13. Statica dei sistemi
|
|
|
- Leopoldo Angeli
- 9 anni fa
- Visualizzazioni
Transcript
1 13. Statca de sstem 1. Sstem d punt materal Su ogn punto del sstema agscono forze nterne e forze esterne che, a loro volta, s possono dstnguere n forze attve e reazon vncolar. Condzone necessara e suffcente per l equlbro del sstema èche ogn punto sa n equlbro sotto l azone d tutte le forze su d esso agent, esterne ed nterne, attve e reattve; ossa che la rsultante d tutte le forze agent su ogn punto sa nulla. Segue che senza alterare l equlbro d un sstema, s può sostture alle forze agent su un punto, altre forze ad esso applcate la cu rsultante sa nulla Sstem rgd Un sstema d punt materal s dce rgdo quando ad esso è mposto l vncolo della rgdtà, paragrafo 1-III; dunque le consderazon che verranno fatte sono valde per corp rgd. L esperenza permette d formulare seguent postulat fondamental della statca de sstem rgd: a) L equlbro d un sstema rgdo non vene alterato se alle forze applcate n un punto del sstema s sosttusce la loro rsultante applcata nello stesso punto, o vceversa s sosttusce ad una forza applcata n un punto altre forze avent come rsultante la forza assegnata. b) L equlbro d un sstema rgdo non vene alterato se s trasporta l punto d applcazone d una forza lungo la sua retta d azone. c) L equlbro d un sstema rgdo non vene alterato se alle forze agent n un suo qualsas punto, vene aggunto un sstema d forze d rsultante nulla. Per esempo, due forze opposte avent la stessa retta d azone. S deduce che le operazon descrtte ne postulat enuncat, se necessaro applcate pù volte, permettono d passare da un sstema d forze S ad un altro S, senza alterare l equlbro d un
2 304 Captolo 13 - Statca de sstem corpo rgdo. In tal caso le operazon che permettono d passare da S a S s dcono operazon nvarantve edue sstem d forze equpollent. Poché leoperazon nvarantve non alterano l sstema d forze applcato, s trae che sstem d forze equpollent hanno la stessa rsultante e uguale momento rsultante rspetto allo stesso polo. Ad esempo, per l postulato b), sono equpollent due forze rappresentate dallo stesso vettore ed avent la stessa retta d azone ma non lo stesso punto d applcazone Sstem elementar d forze g P 1 Q P 2 orze concorrent Se le rette d azone delle forze applcate concorrono tutte n un punto, èpossble trasportare le forze n tale punto e sommarle vettoralmente, fgura 1. La rsultante può essere applcata n oppure, per l postulato b), n qualsas punto della retta d azone d, passante per. Pertanto un sstema d forze concorrent è equpollente ad una unca forza, applcata ad un qualunque punto della sua retta d azone. Due forze parallele a rsultante non nulla Questo caso può rentrare nel precedente se s suppone che sa posto all nfnto; ne segue che esste sempre una rsultante applcata ad un punto qualunque della sua retta d azone. Per determnare tale retta, consderamo l caso d due forze parallele 1, 2, applcate rspettvamente n P 1 e P 2, fgura 2. S aggungano n tal punt due forze opposte e, drette come la congungente P 1 P 2. Sommando 1 con e 2 con, sottengono due forze concorrent n, lacu rsultante ha una retta d azone che nterseca l segmento P 1 P 2 n Q. Il punto Q è tale che, se 1 e 2 hanno lo stesso verso, dvde nternamente l segmento P 1 P 2 n part nversamente proporzonal a 1 e 2. Infatt consderamo le coppe d trangol sml P 1 AB, P 1 Q e P 2 CD, QP 2 ;sha 1 2 P 1 Q AB = Q 1, P 2 Q CD = Q 2, P 1Q P 2 Q = 2 1. A B C g L operazone può essere reterata se le forze sono pù D d due. Se le forze hanno verso opposto e hanno rsultante dversa da zero, l procedmento è analogo. Il problema generale andrà consderato nel seguto. Due forze a rsultante nulla Un sstema d forze a rsultante nulla e, applcate n due punt dstnt P e Q costtusce una coppa. Ilpano cu appartengono le forze s chama pano della coppa e la dstanza tra le due
3 2. Moment 305 P 1 b 2 P Q 2 Q 1 g g rette d azone bracco b della coppa, fgura 3. Una coppa può essere trasformata n un altra, n cu le forze che la costtuscono rsultano perpendcolar alla congungente loro punt d applcazone. Infatt, fgura 4, s consder la coppa costtuta dalla forze e, applcate n P e Q; sscomponga nelle due forze 1 e 2, nelle drezon ortogonale e parallela al segmento PQ. Nello stesso modo s scomponga nelle forze 1 e 2. Le forze 1 e 1 costtuscono la nuova coppa; nfatt 2 e 2 hanno rsultante nulla perché s trovano sulla stessa retta d azone. 2. Moment Il momento d un vettore rspetto a un polo è stato defnto nel paragrafo 2-IX. Va rcordato che l momento gode delle propretà del prodotto vettorale e vara al varare del polo. Defnamo momento M d una forza, applcata n un punto P, rspetto ad un polo, lagrandezza M = r, dove r =(P ). Se èunnuovo polo, fgura 5, essendo r =( )+r, r = r +( ), z r r P l momento della forza rspetto ad rsulta: g M = r =[r +( )] = M +( ). (1) In partcolare, se appartene alla retta passante per e parallela a, èovvamente M = M Momento assale Sa una forza applcata n un punto del corpo rgdo e una retta orentata, coè un asse, defnto n drezone dal versore û;
4 306 Captolo 13 - Statca de sstem assegnato un polo sull asse, defnamo momento assale della forza la componete secondo tale asse del momento della forza rspetto ad. Indcando questa quanttà scalare con M a,sha M a = M û = r û. (2) Q û 1 r g P 2 Il sgnfcato fsco del momento assale appare evdente dalla fgura 6. Scomponamo n un componente 1 enuncomponente 2, rspettvamente parallelo e ortogonale all asse; analogamente scomponamo r ne component r 1 =(Q ) er 2 =(P Q). Il momento assale s scrve: M a =[(r 1 + r 2 ) ( )] û = r 1 1 û + r 1 2 û + r 2 1 û + r 2 2 û. S osserv che tutt prodott trpl, eccetto l ultmo sono null; pertanto M a = r 2 2 û = M û. Soltanto l componente della forza ortogonale all asse, è attvo a fn della rotazone del corpo rgdo attorno all asse. Se assumamo sull asse un polo dverso, essendo r = r + ( ), l momento assale dventa û M a = M û = r û +( ) û. b g Ma l secondo termne ènullo perché ( )eû sono parallel; se ne trae che l momento assale d una forza è ndpendente dal polo scelto sull asse. S rconosce altresìche questa conclusone èvera qualunque sa l punto d applcazone della forza sulla sua retta d azone. In partcolare, l momento assale ènullo quando l asse e la retta d azone della forza sono parallel. Se la retta d azone della forza gace n un pano ortogonale all asse, rsulta z P M a = ±b, essendo b l bracco, ossa la dstanza tra la retta d azone d ed, punto d ntersezone dell asse col pano; l segno dpende dal verso postvo fssato per l momento; fgura 7. r PQ r P Q 2.2. Momento d una coppa r Q Il momento rsultante d due forze e, applcate n P e Q, costtuent la coppa, rspetto a un polo, fgura 8, è dato da M = r P + r Q ( ) =(r P r Q ). g. 13.8
5 2. Moment 307 Ma r P r Q = r PQ èlvettore che congunge punt d applcazone delle forze, dunque l momento rsultante, momento della coppa, dventa M = r PQ, (3) ed ha modulo: M = r PQ sn θ = b, dove b èlbracco della coppa, coè ladstanza tra le rette d azone delle forze. Dalla (3) s deduce che l momento d una coppa è ndpendente dal polo. S deduce noltre che due coppe, gacent nello stesso pano o su pan parallel, sono equvalent se 1 b 1 = 2 b 2. Una coppa d bracco b 1, costtuta dalle forze 1, 1,è equvalente ad una qualsas altra coppa, gacente nello stesso pano, se l una può essere trasformata nell altra per mezzo d operazon nvarantve. Consderamo nfatt due rette parallele arbtrare, dstant b 2,che ntersecano rspettvamente le rette d azone delle forze assegnate ne punt A e B, D e C, fgura 9. S trasport la forza 1 n A elaforza 1 n C; qund s scomponga 1 nelle forze 2, dretta come AD, er dretta come AC; analogamente s scomponga 1 nelle forze 2, dretta come CB, e R dretta come AC. Ilmodulo del momento d 1 rspetto al polo C è 1 b 1 ; ma 1 = 2 + R, dunque l modulo del momento, rspetto allo stesso polo, d queste due forze component è 2 b 2, essendo nullo l momento d R, perché C appartene alla sua retta d azone. Segue che le coppe costtute dalle forze 1, 1 e dalle forze 2, 2 sono equvalent. b 1 1 R r Q D 2 A b 2 C 2 B R 1 g g Sstema forza-coppa L aggunta d una coppa opportuna, permette d trasportare una forza, applcata n un punto Q d un corpo rgdo, ad un altro punto arbtraro dello stesso corpo. Infatt s vogla trasportare la forza da Q ad, fgura 10; n quest ultmo punto
6 308 Captolo 13 - Statca de sstem possamo applcare le forze opposte e, sstema nullo, ottenendo una forza applcata n e la coppa costtuta dalle forze e, rspettvamente applcate n Q ed. Pertanto la forza può essere trasportata n punto d applcazone dverso, purché nseme ad essa s consder una coppa d momento uguale al momento della forza rspetto ad, ossa: M = r, dove r èlvettore che ndvdua la poszone d Q rspetto ad. S tenga presente che l momento non è un vettore applcato. Il sstema così ottenuto s dce sstema forza-coppa. Vceversa un tale sstema s può sempre rdurre ad una sola forza applcata n Q spostando, nel pano ortogonale al momento della coppa, la forza fnché lsuo momento rspetto ad non sa uguale a M Momento d un sstema d forze Assegnato un sstema d forze 1, 2,..., applcate ne punt P 1,P 2,... d un corpo rgdo e scelto un polo, sdefnsce momento del sstema d forze la somma vettorale de moment delle sngole forze rspetto ad : M = M 1 + M 2 + = r. Analogamente s defnsce momento assale del sstema d forze rspetto ad un asse a, dversore û, lagrandezza M a = M û = M û. Se, n partcolare, le forze sono concorrent nello stesso punto, detta r la poszone d tale punto rspetto al polo, s ha M = r 1 + r 2 + = r ( )=r. Il momento rsultante è uguale al momento della rsultante come stablto al paragrafo 2-IX, (Teorema d Vargnon). Rsultato analogo s ottene per l momento assale: M a = r û. Supponamo ora d assumere un polo ;nconformtà alla (1), l momento rsultante del sstema d forze è: M = M + ( ) = M +( ), (4) che stablsce la relazone con cu vara l momento del sstema d forze al varare del polo. Dalla (4) s deduce che M = M, sela rsultante delle forze ènulla oppure, nel caso che sa dversa da zero, se ( )ed sono parallel.
7 2. Moment 309 Moltplcando scalarmente per ambo membr della (4), s ottene: M = M = cost. (5) Questa relazone s chama nvarante scalare o trnomo nvarante. Esso costtusce un elemento caratterstco del sstema d forze ed esprme che la componente del momento rsultante M secondo, evceversa, è sempre costante e ndpendente dal polo. Va notato che nella (4) compare la rsultante delle forze, che verrà determnata con metod descrtt nel prossmo paragrafo Rduzone d un sstema d forze Element caratterstc d un sstema d forze sono la rsultante e l momento rsultante. Ess vanno determnat medante operazon nvarantve che permettono, n partcolare, d verfcare se due sstem d forze sono equpollent, ossa se hanno la stessa rsultante e lo stesso momento rsultante rspetto ad un polo prescelto. Voglamo ora stablre la massma rduzone d un sstema d forze assegnato. Consderamo per prma l caso n cu l nvarante scalare (5) sa nullo; questa condzone comporta: a) Rsultante e momento rsultante sono ortogonal b) =0,M 0;perla (4) s ha M = M qualunque sa l polo. Se s consdera una coppa d bracco b, tale che M = b,lsstema d forze s rduce alla coppa costtuta dalle forze,. c) M =0;lsstema d forze s rduce alla sola rsultante. d) = 0, M = 0; le forze costtuscono un sstema nullo orze concorrent e forze complanar In tal sstem d forze l nvarante scalare ènullo. orze concorrent n un punto La massma rduzone consste nella rsultante applcata al punto o n qualsas punto della sua retta d azone. orze complanar ssato un punto arbtraro nel pano delle forze, cascuna forza può essere trasportata n aggungendo la rspettva coppa. Poché lmomento d ogn forza, rspetto ad, è ortogonale al pano, s otterrà una rsultante, applcata n eunmomento rsultante M ad essa ortogonale, fgura 11. Volendo rdurre l sstema ottenuto alla sola rsultante, occorre rcercare l punto Q d applcazone della rsultante, rspetto al quale l momento rsultante del sstema d forze ènullo. Ponendo nella (4) M =0,sha M +( Q) =0, (Q ) = M; (6)
8 310 Captolo 13 - Statca de sstem 3 2 M 1 g l momento della rsultante rspetto ad deve essere uguale al momento rsultante rspetto allo stesso polo. ssato un rfermento cartesano nel pano delle forze con orgne n, lmomento rsultante è M = r = ( )k, che ha come unca componente M z = ( ). D altra parte, dette Q, Q le coordnate d Q, lmomento della rsultante è dato da pertanto: (Q ) =( Q Q )k, Q Q = ( )=M z. L espressone Q Q = M z, rappresenta l equazone della retta d azone d. Per la defnzone d prodotto vettorale, la dstanza d d tale retta da è: d = M z. Pù ngenerale, la rcerca del vettore r Q =(Q ) che ndvdua le coordnate Q, Q del punto d applcazone della rsultante, è analoga a quella esposta per determnare l asse stantaneo d rotazone ne mot rototraslator, defnto dall equazone vettorale (25) del captolo III. Rcordando la (4), che stablsce come vara l momento al varare del polo, s può scrvere M = M + ( ).
9 2. Moment 311 Tenuto conto che, nel caso n esame, ed M sono ortogonal, essterà unpartcolare punto Q per lquale èsoddsfatta la relazone: M = (Q ), (7) che rende nullo M. Per determnare l punto Q, sosserv che l prodotto vettorale M rappresenta l vettore d modulo M, ruotato d 90 rspetto ad M; qund l doppo prodotto ( M) èunvettore opposto ad M, uguale a 2 M.Pertanto: M = 1 ( M). 2 Confontando con la (7), s ha (Q ) = 1 ( M), 2 dalla quale s trae (Q ) r Q = M. (8) 2 L equazone ottenuta è analoga alla (25)-III, qualora s scrva al posto d ω e M al posto d v T. z 2.7. orze parallele Anche n questo caso l nvarante scalare ènullo. Supponamo che le rette d azone delle forze sano parallele all asse z del rfermento d fgura 12, ma non tutte abbano lo stesso verso. La rsultante è parallela all asse z e poché l momento delle sngole forze è ortogonale a cascuna d esse, l momento rsultante è rappresentato da un vettore parallelo al pano -. Il sstema forzacoppa, che s ottene col procedmento descrtto, consta dunque d una rsultante, applcata nell orgne del rfermento, o n qualsas altro punto dove le forze sono state trasportate, e d un momento rsultante M, somma de moment assocat alle forze, mutuamente ortogonal. Esso può essere rdotto ad una sngola forza oppure, se la rsultante =0,auna coppa d momento M. La rduzone a una sngola forza, come per le forze complanar, va fatta rcercando, nel pano -, l punto Q rspetto al quale l momento rsultante uguagla l momento della rsultante, equazone (6). Il momento rsultante rspetto ad è dato da z M = r k = ( + j + z k) k = ( j + ). D altra parte, dette Q, Q le coordnate d Q, sha (9) r Q Q ( Q + Q j) k = Q j + Q. (10) g
10 312 Captolo 13 - Statca de sstem Uguaglando nelle (9) e (10), le rspettve component, s ottene Q =, Q =. (11) Nello stesso modo s procede se le forze sono parallele all asse oppure all asse. Snot che le sono le component delle forze, pertanto rappresenta la loro somma algebrca. vvamente, le (11) posssono essere rcavate medante la (8). Le (11) danno le coordnate dell ntersezone della retta d azone della rsultante col pano -, dunque l suo punto d applcazone resta ndetermnato. Tuttava uguaglando l momento della rsultante col momento rsultante, s ha r Q k = r k. (12) Questa relazone s può scrvere: r Q k = r k, da cu: r Q = r. Pertanto s ottene r r Q =. (13) La (13) defnsce unvocamente la poszone del punto Q, lecu coordnate rsultano: Q =, Q =, z Q = z. (14) Questo rsultato èvaldo qualunque sa l orentazone forze parallele. Infatt, detto û l versore comune delle forze, rsulta û = û. Sosttuendo nella (12), s ottene lo stesso rsultato. Il punto Q defnto dalle (14) s chama centro delle forze parallele Rduzone d un sstema d forze generco Consderamo un sstema d forze 1, 2,... applcate a un corpo rgdo, ne punt P 1,P 2,...,lacu poszone rspetto ad un punto, orgne d una terna cartesana ortogonale, è defnta da vettor r 1, r 2,... La forza può essere trasportata n aggungendo la coppa d momento M = r. Rpetendo l procedmento per ogn forza, otterremo un sstema consstente nelle forze concorrent n e nelle coppe d moment M 1, M 2,..., fgura 13. Ne segue che l sstema d forze è equvalente alla rsultante ed al momento rsultante M = M 1 + M 2 +. Pertanto un sstema d forze
11 2. Moment 313 z z 2 M r 2 P 2 r 1 P 1 r 3 P 3 3 g comunque complesso, può essere rdotto al sstema forza-coppa agente nel punto prefssato. Il sstema forza-coppa, così ottenuto, è espresso da: =, M = r. (15) La prma dà luogo alle relazon scalar =, =, z = z. Dalla seconda, essendo r = + j + z k, = + j + z k, s ha: M = ( z z ) M = M z = (z z ) ( ). Va notato che, mentre l momento d cascuna coppa è ortogonale alla corrspondente forza, la rsultante elmomento rsultante M, ngenere, non sono ortogonal. L nvarante scalare è dverso da zero; l sstema d forze non può essere rdotto alla sola rsultante. Il momento M può essere scomposto n un componente M 1, parallelo a enuncomponente M 2 ortogonale, fgura 14. Il sstema costtuto da e M 2, come s è vsto n precedenza, può essere rdotto alla rsultante applcata n un punto Q opportuno. Ne segue che la massma rduzone del sstema d forze consste nella rsultante e nella coppa d momento M 1 ad essa parallela. Dunque la rsultante mprme al corpo rgdo una traslazone
12 314 Captolo 13 - Statca de sstem z z M 2 M M 1 M 1 Q g lungo la sua retta d azone ed l momento una rotazone attorno ad essa. Questa retta d azone s chama asse centrale del sstema. Il modulo d M 1 s ottene mmedatamente dalla defnzone d prodotto scalare: M 1 = M. Esso, come ndca l nvarante scalare, è ndpendente dalla scelta del polo. Esempo 2 1. Una sbarra AB, appoggata su un pano orzzontale, è sollectata da quattro forze ad essa ortogonal e tra loro parallele, come mostrato n fgura 15. Assunto un rfermento con orgne n A, asse orentato lungo la sbarra ed asse ortogonale, sono assegnate le component delle forze lungo, 1 =35N, 2 = 155 N, 3 =20N, 4 = 80 N, erspettv punt d applcazone: 1 =0, 2 =0, 4 m, 3 =0, 7 m, 4 =1, 2 m. Rdurre le forze al sstema forza-coppa n A. La componente della rsultante lungo è negatva e vale = 180 N. Il momento rsultante rspetto ad A, ortogonale al pano delle forze, è dato da M A = r =0, 4 ( 2 j)+0, 7 3 j +1, 2 ( 4 j) 1 g = 0, k +0, 7 20 k 1, 2 80 k = 144 k N m In modo analogo s procede nella rduzone ad un sstema forzacoppa n un punto qualunque della sbarra. Volendo rdurre l sstema alla sola rsultante, occorre trovare l suo punto d applcazone; detta C la coordnata d tale punto, dalle (14) s ottene C = =0, 8 m. S ramment che le rappresentano le component delle forze ed la loro somma algebrca.
13 3. Barcentro Barcentro Consderamo un sstema rgdo costtuto da punt materal, soggett all azone della gravtà. Detta M la massa totale del sstema, alle forze parallele m 1 g, m 2 g,...,possamo sostture la forza Mg = m 1 g + m 2 g +, applcata nel centro delle forze, che chamamo barcentro. Le (14) dventano: m g m g z m g C =, C =, z C =, (16) Mg Mg Mg Supponendo che l sstema non sa molto esteso, coè sa tale che l accelerazone d gravtà possa rteners costante n tutto l sstema, le (16) esprmono anche le coordnate del centro d massa; C = m M, C = m M, z C = z m M. Le (16) s estendono a un sstema contnuo, corpo rgdo; nfatt suddvdendo l corpo n element d massa dm e ndcando con r l vettore che ndvdua l elemento rspetto all orgne del rfermento, possamo scrvere rdm r C =. dm Se l corpo è omogeneo, denstà ρ = costante, essendo dm = ρdv = ρdddz e M = ρ V dv la massa del corpo, s ha dddz dddz zdddz V V V C =, C =, z C =. V V V (17) La rcerca del barcentro dventa puttosto semplce, se s tene conto d alcune propretà elementar de corp. a) Il barcentro o centro d massa d due corp assmlabl a punt materal, s trova sul segmento che l congunge e dvde questo n part nversamente proporzonal alle masse de punt materal. Assunto come orgne l barcentro e ndcando con r 1, r 2 la poszone de due punt, s ha m 1 r 1 + m 2 r 2 =0, r 1 = m 2. r 2 m 1 b) Se l corpo s estende su un pano o lungo una retta, l barcentro appartene al pano o alla retta; cò dscende mmedatamente dalle (16). c) Se l corpo ammette un pano d smmetra materale, l barcentro s trova su tale pano. Infatt, assunto l pano d smmetra
14 316 Captolo 13 - Statca de sstem come pano - e cambando nella terza delle (16) z n z, s ottene z C =0;coscché lbarcentro gace n tale pano. d) Se l corpo ammette due pan d smmetra materale e dunque la loro ntersezone è asse d smmetra materale, l barcentro s trova su tale asse. Se noltre esstono tre pan d smmetra materale, l loro punto d ntersezone è centro d smmetra materale. Il barcentro concde con tale punto. Il barcentro d un corpo omogeneo che ha forma d polgono o poledro regolare, concde col centro geometrco della fgura. e) Il barcentro gode della propretà dstrbutva; nfatt le (16) hanno manfestamente caratterstche estensve. Se l corpo vene suddvso n due o pù part e d ognuna d queste vene determnato l barcentro, v rtenendo localzzata la massa d cascuna parte, l barcentro dell ntero corpo concde con quello de punt materal così ottenut. f) Se un corpo omogeneo presenta delle cavtà, l barcentro s ottene attrbuendo al corpo denstà ρ costante e alle cavtà la denstà fttza ρ. Lostesso s verfca nel caso bdmensonale, n cu sono present for, e nel caso undmensonale d fgure formate da arch separat Teorema d Pappo-Guldno l C g S consder un arco l d lnea, nel pano - d un rfermento cartesano. accamo ruotare l arco consderato d un angolo gro attorno all asse, fgura 16; la superfce S da esso generata è data da S = 2πdl. (18) l D altra parte, per la seconda delle (17), la coordnata del barcentro dell arco è dl l C =. l Per la(18) segue: C = S 2πl. (19) Vceversa, nota la coordnata del barcentro, èpossble calcolare l area della superfce del soldo d rotazone. Analogamente s dmostra che se C èlacoordnata del barcentro d una porzone d superfce S del pano -, che ruotando attorno all asse genera un volume V,sha C = V 2πS, (20) da cu s può rcavare l volume del soldo d rotazone.
15 3. Barcentro 317 Calcolo d barcentr 2. Intutvamente s assume che l barcentro o centro d massa d una sbarra omogenea d sezone costante e lunghezza l, strov a metà lunghezza. Cò è conforme alla propretà a); nfatt, detta λ la denstà lneca della sbarra e assunto un asse d rfermento con orgne n un suo estremo, la massa dell elemento dstante dall orgne è dm = λd, pertanto: λ C = λ l 0 l 0 d [ = 1 2 l 2 d ] l 0 = l 2. Altrettanto ntutvamente assumamo che l centro d massa d un dsco crcolare omogeneo s trova nel suo centro geometrco; nfatt qualunque dametro è asse d smmetra ed ha come centro d massa l centro del dsco. 3. S determn l centro d massa d un dsco crcolare omogeneo d raggo R, ncu è pratcato un foro crcolare d raggo r<r. Per la propretà f), possamo assumere che l foro sa equvalente a un dsco d massa negatva. Detta M la massa del dsco d raggo R e m la massa del dsco equvalente d raggo r, sha M = σπr 2, m = σπr 2, essendo σ la denstà areca del dsco. Assunto un asse d rfermento con orgne nel bordo del dsco e passante per due centr, fgura 17, e detta a la dstanza tra quest, s ha C = σπr2 R σπr 2 (R a) σπ(r 2 r 2 ) = R + r2 a R 2 r 2. C R r a h d A b B g g Barcentro d un trangolo omogeneo. S dvda l trangolo n strsce d spessore nfntesmo parallele al lato AB, fgura 18. Il barcentro d ogn strsca s trova nel punto d mezzo; l luogo d tal punt èlamedana del trangolo passante per C e, per le propretà b)e c), su questa s troverà lbarcentro del trangolo. Analogo ragonamento s può fare relatvamente alle altre due medane del trangolo, pertanto, come noto, l barcentro del trangolo è ndvduato dalla ntersezone delle tre medane. Sa b un lato del trangolo ed h l altezza relatva ad esso; detta S la superfce ed C la coordnata del barcentro, per le (17), s ha S C = ds.
16 318 Captolo 13 - Statca de sstem Dvdamo l trangolo n strsce parallele a b, dlunghezza e altezza d, percò ds = d. Essendo =(h )b/h e S = bh/2, la precedente dventa: percò: 1 2 bhc = b h h 0 (h )d = 1 2 bh2 1 3 bh2 ; C = 1 3 h. 5. Barcentro d un quadrlatero omogeneo. S dvda l quadrlatero ne due trangol ABD e CBD, fgura 19, e vengano determnat barcentr C 1, C 2 de trangol ottenut. Il barcentro del quadrlatero s troverà sulla loro congungente. Dvdendo l quadrlatero ne due trangol ADC e ABC s troverà un altra retta sulla quale s trova l barcentro e, per ntersezone, l barcentro del quadrlatero. B A C 1 C2 C R ϑ 0 ϑ D g g r R g d 6. Barcentro d un arco omogeneo d crconferenza. Detto 2θ 0 l angolo sotteso dall arco e dspost gl ass del rfermento come n fgura 20, per le propretà b) ed), l barcentro s trova sull asse. Dalle (17), s ha θ0 θ0 Rdθ R cos θdθ θ C = 0 θ = 0 sn θ0 = R. 2Rθ 0 2θ 0 θ 0 In partcolare l barcentro d una semcrconferenza è C = 2R π. In manera pù semplce, l barcentro d una semcrconferenza può essere rcavato per mezzo della (19). Infatt la superfce generata dall arco è quella della sfera, 4πR 2 elalunghezza dell arco è l = πr, percò: C = S 2πl = 2R π. 7. Barcentro d un semcercho omogeneo. ssato un rfermento - con orgne nel centro del semcercho, come n fgura 21, per la propretà c) ed), l barcentro s trova sull asse. Suddvsa la fgura n strsce d altezza d, parallele all asse, sha = R sn θ, d = R cos θdθ, 2r =2R cos θ,
17 4. Equlbro 319 Poché ds =2rd =2R 2 cos 2 θdθ. S C = ds, s ha π/2 S C =2R 3 cos 2 θ sn θdθ. 0 Posto = cos θ, è d = sn θdθ e tenendo presente che S = πr 2 /2, la precedente dventa: z R πr C =2R3 2 d = 2 3 R3. 1 Infne: C = 4 R 3 π. A questo rsultato s può pervenre pù rapdamente per mezzo della (20). Il volume generato nella rotazone è quello della sfera, V =4πR 3 /3, ed essendo S = πr 2 /2, s ottene: C = V 2πS = 4 R 3 π. h r dz 8. Barcentro d un cono rotondo omogeneo. Assunt gl ass del rfermento come n fgura 22, per la propretà d), l barcentro s trova sull asse z. Suddvdendo l cono n dsch d spessore dz e detta h la sua altezza, s ha g ma r/z = R/h, pertanto: z C = h 0 zπr 2 dz πr 3 h/3 ; h π(r/h) 2 z 3 dz 0 z C = = 3 πr 3 h/3 4 h. 9. Barcentro della lastra omogenea d fgura 23. Per la smmetra della lastra e per la propretà d), l barcentro s trova sull asse e s può calcolare dvdendo la lastra n due rettangol ABCD e EGH. Il barcentro del prmo ha coordnata C = d + b/2, quello del secondo coordnata C = d/2. Dette S 1 e S 2 le superfc de due rettangol, l barcentro dell ntera lastra rsulta b D A E d a H C B C = S1 C + S 2 C = (d + b/2)ab + d2 c/2. S 1 + S 2 ab + dc c G g Equlbro L equlbro d un sstema rgdo va determnato mponendo che la rsultante delle forze ed l momento rsultante rspetto a qualsas polo, sano ugual a zero: = =0, M = r =0. (21)
18 320 Captolo 13 - Statca de sstem Queste relazon comprendono le forze attve e le reazon vncolar. Assunto un opportuno rfermento cartesano, n problem pan, le (16) danno luogo a quattro equazon scalar; n problem trdmensonal a se equazon scalar. Medante le (16) s può determnare l equlbro, note le forze agent sul corpo o, vceversa, assegnata una confgurazone d equlbro, le reazon vncolar e/o parte delle forze. In ogn caso, perché lproblema sa statcamente determnato, le ncognte non possono essere pù dquattro n problem pan, non pù dse n problem trdmensonal. La natura de vncol egrad d lbertà del corpo rgdo, determnano ovvamente l numero delle ncognte. Lascando l anals completa a cors specalzzat, le reazon vncolar hanno caratterstche dpendent da support e dalle connesson del corpo; n lnea d massma possono essere classfcate come segue. Reazon d drezone nota I vncol, support e connesson, permettono l movmento del corpo n due dmenson; la retta d azone della reazone concde con la drezone n cu vene ostacolato l movmento. Per esempo, una superfce prva d attrto esercta una reazone ad essa ortogonale; l eventuale moto del corpo è pano. Analogo èl moto d un corpo poggato su rull. Un collare lsco che può scorrere senza attrto lungo un asta, esercta una reazone ortogonale all asta. Un corpo fssato ad una estremtà duncavo, è soggetto ad una reazone dretta lungo questo. In fgura 24 sono mostrat alcun vncol d questo tpo. R R R g Reazon d drezone ncognta Se support e connesson permettono l eventuale movmento del corpo n una drezone, la reazone ha due component. Per esempo, una rotaa permette l eventuale moto del corpo n una drezone; la reazone ha due component: una ortogonale, l altra laterale alla rotaa. Superfc scabre possono ostacolare l movmento n tre drezon, pertanto la reazone ha tre component.
19 4. Equlbro 321 R z R z M R R R g g Pern e cernere permettono soltanto rotazon; le reazon possono avere due o tre component a seconda della sollectazone mpressa, fgura 25. Reazon equvalent ad un sstema forza-coppa Se l supporto è fsso, la connessone determna un nseme d forze dstrbute sulla superfce d contatto, che possono essere rdotte a una forza e ad una coppa; occorre determnare le component della forza e l momento della coppa, fgura 26. Se le forze attve sono conservatve e vncol lsc, l equlbro è stablto dalle condzon n cu l energa potenzale è mnma. Gl esemp che seguono possono meglo charre gl element sopra espost. Esemp 10. Un quadro d massa m è fssato alla parete medante due fl deal, che formano con la vertcale due angol θ ugual, fgura 27. Determnare le tenson de fl. Il quadro ènequlbro; dette T 1, T 2 le tenson, per l equlbro s ha T 1 ϑ T 2 T 1 + T 2 + mg =0. Assumendo postvo l verso ascendente e proettando sull orzzontale e sulla vertcale: T 1 sn θ T 2 sn θ =0, T 1 cos θ + T 2 cos θ mg =0. S rcava T 1 = T 2 = T, T = mg 2 cos θ. La tensone dpende dall angolo e cresce all aumentare d questo; per esempo, lo sforzo che eserctamo nel sollevarc con le bracca unte al corpo, rsulta mnore d quello che eserctamo con le bracca pù aperte. g
20 322 Captolo 13 - Statca de sstem 11. Un asta omogenea d sezone costante, massa m e lunghezza l, ncernerata n, come mostrato n fgura 28, è tenuta n equlbro per mezzo d un flo deale. Su d essa agscono: una forza vertcale, applcata al suo estremo, la tensone eserctata dal flo e l peso propro. Determnare la tensone del flo e la reazone vncolare R n. Per l equlbro s deve avere + T + mg + R =0, e assumendo come polo, l annullars de moment delle forze convolte, ossa della forza applcata, della tensone e del peso: M + M T + M P = mg T ssato un rfermento con orgne n, asse volto n alto, asse orzzontale, e proettando la prma, s ha T cos 60 + R =0, + T sn 60 mg + R =0. I moment hanno component ortogonal al pano -: lsn 60 mg l 2 sn 60 + Tlsn 30 =0. Da quest ultma s rcava la tensone: T = ( mg ) sn60 sn 30 ; g dalle prme, le component della reazone: R = T cos 60, R = + mg T sn 60. Il problema è statcamente defnto; numercamente, assumendo = 20N, m =1kg, sottene T =43, 12 N, R =21, 56 N, R = 7, 54 N. A R A l 12. Un asta AB omogenea, d lunghezza l e sezone costante, ènequlbro appoggata con l estremo A su una parete vertcale e l altro estremo B su un pano orzzontale, col quale forma un angolo θ, fgura 29. Supponendo che soltanto la parete sa prva d attrto, determnare le reazon n A e B. Essendo la parete lsca, la reazone n A è ortogonale ad essa, mentre n B ha component, parallela ed ortogonale al pano. All equlbro, la somma delle forze ènulla R A + R B + mg =0. Assunto un rfermento con l asse concdente col pano e l asse con la parete, la precedente dà luogo alle equazon scalar mg R B ϑ B g R A + R B =0, R B mg =0. Per quanto rguarda moment, convene sceglere come polo B, nmodoche l momento d R B sa nullo, scché vanno cosderat moment della reazone n A ed l momento del peso. S ha M A + M P =0. I moment hanno component ortogonal al pano -, edalla precedente s ottene l equazone scalare: R Al sn θ + mg l cos θ =0; 2 da quest ultma s ottene R A = mg cos θ 2 sn θ. Dall equazone d equlbro delle forze s ha R A = R B, R B = mg.
21 4. Equlbro 323 Naturalmente, l equlbro dpende dall angolo θ; noltre R B dev essere mnore o uguale alla forza d attrto statco. S osserv che se la parete non fosse lsca la reazone R A avrebbe una componente parallela ad essa. S otterrebbero così quattro forze component ncognte e l problema non potrebbe essere rsolto senza una ulterore potes. 13. S consder l asta dell esempo precedente nel caso che anche l pano orzzontale sa prvo d attrto e che l equlbro venga realzzato medante una molla d costante k, fssata n e nell estremo B dell asta, fgura 30. La condzone d equlbro può essere determnata col metodo precedente; èperò nteressante, essendo le forze convolte conservatve e l lavoro delle reazon nullo, perché ortogonal a vncol, trovare tale condzone studando l energa potenzale del sstema. Detta 0 la lunghezza della molla a rposo e C l ordnata del centro d massa, l energa potenzale, funzone della dstanza d B dall orgne, è A U() =mg C k( 0)2, che s può scrvere: C mg U() = 1 2 mg l k( 0)2. e L equlbro s ha per du d = 1 2 mg + k( 0) =0, l2 2 da cu: mg = k( 0). 2 tan θ Per quanto rguarda le reazon, evdentemente s ha R A = k( 0), R B = mg. g B 14. Un asta omogenea d massa m, è vncolata a scorrere all nterno d una guda crcolare prva d attrto, d raggo r e dsposta n un pano vertcale. La lunghezza dell asta è uguale al raggo della guda. Una forza, dretta lungo l asta e applcata a un suo estremo, determna l equlbro dell asta, n modo che l altro estremo s trov nel punto pù basso della guda, fgura 31. Determnare le reazon vncolar ne punt A e B. Per l equlbro: + mg + R A + R B =0, M =0. Proettando la prma su due ass, orzzontale e vertcale, s ha cos 30 R B cos 30 =0 cos 60 + R B cos 60 + R A mg =0, da cu: R B =, R A = mg 2 cos 60. Assumendo come polo l centro della guda, per modul de moment s ottene: R A r R B B rsn 60 mg r 2 sn 60 =0, = 1 2 mg. A m g 15. Una sfera d massa m, n equlbro, è appoggata tra un pano vertcale e un pano nclnato che forma col prmo un angolo θ, fgura 32. Determnare le reazon eserctate da vncol. Le forze agent sulla sfera sono l peso e le reazon R 1, R 2, ortogonal a pan. Per l equlbro delle forze, s ha g R 1 + R 2 + mg =0;
22 324 Captolo 13 - Statca de sstem Proettando su due ass orentat, orzzontale e vertcale, s ottene: R 1 R 2 cos θ =0, R 2 sn θ mg =0, R 1 R 2 m g 30 g R 2 = mg sn θ, cos θ R1 = R2 cos θ = mg sn θ. Non è necessara l equazone dell equlbro de moment. S può subto verfcare che l momento rsultante ènullo qualunque sa l polo assunto. 16. Due sfere ugual, d raggo r e massa m, sono n equlbro n un contentore a paret vertcal. La dstanza tra queste è l<4r, fgura 33; determnare le reazon eserctate da vncol. Le forze che agscono sono: le reazon R 1, R 2, R 3,pes e la forza al contatto tra le sfere. Dette e le ascsse de centr, rspetto allo spgolo del contentore, s ha = l 2r =2r cos θ, cos θ = l 2r. 2r Per l equlbro della sfera A: R 1 + R 2 + mg + =0, che proettata sugl ass, orzzontale e vertcale, dà R 1 cos θ =0, R 2 mg sn θ =0. Analogamente per la sfera B: cos θ R 3 =0, sn θ mg =0. Da queste ultme s trae = mg mg, R3 = cos θ = snθ tan θ. dalle prme: R 1 = cos θ = mg tan θ, R2 = mg + sn θ =2mg. Anche n questo caso non è necessara l equazone dell equlbro de moment; s verfca faclmente che essa è soddsfatta qualunque sa l polo assunto. B A R 3 3 R 1 R 2 mg ϑ mg 1 2 g g Un asta omogenea d sezone costante, lunga 0, 8 m,ènequlbro, appoggata a suo estrem su support lsc A e B. L asta è sollectata dalle forze ad essa ortogonal come n fgura 34. Assunto un rfermento con orgne n A e l asse orentato lungo la sbarra, le forze sono applcate rspettvamente ne punt 1 =0, 1 m, 2 =0, 3 m e 3 =0, 7 m ed hanno component lungo l asse
23 5. Cenno sul prncpo de lavor vrtual 325 : 1 = 10 N, 2 =5N, 3 = 25 N. Trascurando l peso dell asta, trovare l punto d applcazone della rsultante e le reazon n A e B. La rsultante vale = 30 N; l suo punto d applcazone, centro delle forze, è C = =0, 56 m. Le reazon R A, R B,possono essere determnate dall equlbro de moment; assumendo come polo A, sha ed essendo s ottene 0, 8R B 0, 56 =0, R B = R A + R B =0, R A = R B =8, 78 N. 0, 56 =21, 2 N, 0, Una mensola, lunga 1, 2 m,è ncastrata n ad una parete vertcale, come n fgura 35. Essa è sollectata dalle forze 1 = 200 N, 2 = 100 N, 3 =50N, applcate ne punt 1 =0, 3 m, 2 =0, 8 m e 3 =1, 2 m. Determnare la reazone all ncastro. La parte della mensola ncastrata è soggetta a forze dstrbute, equvalent a una forza e ad una coppa. ssato un rfermento con orgne n, asse concdente con la mensola, e asse ortogonale, per l equlbro delle forze è + R =0, R =0. 1 Inoltre: R =0, R = = 350 N, Indcando con M l momento della coppa d reazone, per l equlbro de moment, s ha M = M =0 M = = 200 N m. La reazone è costtuta da una forza vertcale R = 350 N e da una coppa d momento postvo M = 200 N m. 2 g Una trave omogenea, lunga 2 m,è appoggata agl estrem su due support lsc A e B. Sudessa è dstrbuto un carco crescente lnearmente con la dstanza, dal valore 100 N/m al valore 300 N/m, fgura 36. Determnare le reazon agl appogg. Il carco, per untà dlungheza, vara con la legge () =a + 100, a = 100 N/m 2. Il carco totale rsulta: 2 [ ] 2 A = ( )d = = 400 N. 0 0 Il punto d applcazone, per le (13), rsulta C = 1 2 [ ( )d = ] =1, 16 m. 2 0 g B
24 326 Captolo 13 - Statca de sstem 5. Cenno sul prncpo de lavor vrtual Un prncpo fondamentale della Statca e, n generale, della Meccanca èlprncpo de lavor vrtual. Esso costtusce uno strumento molto potente nello studo dell equlbro e vene descrtto n modo esaurente n Meccanca Razonale. Tuttava, essendo la sua formulazone puttosto semplce e notevole la sua utltà ne problem d statca, ne daremo lneament fondamental. Consderamo un sstema d n punt materal, P 1, P 2,... a qual sano mpost de vncol e sano 1, 2,... le forze attve agent su cascun punto. Se l sstema compe uno spostamento vrtuale, ossa uno spostamento nfntesmo ammssble perché conforme a vncol, ndcando con δs lo spostamento vrtuale del generco punto P, llavoro vrtuale, corrspondente a tale spostamento, è dato da δl = δs. Il smbolo δ ndca, come d consueto, lo spostamento e l lavoro elementar, vrtual, e rcorda che non s tratta d un operatore dfferenzale. Per charre l concetto d lavoro vrtuale, consderamo alcun partcolar sstem n equlbro. Ad ognuno damo un generco spostamento vrtuale compatble con vncol, e determnamo l corrspondente lavoro delle forze attve atte a mantenere l equlbro del sstema consderato. All equlbro l lavoro delle forze vncolar, ortogonal a vncol, è nullo. Punto materale lbero Non essendo present vncol, un qualunque spostamento è ammssble, dunque è vrtuale. Se èlarsultante delle forze agent, l lavoro vrtuale corrspondente allo spostamento δs, è δl = δs. Incondzon d equlbro =0,dunque δl =0. Punto materale vncolato ad una lnea o ad un pano gn spostamento vrtuale è tangente al vncolo. Il lavoro vrtuale della rsultante delle forze attve è δl = δs. Ma, n condzon d equlbro, è ortogonale al vncolo, dunque δl = 0. Corpo rgdo lbero Qualunque spostamento rototraslatoro è ammssble e pertanto vrtuale. Detta la rsultante ed M l momento rsultante delle forze attve rspetto ad un polo, llavoro vrtuale, paragrafo 5-XIV, è δl = v dt + M ωdt = δs + M δϕ. In condzon d equlbro =0,M =0,dunque δl =0.
25 5. Cenno sul prncpo de lavor vrtual 327 Corpo rgdo con un asse fsso gn spostamento vrtuale è rotatoro attorno all asse fsso; l corrspondente lavoro vrtuale è δl = M a δϕ, essendo M a l momento assale. Per l equlbro M a =0,dunque δl =0. Quanto s è esemplfcato, sa pure n manera ncompleta e poco rgorosa, può essere rassunto con l enuncato: Condzone necessara e suffcente per l equlbro d un sstema soggetto a vncol, è che l lavoro delle forze attve, per ogn spostamento vrtuale, sa nullo. S osserv che n questo enuncato non compaono le reazon vncolar né lanatura de vncol. Le eventual forze d attrto possono essere annoverate tra le forze attve. Esemp 20. Macchne semplc. Agl effett statc, macchna è un qualsas dspostvo atto ad equlbrare una forza applcata n un punto d un corpo, con un altra applcata n un punto dverso. Le macchne semplc, note fn dall antchtà, sono n sostanza tre: la fune, la leva, l pano nclnato. a) une La fune sa nestendble e d peso trascurable; a suo estrem sano applcate le forze 1, 2.Per uno spostamento vrtuale, gl estrem della fune s spostano d δs; per l equlbro s deve avere 1 δs + 2 δs =0, =0; le forze devono essere opposte. b) Leva Uno spostamento vrtuale è una rotazone δϕ attorno al fulcro, fgura 37. L estremo A della leva s sposta d δs 1 = l 1dϕ, l altro estremo s sposta d δs 2 = l 2δϕ, essendo l 1, l 2 le dstanze da degl estrem della leva. Per l equlbro, l lavoro vrtuale dev essere nullo: l 1 b 1 ϑ 1 δl = 1 δs δs 2 =0. Poché: δs 2 δl = 1δϕl 1 cos θ 1 + 2δϕl 2 cos θ 2 = 1b 1δϕ 2b 2δϕ =0, ϑ2 avendo ndcato con b 1, b 2 bracc delle forze rspetto ad, s ottene: 2 1b 1 = 2b 2. b 2 Questa relazone non è altro che quella che s otterrebbe dall equlbro de moment delle forze rspetto ad. c) Pano nclnato Sono spostament vrtual tutt quell parallel al pano nclnato. Se l corpo su d esso poggato ènequlbro, l lavoro vrtuale per tal spostament deve essere nullo. Cò sgnfca che la rsultante delle forze è normale al pano nclnato e volta contro esso. ve s consder unlatero l vncolo mposto, sano percò nclus spostament vrtual nel semspazo delmtato dal pano, allora l lavoro vrtuale della rsultante deve essere negatvo. Consderamo un clndro d raggo R, che può rotolare lungo un pano nclnato d un angolo θ rspetto all orzzontale. Su d esso agsce l peso e una forza equlbrante, parallela al pano e applcata medante un flo tangenzalmente ad un clndro d raggo r, coassale col prmo, fgura 38. Unco spostamento vrtuale èlarotazone nfntesma δϕ attorno all asse l 2 δϕ g R r Q mg 1 δs 1 g
26 328 Captolo 13 - Statca de sstem stantaneo d rotazone passante per Q. Assunto come postvo l verso dscendente, tale rotazone determna uno spostamento del centro del clndro uguale a Rδϕ e uno spostamento del punto d applcazone A della forza equlbrante, uguale a (R + r)δϕ. Illavoro vrtuale è δl = mg sn θrδϕ (R + r)δϕ =0, da cu s rcava la condzone d equlbro: mg sn θ = R R + r. B 21. Carrucola fssa. Con rfermento alla fgura 27, captolo VII, sono spostament vrtual le rotazon nfntesme attorno all asse. Supponendo che le caratterstche del flo sano deal, l lavoro vrtuale delle forze è ARδϕ BRδϕ =0, A = B. 22. Carrucola moble. Dalla fgura 29, captolo VII, assunto come postvo l verso dscendente, gl spostament vrtual avvengono lungo la vertcale. Se 2 scende d δz, 1 s sposta n valore e segno d 2 cos(θ/2)δz. Il lavoro vrtuale rsulta pertanto l equlbro s ha per 2δz 12 cos θ δz =0; 2 A 2 =2 1 cos θ 2, 1 = 2 2 cos θ/2. Se θ =0,laforza equlbrante rsulta 2/2. A g B r 1 E r Paranco. Il paranco è costtuto da due o pù carrucole fsse collegate medante una fune ad altrettante carrucole mobl, fgura 39. S vuole trovare la forza B che equlbra l peso A, sospeso alle carrucole mobl. Assunta come postva la drezone dscendente, se la forza A sposta l suo punto d applcazone verso l basso d δz, laforza B, nel caso C della fgura, sposta l suo punto d applcazone, verso l alto, d 4δz. Il lavoro vrtuale è δl = Aδz B4δz =0, pertanto rsulta B = A/4. Per equlbrare A occorre una forza quattro volte pù pccola. D 24. Pulegga dfferenzale. La pulegga dfferenzale è costtuta da due pulegge soldal e coassal, d ragg r 1, r 2, collegate con una fune ad una pulegga moble, fgura 40. Essa, come l paranco, permette d sollevare pes notevol con una forza d modesta ntenstà. Sa la forza applcata lungo l tratto d fune AB; per un gro della pulegga fssa, AB s allunga d 2πr 2, contemporaneamente la pulegga moble s solleva d metà dell accorcamento del tratto CED. Poché la fune s avvolge nella pulegga d raggo r 1,ntotale la fune s accorca d 2π(r 2 r 1), qund s solleva d π(r 2 r 1). Detto δϕ l angolo d rotazone, gl spostament vrtual d A ed sono: mg r 2 r 1 R 2δϕ, δϕ. 2 Per l equlbro ènullo l lavoro vrtuale: g r 2δϕ mg r2 r1 δϕ =0, 2 = mg r2 r1 2r 2.
27 5. Cenno sul prncpo de lavor vrtual 329 La forza può essere resa pccola a pacere perché dpende dalla dfferenza r 2 r 1.Ilsstema èmunto d un dspostvo a scappamento per mpedre la rotazone nversa. Da quest esemp s deduce che, n generale, nelle macchne, tanto s guadagna n forza quanto s perde n spostamento oppure, rferendos alla veloctà, tanto s guadagna n forza quanto s perde n veloctà. È questa la regola d oro delle macchne. 25. S consder la scala d lunghezza l d fgura 41. Supponendo che l attrto tra parete e scala sa trascurable e che µ s sa l coeffcente d attrto statco del pavmento, determnare l angolo θ massmo tra scala e parete, per l quale essa ènequlbro. Gl spostament vrtual degl estrem della scala, compatbl con vncol,sono δ e δ; ncorrspondenza l angolo vara d δθ. Detta C l ordnata del centro d massa, punto medo se s suppone la scala omogenea, s ha C = l cos θ/2 e = l sn θ. Se l angolo vara d δθ, sha δ C = d dθ δθ = l sn θδθ, 2 Il lavoro vrtuale della forza peso è d δ = δθ = l cos θδθ. dθ δl 1 = mgδ C = l mg sn θδθ, 2 quello della forza d attrto: δl 2 = Aδ = Al cos θδθ. δ C ϑ l C C δϑ Essendo l lavoro vrtuale totale nullo, s rcava: A = 1 mg tan θ. 2 Poché per l equlbro deve essere A µ smg, strae A δ tan θ 2µ s, tan θ ma =2µ s. S osserv che n tutt gl esemp, non ntervengono le reazon vncolar né le tenson delle fun. g Il prncpo de lavor vrtual è partcolarmente utle nella soluzone d problem n cu sono convolt corp rgd conness tra loro. S consder l sstema artcolato, ncernerato n A, B e C, che comprme un blocco n B, quando una forza è applcata n C, fgura 42. S vuole trovare la forza d compressone eserctata sul blocco. ssato un rfermento,, con orgne n A, edetta l la lunghezza d AC e CB,lecoordnate d B e C sono B =2l sn θ, C = l cos θ. Gl spostament vrtual sono δ B =2l cos θδθ, δ C = l sn θδθ. A Il lavoro vrtuale: δl =2 Bl cos θδθ + lsn θδθ, B = 1 2 tan θ. l C ϑ g B dove B èlaforza d compressone. Le reazon vncolar non ntervengono. S lasca al lettore lo svolgmento del problema col metodo convenzonale.
5. Baricentro di sezioni composte
5. Barcentro d sezon composte Barcentro del trapezo Il barcentro del trapezo ( FIURA ) s trova sull asse d smmetra oblqua (medana) della fgura; è suffcente, qund, determnare la sola ordnata. A tal fne,
urto v 2f v 2i e forza impulsiva F r F dt = i t
7. Urt Sstem a due partcelle Defnzone d urto elastco, urto anelastco e mpulso L urto è un nterazone fra corp che avvene n un ntervallo d tempo normalmente molto breve, al termne del quale le quanttà d
La ripartizione trasversale dei carichi
La rpartzone trasversale de carch La dsposzone de carch da consderare ne calcol della struttura deve essere quella pù gravosa, ossa quella che determna massm valor delle sollectazon. Tale aspetto nveste
RIPARTIZIONE DELLE FORZE SISMICHE ORIZZONTALI
RIPARTIZIONE DELLE FORZE SISMICHE ORIZZONTALI (Modellazone approssmata alla rnter) Le strutture degl edfc sottopost alle forze ssmche sono organsm spazal pù o meno compless, l cu comportamento va analzzato
PROBLEMA 1. Soluzione. β = 64
PROBLEMA alcolare l nclnazone β, rspetto al pano stradale, che deve avere un motocclsta per percorrere, alla veloctà v = 50 km/h, una curva pana d raggo r = 4 m ( Fg. ). Fg. Schema delle condzon d equlbro
I balconi appoggiati su mensole
1 I balcon appoggat su mensole Con un sstema costruttvo ogg n dsuso, per l mpego d nuov metod che garantscono una maggore scurezza, nelle costruzon realzzate sno a crca un secolo fa balcon venvano ottenut
Macchine. 5 Esercitazione 5
ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt
Meccanica Dinamica del corpo rigido
Meccanca 8-9 6 Fora peso sul corpo rgdo Corpo sottoposto alla fora peso: Su ogn elemento nfntesmo d massa dm agsce la fora Rsultante delle fore: F peso V g dm Momento rsultante (polo ): M V Energa potenale:
Lez. 10 Forze d attrito e lavoro
4/03/015 Lez. 10 Forze d attrto e lavoro Pro. 1 Dott., PhD Dpartmento Scenze Fsche Unverstà d Napol Federco II Compl. Unv. Monte S.Angelo Va Cnta, I-8016, Napol [email protected] +39-081-676137 1 4/03/015
INTRODUZIONE ALL ESPERIENZA 4: STUDIO DELLA POLARIZZAZIONE MEDIANTE LAMINE DI RITARDO
INTODUZION ALL SPINZA 4: STUDIO DLLA POLAIZZAZION DIANT LAIN DI ITADO Un utle rappresentazone su come agscono le lamne su fasc coerent è ottenuta utlzzando vettor e le matrc d Jones. Vettore d Jones e
Soluzione del compito di Fisica febbraio 2012 (Udine)
del compto d Fsca febbrao (Udne) Elettrodnamca È data una spra quadrata d lato L e resstenza R, ed un flo percorso da corrente lungo z (ved fgura). Dcamo a e b le dstanze del lato parallelo pù vcno e pù
METODO DEGLI ELEMENTI FINITI
METODO DEGLI ELEMENTI FINITI Introduzone al metodo degl element fnt Il concetto base nella nterpretazone fsca del metodo degl element fnt è la decomposzone d un sstema meccanco complesso n pù semplc component
Esercizi sulle reti elettriche in corrente continua (parte 2)
Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola
Metodi variazionali. ed agiscono sulla FORMA DEBOLE DEL PROBLEMA
Metod varazonal OBIETTIVO: determnare funzon ncognte, chamate varabl dpendent, che soddsfano un certo nseme d equazon dfferenzal n un determnato domno e condzon al contorno STRUMETO: Metod varazonal: servono
Misure Topografiche Tradizionali
Msure Topografche Tradzonal Grandezze da levare ngol Dstanze Gonometr Dstanzometro Stazone Totale Prsma Dslvell Lvello Stada Msure Strettamente Necessare Soluzone geometrca Msure Sovrabbondant Compensazone
Trasformatore monofase. Le norme definiscono il rendimento convenzionale di un trasformatore come: = + Perdite
Rendmento l rendmento effettvo d un trasformatore vene defnto come: otenza erogata al carco η otenza assorbta dalla rete 1 1 1 1 Le norme defnscono l rendmento convenzonale d un trasformatore come: η otenza
Determinare la frequenza e la velocità angolare della lancetta dei secondi e dei minuti di un orologio
Determnare la requenza e la veloctà angolare della lancetta de second e de mnut d un orologo Frequenza: numero d gr completat n un secondo (untà d tempo) o anche numero d gr completat rspetto al tempo
