottolineare come la particolare scelta dei meridiani e dei paralleli presenti un analogia con quanto già studiato sul piano cartesiano. In particolare, è conservata la perpendicolarità; infatti, un cerchio avente come circonferenza un meridiano giace in un piano che è ortogonale al piano di un cerchio avente come circonferenza un parallelo. Per stabilire un sistema di riferimento è necessario fissare due assi orientati. Sulla sfera terrestre si adottano come assi due opportune circonferenze massime tra loro ortogonali: il meridiano di Greenwich (scelto come fondamentale; Greenwich è una località nei pressi di Londra con un osservatorio astronomico) e l equatore (circonferenza massima). Il loro punto di intersezione, utilizzato come origine O del sistema di riferimento sferico, è un punto al largo della costa occidentale dell Africa, nel Golfo di Guinea. L altro punto di intersezione tra la circonferenza che contiene il meridiano di Greenwich e l equatore è in pieno Oceano Pacifico, e appartiene al meridiano del cambiamento di data. Un punto sulla superficie sferica terrestre è solitamente individuato da due angoli, dalla sua longitudine (distanza angolare dal meridiano di Greenwich (l angolo RO ˆ P nella Figura 1, dove G indica Greenwich), considerata positiva ad Est e negativa ad Ovest) e dalla sua latitudine (distanza angolare dall equatore, positiva a Nord e negativa a Sud, rappresentata dall angolo P O ˆP ' nella Figura, dove la circonferenza massima per R e per P è l equatore). Figura 1 Figura L insegnante propone agli studenti la lettura della posizione di alcune città, prestando attenzione che nella scelta ricadano città presenti nei vari quadranti rispetto all equatore e al meridiano di Greenwich. Le longitudini precedute dal segno + si leggono anche Est, quelle precedute dal segno meno Ovest. Le latitudini con il segno + si dicono Nord e quelle con il segno Sud. Longitudine Latitudine Roma Milano New York Buenos Aires Sydney
3 Un punto sull equatore ha latitudine zero, un punto sul meridiano di Greenwich ha longitudine zero. In particolare si sceglie come unità di misura delle distanze il raggio terrestre equatoriale (circa 6378 km = 1 RT, che corrisponde all angolo di 1 radiante). Considerando la Terra una sfera liscia, senza rilievi (l altezza di volo di un aereo di linea è circa 10 km, una distanza trascurabile rispetto al raggio terrestre). Con le convenzioni adottate possiamo ora stabilire un sistema di riferimento sulla superficie sferica. Sia P un punto sulla superficie sferica (Figura 3); esso è univocamente individuato dalla coppia di misure angolari, in gradi sessagesimali, (α, ), dove α è la longitudine e è la latitudine, con le seguenti limitazioni: 180 < α Se escludiamo i due poli (che hanno latitudine rispettivamente + 90 e 90 e longitudine qualsiasi) tale sistema di riferimento stabilisce una corrispondenza biunivoca tra i punti della superficie sferica α,. e le coppie di angoli ( ) Figura 3 A differenza di quanto accade nel piano, sulla superficie sferica non esistono rette parallele: tutte le rette in questa geometria, cioè le circonferenze massime, si intersecano in due punti antipodali. Ne consegue una differenza sostanziale tra la geometria del piano e quella della sfera: sul piano le coordinate (x,y) di un punto P rappresentano le distanze, con segno, di P rispettivamente dall'asse y e dall'asse x. Sulla sfera, invece, solo la seconda coordinata (la latitudine) rappresenta la distanza dall'equatore; la prima coordinata (la longitudine) non è uguale alla distanza dal meridiano di Greenwich, tranne nel caso in cui P stia sull'equatore; la distanza di P dal meridiano di Greenwich diminuisce con l'aumentare della latitudine, fino ad annullarsi per i poli. In altri termini: i meridiani (luoghi dei punti aventi una data longitudine) sono semicirconferenze massime (che possiamo quindi chiamare rette sulla sfera), i paralleli (luoghi dei punti aventi data latitudine) non sono circonferenze massime, tranne nel caso dell equatore. A differenza di quanto accade nel piano, la distanza tra due punti non è invariante per traslazioni: tali trasformazioni non sono, sulla sfera cartesiana, delle isometrie. Terza fase Il docente procede in analogia con quanto già svolto nell introduzione al piano cartesiano ed evidenzia che la strategia risolutiva migliore consiste nel porre la sfera in un sistema di riferimento
4 ortogonale xyz con l origine nel centro O della sfera (Figura 4). L origine del piano xy, che giace nel piano dell equatore, corrisponde nel sistema di riferimento sferico al punto R di coordinate (0,0,1), l'asse z passa per i due poli ed è ortogonale al piano xy. In tal modo è possibile associare ad ogni punto P(α,) della sfera il vettore OP = [x, y, z] e utilizzare le operazioni in R³. Figura 4 Sia dato un punto P(α, ) sulla superficie sferica. Ragionando sui triangoli rettangoli presenti in Figura 5 si possono ottenere per via trigonometrica le componenti in R³ del vettore OP. Figura 5
5 Si ottiene (considerato il raggio terrestre come unità di misura): x= OK = cosα cos y = KH = sinα cos z = HP = sin Quindi si ha che il vettore OP ha per componenti cartesiane: OP = cosα cos, sinα cos, sin. [ ] Il docente propone agli studenti di verificare che in ogni caso OP = 1. Si procederà con l introduzione del prodotto scalare tra due vettori in R³. In uno spazio vettoriale dotato di prodotto scalare è possibile quindi definire l angolo compreso tra due vettori. Siano P(α 1, 1 ) e Q(α, ) due punti della superficie sferica. La loro distanza è la lunghezza dell'arco di circonferenza massima di estremi P, Q e coincide con la misura (in radianti) dell'angolo PC ˆ Q. Con il prodotto scalare si procede al calcolo della distanza PQ. Poiché: OP = [ cosα1 cos 1, sinα1 cos 1, sin 1] OQ = [ cosα cos, sinα cos, sin ] risulta: OP OQ cos( OP, OQ) = OP OQ Figura 6 Calcoliamo prima di tutto il prodotto scalare dei due vettori: da cui: e quindi OP OQ = [ cos cosα,cos sinα,sin ][ cos cosα,cos sinα, ] sin OP OQ = cos( α α 1 ) cos 1 cos + sin 1 sin ( ) d( P, Q) = arccos cos( α α ) cos cos + sin sin
6 La misura, in radianti, di d(p,q) rappresenta, in raggi terrestri, la distanza tra i due punti. Si giunge quindi alla risposta al problema iniziale: d(roma, New York) = 1,041 RT. Tale distanza di 1,041 radianti corrisponde a circa 6640 km (Figura 6). Si conclude perciò che sulla superficie sferica, se si vuole risparmiare carburante, anziché lungo percorsi rettilinei occorre muoversi con delle traiettorie curve. Tali curve, contenute nelle circonferenze massime e dette geodetiche, consentono di utilizzare il percorso più breve che collega due località. Possibili approfondimenti - Triangoli sulla sfera e loro proprietà. - Problemi di cartografia. - Studio delle geodetiche su alcune superfici (cilindro, cono) e sulla sfera. Elementi di prove di verifica 1. Sulla base di quanto visto in precedenza si calcoli la distanza tra Roma e Sidney.. In Italia il capoluogo di provincia di massima latitudine è Bolzano (11 1', 46 30') e quello di minima latitudine è Ragusa (14 45', 36 56'); la loro distanza è 0,173 radianti, pari a circa 1100 km: questo numero rappresenta la lunghezza in linea d'aria. Determinare la lunghezza della rotta aerea più breve e commentare il risultato ottenuto.
QUAL È LA DISTANZA TRA ROMA E NEW YORK? UN PO' DI GEOMETRIA ANALITICA SULLA SFERA
QUAL È LA DISTANZA TRA ROMA E NEW YORK? UN PO' DI GEOMETRIA ANALITICA SULLA SFERA Michele Impedovo Bollettino dei Docenti di Matematica del Canton Ticino (CH) n 36, maggio 98. Il problema Il lavoro che
Cpia di Lecce. Le coordinate geografiche
Cpia di Lecce Le coordinate geografiche Forma della Terra La Terra è sferica Per la sua rappresentazione si usa il globo o mappamondo Meridiani e paralleli sono linee immaginarie usate dai geografi per
Ma cosa si pensava della forma della terra prima delle fotografie?
Ma cosa si pensava della forma della terra prima delle fotografie? Anassimandro (IV sec. a.c.) Omero (VIII sec. a.c.?) Aristotele (384-322 a.c.) riportava due osservazioni a riprova della sfericità della
TOPOGRAFI A E ORIENTAMENTO IN MONTAGNA. 04-09-2014 XXIV Corso di Alpinismo A1
Club Alpino Italiano - Sezione di Bozzolo TOPOGRAFI A E ORIENTAMENTO IN MONTAGNA TOPOGRAFIA E ORIENTAMENTO IN MONTAGNA Cenni di geodesia e topografia Cartografia Lettura ed interpretazione delle carte
CONI, CILINDRI, SUPERFICI DI ROTAZIONE
CONI, CILINDRI, SUPERFICI DI ROTAZIONE. Esercizi x + z = Esercizio. Data la curva x, calcolare l equazione del cilindro avente γ y = 0 come direttrice e con generatrici parallele al vettore v = (, 0, ).
CORSO DI LAUREA IN INGEGNERIA.
CORSO DI LAUREA IN INGEGNERIA. FOGLIO DI ESERCIZI 4 GEOMETRIA E ALGEBRA LINEARE 2010/11 Esercizio 4.1 (2.2). Determinare l equazione parametrica e Cartesiana della retta dello spazio (a) Passante per i
ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004
ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 004 Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PRBLEMA Sia la curva d equazione: ke ove k e
LE FUNZIONI A DUE VARIABILI
Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre
IL SISTEMA CARTOGRAFICO NAZIONALE
IL SISTEMA CARTOGRAFICO NAZIONALE La Il paragrafo è intitolato La Carta di Gauss poiché, delle infinite formule che si possono adottare per mettere in corrispondenza i punti dell'ellissoide con quelli
Esempi di funzione. Scheda Tre
Scheda Tre Funzioni Consideriamo una legge f che associa ad un elemento di un insieme X al più un elemento di un insieme Y; diciamo che f è una funzione, X è l insieme di partenza e X l insieme di arrivo.
Istituto Comprensivo di Buddusò - Scuola Primaria - Ins. Dore
Istituto Comprensivo di Buddusò - Scuola Primaria - Ins. Dore La terra ha la forma di una sfera e per rappresentarla si usa il Mappamondo chiamato anche globo I geografi hanno tracciato sul mappamondo
15 febbraio 2010 - Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a. 2009-2010 COGNOME... NOME... N. MATRICOLA...
15 febbraio 010 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 009-010 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura
La rappresentazione fornita dalle carte geografiche è:
Le proiezioni geografiche La rappresentazione fornita dalle carte geografiche è: approssimata ridotta simbolica È approssimata perché non è possibile sviluppare su un piano una superficie sferica senza
Inserimento di distanze e di angoli nella carta di Gauss
Inserimento di distanze e di angoli nella carta di Gauss Corso di laurea in Ingegneria per l Ambiente e il Territorio a.a. 2006-2007 Inserimento della distanza reale misurata nella carta di Gauss (passaggio
Polli e conigli. problemi Piano cartesiano. Numeri e algoritmi Sistemi e loro. geometrica. Relazioni e funzioni Linguaggio naturale e
Polli e conigli Livello scolare: primo biennio Abilità Interessate Calcolo di base - sistemi Risolvere per via grafica e algebrica problemi che si formalizzano con equazioni. Analizzare semplici testi
RETTE, PIANI, SFERE, CIRCONFERENZE
RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,
I quesiti di Matematica per la classe di concorso A059
I quesiti di Matematica per la classe di concorso A059 Prof. Michelangelo Di Stasio Liceo Scientifico Statale Galileo Galilei di Piedimonte Matese (CE) [email protected] SOMMARIO Si propone la
Liceo G.B. Vico Corsico
Liceo G.B. Vico Corsico Classe: 3A Materia: MATEMATICA Insegnante: Nicola Moriello Testo utilizzato: Bergamini Trifone Barozzi: Manuale blu.0 di Matematica Moduli S, L, O, Q, Beta ed. Zanichelli 1) Programma
Massimi e minimi vincolati di funzioni in due variabili
Massimi e minimi vincolati di funzioni in due variabili I risultati principali della teoria dell ottimizzazione, il Teorema di Fermat in due variabili e il Test dell hessiana, si applicano esclusivamente
Grandezze scalari e vettoriali
Grandezze scalari e vettoriali Esempio vettore spostamento: Esistono due tipi di grandezze fisiche. a) Grandezze scalari specificate da un valore numerico (positivo negativo o nullo) e (nel caso di grandezze
Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26
Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo
GEOMETRIA DELLE MASSE
1 DISPENSA N 2 GEOMETRIA DELLE MASSE Si prende in considerazione un sistema piano, ossia giacente nel pian x-y. Un insieme di masse posizionato nel piano X-Y, rappresentato da punti individuati dalle loro
TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA PRIMARIA
SCUOLA PRIMARIA DI CORTE FRANCA MATEMATICA CLASSE QUINTA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA PRIMARIA L ALUNNO SVILUPPA UN ATTEGGIAMENTO POSITIVO RISPETTO ALLA MATEMATICA,
PROVA INVALSI Scuola Secondaria di I grado Classe Prima
SNV 2010-2011; SNV 2011-2012; SNV 2012-2013 SPAZIO E FIGURE SNV 2011 10 quesiti su 29 (12 item di cui 6 a risposta aperta) SNV 2012 11 quesiti su 30 (13 item di cui 2 a risposta aperta) SNV 2013 9 quesiti
La spirale iperbolica: Fu descritta per la prima volta da Pierre Varignon (1654-1722). L equazione, espressa in coordinate polari, è del tipo:
Esistono delle forme geometriche che sono in grado, per complessi fattori psicologici non del tutto chiariti, di comunicarci un senso d equilibrio, di gradimento e di benessere. Tra queste analizzeremo
Cenni di geografia astronomica. Giorno solare e giorno siderale.
Cenni di geografia astronomica. Tutte le figure e le immagini (tranne le ultime due) sono state prese dal sito Web: http://www.analemma.com/ Giorno solare e giorno siderale. La durata del giorno solare
Trasformazioni Geometriche 1 Roberto Petroni, 2011
1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni
13. Campi vettoriali
13. Campi vettoriali 1 Il campo di velocità di un fluido Il concetto di campo in fisica non è limitato ai fenomeni elettrici. In generale il valore di una grandezza fisica assegnato per ogni punto dello
5. LE RAPPRESENTAZIONI CARTOGRAFICHE vers 100609
5. LE RAPPRESENTAZIONI CARTOGRAFICHE vers 100609 sostituscono le pagg. 50-58 (fino alle eq. 5.28) Come già visto è stato scelto l'ellissoide come riferimento planimetrico sul quale proiettare tutti i punti
Le trasformazioni geometriche
Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni affini del piano o affinità Le similitudini Le isometrie Le traslazioni Le rotazioni Le simmetrie assiale e centrale Le omotetie
Corrispondenze e funzioni
Corrispondenze e funzioni L attività fondamentale della mente umana consiste nello stabilire corrispondenze e relazioni tra oggetti; è anche per questo motivo che il concetto di corrispondenza è uno dei
1. PRIME PROPRIETÀ 2
RELAZIONI 1. Prime proprietà Il significato comune del concetto di relazione è facilmente intuibile: due elementi sono in relazione se c è un legame tra loro descritto da una certa proprietà; ad esempio,
SISTEMI DI RIFERIMENTO E PROIEZIONI
SISTEMI DI RIFERIMENTO E PROIEZIONI Esistono 3 tipi di dati: 1- Dati tabellari (informativi) 2- Dati geometrici (territoriali) 3- Dati geometrici e tabellari (informativi territoriali) La localizzazione
Andrea Pagano, Laura Tedeschini Lalli
3.5 Il toro 3.5.1 Modelli di toro Modelli di carta Esempio 3.5.1 Toro 1 Il modello di toro finito che ciascuno può costruire è ottenuto incollando a due a due i lati opposti di un foglio rettangolare.
Sistema di riferimento
Sistema di riferimento Storicamente divisione fra altimetria e planimetria (riferimento fisico riferimento matematico) Oggi dati sempre più integrati Domani? Dato di fatto - L acqua segue leggi fisiche
Proiezioni Grafica 3d
Proiezioni Grafica 3d Giancarlo RINALDO [email protected] Dipartimento di Matematica Università di Messina ProiezioniGrafica 3d p. 1 Introduzione Il processo di visualizzazione in 3D è intrinsecamente
4. Proiezioni del piano e dello spazio
4. Proiezioni del piano e dello spazio La visualizzazione di oggetti tridimensionali richiede di ottenere una vista piana dell'oggetto. Questo avviene mediante una sequenza di operazioni. Innanzitutto,
DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2.
FUNZIONI DI DUE VARIABILI 1 DOMINIO E LIMITI Domini e disequazioni in due variabili. Insiemi di livello. Elementi di topologia (insiemi aperti, chiusi, limitati, convessi, connessi per archi; punti di
TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 1
TRASFORMAZIONI GEOMETRICHE NEL PIANO Parte 1 La geometria è la scienza che studia la forma e l estensione dei corpi e le trasformazioni che questi possono subire. In generale per trasformazione geometrica
LA RETTA. Retta per l'origine, rette orizzontali e verticali
Retta per l'origine, rette orizzontali e verticali LA RETTA Abbiamo visto che l'equazione generica di una retta è del tipo Y = mx + q, dove m ne rappresenta la pendenza e q il punto in cui la retta incrocia
Rette e piani con le matrici e i determinanti
CAPITOLO Rette e piani con le matrici e i determinanti Esercizio.. Stabilire se i punti A(, ), B(, ) e C(, ) sono allineati. Esercizio.. Stabilire se i punti A(,,), B(,,), C(,, ) e D(4,,0) sono complanari.
GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω
GIROSCOPIO Scopo dell esperienza: Verificare la relazione: ω p = bmg/iω dove ω p è la velocità angolare di precessione, ω è la velocità angolare di rotazione, I il momento principale d inerzia assiale,
Processo di rendering
Processo di rendering Trasformazioni di vista Trasformazioni di vista Il processo di visione in tre dimensioni Le trasformazioni di proiezione 2 Rendering nello spazio 2D Il processo di rendering (visualizzazione)
L IMMAGINE DELLA TERRA
L IMMAGINE DELLA TERRA 1 Capitolo 1 L orientamento e la misura del tempo Paralleli e meridiani La Terra ha, grossomodo, la forma di una sfera e dunque ha un centro dove si incontrano gli infiniti diametri.
ATTIVITÀ DEL SINGOLO DOCENTE
PIANO DI LAVORO DOCENTE Carmela Calò MATERIA Matematica DESTINATARI 4Cl ANNO SCOLASTICO 2013-14 COMPETENZE CONCORDATE CON CONSIGLIO DI CLASSE Si veda la programmazione comune del CdC COMPETENZE CONCORDATE
IGiochidiArchimede-SoluzioniBiennio 22 novembre 2006
PROGETTO OLIMPII I MTEMTI U.M.I. UNIONE MTEMTI ITLIN SUOL NORMLE SUPERIORE IGiochidirchimede-Soluzioniiennio novembre 006 Griglia delle risposte corrette Problema Risposta corretta E 4 5 6 7 8 9 E 0 Problema
Trigonometria: breve riepilogo.
Corso di laurea in Matematica Corso di Analisi Matematica - Dott.ssa Sandra Lucente Trigonometria: breve riepilogo. Definizioni iniziali Saper misurare un angolo in gradi sessagesimali, saper svolgere
Forze come grandezze vettoriali
Forze come grandezze vettoriali L. Paolucci 23 novembre 2010 Sommario Esercizi e problemi risolti. Per la classe prima. Anno Scolastico 2010/11 Parte 1 / versione 2 Si ricordi che la risultante di due
Liceo Scientifico F. Lussana Bergamo Programma di MATEMATICA A.S. 2014/2015 Classe 3 A C Prof. Matteo Bonetti. Equazioni e Disequazioni
Liceo Scientifico F. Lussana Bergamo Programma di MATEMATICA A.S. 2014/2015 Classe 3 A C Prof. Matteo Bonetti Equazioni e Disequazioni Ripasso generale relativo alla risoluzione di equazioni, disequazioni,
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f
CORSO DI LAUREA IN FISICA ANNO ACCADEMICO 2013-14 PROVA DI INGRESSO
CORSO DI LAUREA IN FISICA ANNO ACCADEMICO 2013-14 PROVA DI INGRESSO 20 Settembre 2013 Fisica 1. La figura è una vista dall alto di quattro scatole identiche, S 1, S 2, S 3, S 4, appoggiate su un piano
α r = l / R l = lunghezza dell'arco sotteso R = raggio circonferenza sottomultipli: mrad = 10-3 rad µrad = 10-6 rad
Ing. Andrea Lingua Fondamenti di Geodesia e Cartografia 1.1 Unità di misura angolari e conversioni Con angolo si intende una porzione di piano delimitata da due semirette: l'ampiezza dell'angolo è rappresentata
CURVE DI LIVELLO. Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello.
CURVE DI LIVELLO Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello. Definizione. Si chiama insieme di livello k della funzione f
VERIFICA DI MATEMATICA. CLASSI TERZE (3AS, 3BS, 3CS, 3DS, 3ES) 2 settembre 2013 COGNOME E NOME.. CLASSE.
VERIFIC DI MTEMTIC CLSSI TERZE (S, BS, CS, DS, ES) settembre COGNOME E NOME.. CLSSE. Esercizio In un piano cartesiano ortogonale determinare: a) l equazione della parabola con asse parallelo all asse,
La propagazione delle onde luminose può essere studiata per mezzo delle equazioni di Maxwell. Tuttavia, nella maggior parte dei casi è possibile
Elementi di ottica L ottica si occupa dello studio dei percorsi dei raggi luminosi e dei fenomeni legati alla propagazione della luce in generale. Lo studio dell ottica nella fisica moderna si basa sul
Prof. Silvio Reato Valcavasia Ricerche. Il piano cartesiano
Il piano cartesiano Per la rappresentazione di grafici su di un piano si utilizza un sistema di riferimento cartesiano. Su questo piano si rappresentano due rette orientate (con delle frecce all estremità
CURRICULUM SCUOLA PRIMARIA MATEMATICA
Ministero dell istruzione, dell università e della ricerca Istituto Comprensivo Giulio Bevilacqua Via Cardinale Giulio Bevilacqua n 8 25046 Cazzago San Martino (Bs) telefono 030 / 72.50.53 - fax 030 /
1 Definizione: lunghezza di una curva.
Abstract Qui viene affrontato lo studio delle curve nel piano e nello spazio, con particolare interesse verso due invarianti: la curvatura e la torsione Il primo ci dice quanto la curva si allontana dall
ASSIOMI DELLA GEOMETRIA RAZIONALE
ASSIOMI DELLA GEOMETRIA RAZIONALE ASSIOMI DI APPARTENENZA A1 Per ogni coppia di punti A e B di un piano π esiste ed è unica la retta che li contiene. A2 Data nel piano π una retta r esistono almeno due
CONVESSITÀ NELLA GEOMETRIA DEL TAXI DI MINKOWSKI
CONVESSITÀ NELLA GEOMETRIA DEL TAXI DI MINKOWSKI ELISABETTA AVIZZANO NICOLETTA CAPOTORTO CHIARA CEROCCHI GIORGIO CICCARELLA IVAN COLAVITA EMANUELE DI CARO SERENA NUNZIATA AMANDA PISELLI ANDREA PIEPOLI
Misure di base su una carta. Calcoli di distanze
Misure di base su una carta Calcoli di distanze Per calcolare la distanza tra due punti su una carta disegnata si opera nel modo seguente: 1. Occorre identificare la scala della carta o ricorrendo alle
APPUNTI DI MATEMATICA ALGEBRA \ INSIEMISTICA \ TEORIA DEGLI INSIEMI (1)
ALGEBRA \ INSIEMISTICA \ TEORIA DEGLI INSIEMI (1) Un insieme è una collezione di oggetti. Il concetto di insieme è un concetto primitivo. Deve esistere un criterio chiaro, preciso, non ambiguo, inequivocabile,
ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.
ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. Prerequisiti I radicali Risoluzione di sistemi di equazioni di primo e secondo grado. Classificazione e dominio delle funzioni algebriche Obiettivi minimi Saper
Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012
Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 211/212 Ricordare: una funzione lipschitziana tra spazi metrici manda insiemi limitati in insiemi limitati; se il dominio di una funzione
ISTITUTO COMPRENSIVO MONTEGROTTO TERME SCUOLA PRIMARIA DISCIPLINA: MATEMATICA - CLASSE PRIMA OBIETTIVI DI APPRENDIMENTO
PRIMA DELLA DISCIPLINA: MATEMATICA - CLASSE PRIMA L alunno si muove con sicurezza nel calcolo scritto e mentale con i numeri naturali. Legge e comprende testi che coinvolgono aspetti logici e matematici.
La misura degli angoli
La misura degli angoli In questa dispensa introduciamo la misura degli angoli, sia in gradi che in radianti, e le formule di conversione. Per quanto riguarda l introduzione del radiante, per facilitarne
LE FUNZIONI MATEMATICHE
ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante
Sommario. Definizione di informatica. Definizione di un calcolatore come esecutore. Gli algoritmi.
Algoritmi 1 Sommario Definizione di informatica. Definizione di un calcolatore come esecutore. Gli algoritmi. 2 Informatica Nome Informatica=informazione+automatica. Definizione Scienza che si occupa dell
Osservazioni sulla prima prova intermedia
Avviso Istituzioni di matematiche 2 Diego Noja ([email protected]) 28 aprile 2009 La seconda prova intermedia si svolgerà martedì 26 maggio 2008, dalle 16.30 alle 18.30 Cognomi dalla A alla L: aula
Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R
Studio di funzione Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R : allo scopo di determinarne le caratteristiche principali.
A.1 Definizione e rappresentazione di un numero complesso
441 APPENDICE A4 NUMERI COMPLESSI A.1 Definizione e rappresentazione di un numero complesso Si riepilogano i concetti e le operazioni elementari relativi ai numeri complessi. Sia z un numero complesso;
I NUMERI DECIMALI. che cosa sono, come si rappresentano
I NUMERI DECIMALI che cosa sono, come si rappresentano NUMERI NATURALI per contare bastano i numeri naturali N i numeri naturali cominciano con il numero uno e vanno avanti con la regola del +1 fino all
LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA
Anno Scolastico 2014/15 LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA : MATEMATICA PRIMO BIENNIO L asse matematico ha l obiettivo di far acquisire allo studente saperi e competenze
Anno 3. Funzioni: dominio, codominio e campo di esistenza
Anno 3 Funzioni: dominio, codominio e campo di esistenza 1 Introduzione In questa lezione parleremo delle funzioni. Ne daremo una definizione e impareremo a studiarne il dominio in relazione alle diverse
la funzione è definita la funzione non è definita Si osservi, infatti, che la radice di un numero negativo non esiste nel campo dei numeri reali.
1 y 4 CAMPO DI ESISTENZA. Poiché data è una irrazionale con indice di radice pari, il cui radicando è un polinomio, essa risulta definita solo per i valori della per i quali il radicando è positivo, ovvero
Rette e curve, piani e superfici
Rette e curve piani e superfici ) dicembre 2 Scopo di questo articolo è solo quello di proporre uno schema riepilogativo che metta in luce le caratteristiche essenziali delle equazioni di rette e curve
Programma precorso di matematica
Programma precorso di matematica a.a. 015/16 Quello che segue è il programma dettagliato del precorso. Si fa riferimento al testo [MPB] E. Acerbi, G. Buttazzo: Matematica Preuniversitaria di Base, Pitagora
Funzioni con dominio in R n
0.1 Punti e vettori di R n Politecnico di Torino. Funzioni con dominio in R n Nota Bene: delle lezioni. Questo materiale non deve essere considerato come sostituto Molto spesso risulta che una quantita
LIVELLO STUDENT S1. S2. S3. S4. S5. S6.
LIVELLO STUDENT S1. (5 punti ) La figura mostra due quadrati uguali che hanno in comune esattamente un vertice. È possibile precisare la misura dell'angolo ABC? S2. (7 punti ) Negli usuali fogli (rettangolari)
Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : = y
Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : ' = y y' = Consideriamo il punto P(,5) se eseguiamo tra trasformazione
allora la retta di equazione x=c è asintoto (verticale) della funzione
1)Cosa rappresenta il seguente limite e quale ne è il valore? E il limite del rapporto incrementale della funzione f(x)= con punto iniziale, al tendere a 0 dell incremento h. Il valore del limite può essere
Fondamenti osservativi di un Mappamondo Parallelo
Fondamenti osservativi di un Mappamondo Parallelo Néstor CAMINO Complejo PLAZA DEL CIELO Facultad de Ingeniería (UNPSJB) y ISFD N 804 Esquel, Chubut, Patagonia, ARGENTINA. [email protected] -
Trasformazioni geometriche nel piano cartesiano
Trasformazioni geometriche nel piano cartesiano Francesco Biccari 18 marzo 2013 Una trasformazione geometrica del piano è una legge (corrispondenza biunivoca) che consente di associare a un determinato
Ing. Alessandro Pochì
Lo studio di unzione Ing. Alessandro Pochì Appunti di analisi Matematica per la Classe VD (a.s. 011/01) Schema generale per lo studio di una unzione Premessa Per Studio unzione si intende, generalmente,
ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2008
PRVA SPERIMENTALE P.N.I. 8 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 8 Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Nel piano riferito
CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t)
CONTINUITÀ E DERIVABILITÀ Esercizi proposti 1. Determinare lim M(sin) (M(t) denota la mantissa di t) kπ/ al variare di k in Z. Ove tale limite non esista, discutere l esistenza dei limiti laterali. Identificare
Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica
Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica Terzo Appello del corso di Geometria e Algebra II Parte - Docente F. Flamini, Roma, 7/09/2007 SVOLGIMENTO COMPITO III APPELLO
LA GRAFICA E LA GEOMETRIA OPERATIVA
LA GRAFICA E LA GEOMETRIA OPERATIVA La geometria operativa, contrariamente a quella descrittiva basata sulle regole per la rappresentazione delle forme geometriche, prende in considerazione lo spazio racchiuso
Kangourou della Matematica 2014 finale nazionale italiana Mirabilandia, 12 maggio 2014
Kangourou della Matematica 2014 finale nazionale italiana Mirabilandia, 12 maggio 2014 LIVELLO STUDENT K,M N CD BC A S1. (5 punti ) In figura si vede una circonferenza della quale i segmenti AB, BC e CD
ELABORAZIONE di GRAFICI di FUNZIONI
ELABORAZIONE di GRAFICI di FUNZIONI Prerequisiti: Obiettivi: conoscenza dell ambiente piano cartesiano saper mettere in relazione le coppie di numeri reali con punti del piano cartesiano conoscenze di
INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.
INTEGRALI DEFINITI Sia nel campo scientifico che in quello tecnico si presentano spesso situazioni per affrontare le quali è necessario ricorrere al calcolo dell integrale definito. Vi sono infatti svariati
0. Piano cartesiano 1
0. Piano cartesiano Per piano cartesiano si intende un piano dotato di due assi (che per ragioni pratiche possiamo scegliere ortogonali). Il punto in comune ai due assi è detto origine, e funziona da origine
Geometria analitica di base (prima parte)
SAPERE Al termine di questo capitolo, avrai appreso: come fissare un sistema di riferimento cartesiano ortogonale il significato di equazione di una retta il significato di coefficiente angolare di una
CAPITOLO VII USO DELLA CARTA TOPOGRAFICA
CAPITOLO VII USO DELLA CARTA TOPOGRAFICA LA CARTA TOPOGRAFICA 88. La carta topografica è una rappresentazione grafica di una parte più o meno ampia della superficie terrestre in una determinata scala.
Corso di Laurea in Matematica Prova di orientamento. Questionario 3
Università Roma Tre Facoltà di Scienze M.F.N. Corsi di Studio in Matematica Corso di Laurea in Matematica Prova di orientamento Questionario 3 Questionario preparato per consentire la autovalutazione in
LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A
LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 6/7 SIMULAZIONE DI II PROVA - A Tempo a disposizione: cinque ore E consentito l uso della calcolatrice non programmabile. Non è consentito uscire dall aula
Capitolo 13: L offerta dell impresa e il surplus del produttore
Capitolo 13: L offerta dell impresa e il surplus del produttore 13.1: Introduzione L analisi dei due capitoli precedenti ha fornito tutti i concetti necessari per affrontare l argomento di questo capitolo:
PROIEZIONI ORTOGONALI
PROIEZIONI ORTOGONALI 104 Il metodo della doppia proiezione ortogonale Il metodo attualmente conosciuto come metodo delle proiezioni ortogonali (o proiezioni ortografiche) inizialmente nacque come metodo
Progetto Pilota Valutazione della scuola italiana. Anno Scolastico 2002 2003 PROVA DI MATEMATICA. Scuola Secondaria Superiore.
Gruppo di lavoro per la predisposizione degli indirizzi per l attuazione delle disposizioni concernenti la valutazione del servizio scolastico Progetto Pilota Valutazione della scuola italiana Anno Scolastico
Proiezioni cartografiche in uso in Italia
Proiezioni cartografiche in uso in Italia Proiezioni cartografiche in uso in Italia Paolo Zatelli Dipartimento di Ingegneria Civile ed Ambientale Università di Trento Paolo Zatelli Università di Trento
