Bono Marco Spirali triangolari e quadrate 1. Spirali triangolari e quadrate

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Bono Marco Spirali triangolari e quadrate 1. Spirali triangolari e quadrate"

Transcript

1 Bono Marco Spirali triangolari e quadrate 1 Spirali triangolari e quadrate Spirali triangolari Proviamo a costruire delle spirali triangolari: per iniziare partiamo da un solo punto, come nella figura Aggiungiamo ora altri due punti Quindi tre punti sul lato destro in alto E procedendo allo stesso modo possiamo costruire una spirale triangolare. E così via; ovviamente, dalla costruzione, il numero di punti di ogni triangolo successivo è uguale al numero di punti del triangolo precedente più la lunghezza del lato del triangolo precedente aumentata di uno. Ossia, il numero di punti del triangolo di lato n è dato da: Σ i i=1,n

2 Bono Marco Spirali triangolari e quadrate 2 Spirali quadrate Proviamo a costruire ora delle spirali quadrate: per iniziare partiamo da un solo punto, come nella figura Costruiamo un quadrato con la seguente regola: spostiamo il punto in basso e aggiungiamo due punti a lato, così. Ora passiamo al quadrato successivo, applicando la stessa regola un po modificata, ossia copiamo il lato del quadrato in alto ed aggiungiamone un altro, più lungo di un unità a sinistra. Il nuovo quadrato diventa Proseguendo con la regola indicata possiamo ottenere i quadrati successivi.. Volendo esprimere la regola in formato matematico si ottiene la formula seguente: Q = 1 + (1+2) + (2+3) + (3+4) +. Da questa formula risulta evidente che i numeri nelle parentesi sono i successivi numeri dispari e quindi, per passare da un quadrato all altro, occorre sommare un numero dispari. Se raggruppiamo i numeri della formula precedente in modo diverso otteniamo:

3 Bono Marco Spirali triangolari e quadrate 3 Ossia : Q = (1+1) + (2+2) + (3+3) +. + (n+n) + (n+1) Q = 2*Σ i + (n+1) = Σ i + (Σ i + n+1) i=1,n i=1,n i=1,n Ma Σ i è l n-esimo numero triangolare, mentre Σ i + n+1 è l n+1-esimo numero i=1,n i=1,n triangolare, quindi un quadrato è esprimibile come somma di due numeri triangolari successivi. D altra parte è possibile dimostrare questa proprietà anche in modo grafico: =

4 Bono Marco Spirali triangolari e quadrate 4 Piramidi quadrate Piramidi di palle Immaginiamo di disporre di un certo numero di palle di cannone e, per il nostro amore dell ordine, di volerle accatastare in modo da occupare meno spazio. Come prima idea proviamo a costruire delle piramidi a base quadrata; iniziamo quindi a formare il primo piano di palle: un quadrato di lato diciamo 5 Ora passiamo al secondo piano; queste palle andranno ad occupare gli avvallamenti che si trovano in mezzo a quattro palle contigue. In questo modo il secondo piano sarà un quadrato di lato 4: Che, sovrapposto al primo piano inizia a formare la piramide: Ora passiamo al terzo piano; queste palle andranno ad occupare gli avvallamenti che si trovano in mezzo a quattro palle contigue. In questo modo il terzo sarà un quadrato di lato 3:

5 Bono Marco Spirali triangolari e quadrate 5 E la piramide diventa: E, continuando così, la piramide finale diventa: Quante palle siamo riusciti ad ordinare? E facile: abbiamo sovrapposto 5 quadrati di lato progressivamente minore, da 5 a 1. Quindi il numero di palle è: = = 55 palle. Più in generale la formula per ottenere il numero di palle in una piramide di base quadrate in funzione del lato della base è: N= Σ i2 i=1,n

6 Bono Marco Spirali triangolari e quadrate 6 Piramidi triangolari Vediamo ora cosa succede se volessimo raggruppare le palle su una piramide a base triangolare. Per iniziare, come per la piramide a base quadrata, partiamo da un triangolo di base 5: A questo punto passiamo al triangolo successivo che si formerà nei punti centrali rispetto a tre palle contigue: Continuando in questo modo si arriverà a costruire la piramide completa: Di quante palle sarà composta? Per rispondere a questa domanda è sufficiente osservare che ogni piano della piramide è un numero triangolare e ogni piano confinante è costituito da due numeri triangolari successivi. Ora, come visto al punto Spirali quadrate, la somma di due numeri triangolari successivi dà un numero quadrato (es. T 5 (il 5 numero triangolare) + T 4 = Q 5 (il 5 numero quadrato): = 25). Quindi la nostra piramide sarà formata da: T 5 + T 4 + T 3 + T 2 + T 1 = Q 5 + Q 3 + Q 1 = = 35 palle

7 Bono Marco Spirali triangolari e quadrate 7 In generale la formula per ottenere il numero di palle di una piramide a base triangolare (che ormai abbiamo riconosciuto essere un tetraedro) in funzione del lato n della base, è la seguente: P T = Σ i 2 i=n,[2 1],-2 Ossia occorre sommare tutti i quadrati, a partire da n 2 fino a 4 = 2 2 (se n è pari) o 1 (se n è dispari) con passo 2. Triangoli di triangoli Immaginiamo di partire da un triangolo qualsiasi: Suddividiamolo ora in un numero arbitrario di triangoli simili più piccolini spostando i lati del triangolo di partenza parallelamente a se stessi quante volte vogliamo: Quant è il numero totale di triangolini piccoli? Per rispondere a questa domanda osserviamo che il triangolo composto è formato da due tipi di triangoli: il primo tipo è esattamente uguale al triangolo di partenza, anche come orientazione, il secondo tipo è sempre uguale al triangolo di partenza ma ribaltato: il vertice in alto si trova in basso, quello di destra si trova a sinistra e viceversa. Per visualizzare meglio questi triangoli coloriamo il primo tipo in rosso ed il secondo in blu; la figura precedente diventa:

8 Bono Marco Spirali triangolari e quadrate 8 Ora si può osservare che sia il numero di triangoli rossi che il numero di triangoli blu sono dei numeri triangolari, anzi, in particolare, il numero triangolare di triangoli rossi è il numero triangolare successivo del numero triangolare di triangoli blu. Ad esempio, nella nostra figura il numero di triangoli rossi è 21 (che è il 6 numero triangolare) e il numero di triangoli blu è 15 (che è il 5 numero triangolare) A questo punto, grazie alla proprietà dei numeri triangolari successivi che, sommati tra di loro, danno un quadrato (vedasi il punto Spirali quadrate ), ossia, con ovvio significato dei simboli: T n + T n-1 = Q n possiamo concludere che, a seguito della suddivisione di un triangolo in un numero arbitrario di triangolini più piccoli, il numero di triangolini è sempre un quadrato, in particolare è il quadrato del numero di triangolini della base del triangolo grande. Nel nostro esempio, avendo 6 triangolini su un lato del triangolo grande, abbiamo 21 triangolini rossi più 15 triangolini blu, ossia complessivamente 36 (= 6 2 ) triangolini.

Scritto da Maria Rispoli Domenica 09 Gennaio :07 - Ultimo aggiornamento Martedì 01 Marzo :11

Scritto da Maria Rispoli Domenica 09 Gennaio :07 - Ultimo aggiornamento Martedì 01 Marzo :11 Sin dai tempi di Pitagora, sono state esplorate le interessanti proprietà di un certo numero di sassolini messi in forme geometriche, cercando di ricavarne leggi universali. Ad esempio il numero 10, la

Dettagli

Scritto da Maria Rispoli Domenica 09 Gennaio :07 - Ultimo aggiornamento Martedì 01 Marzo :11

Scritto da Maria Rispoli Domenica 09 Gennaio :07 - Ultimo aggiornamento Martedì 01 Marzo :11 Sin dai tempi di Pitagora, sono state esplorate le interessanti proprietà di un certo numero di sassolini messi in forme geometriche, cercando di ricavarne leggi universali. Ad esempio il numero 10, la

Dettagli

Gara Matematica. Dipartimento di Matematica Ulisse Dini. Viale Morgagni 67/a Firenze. Soluzioni edizione 2011

Gara Matematica. Dipartimento di Matematica Ulisse Dini. Viale Morgagni 67/a Firenze. Soluzioni edizione 2011 Gara Matematica Dipartimento di Matematica Ulisse Dini Viale Morgagni 67/a - 50134 Firenze Soluzioni edizione 011 Esercizio 1. Determinare tutti gli interi positivi non nulli n che sono uguali alla somma

Dettagli

Lista di esercizi 11 maggio 2016

Lista di esercizi 11 maggio 2016 Lista di esercizi 11 maggio 2016 1. Determinare il numero di sequenze binarie di lunghezza n che contengano almeno una coppia di 0 consecutivi. Soluzione. Potrebbe essere utile un programma di calcolo

Dettagli

Università di Pisa. Concorso di ammissione al tirocinio formativo attivo classe A047 - matematica. Prova scritta - 29 agosto 2012

Università di Pisa. Concorso di ammissione al tirocinio formativo attivo classe A047 - matematica. Prova scritta - 29 agosto 2012 Università di Pisa Concorso di ammissione al tirocinio formativo attivo classe A047 - matematica Prova scritta - 29 agosto 2012 Esercizio 1 Un robot si trova nell origine (0, 0 di un piano cartesiano e

Dettagli

Spirali. Novembre Spirali Novembre / 19

Spirali. Novembre Spirali Novembre / 19 Spirali Novembre 2013 Spirali Novembre 2013 1 / 19 ;-) Spirali Novembre 2013 2 / 19 La spirale è uno dei simboli più antichi e più estesi che si conoscono. Modena Spirali Novembre 2013 3 / 19 La spirale

Dettagli

Piano Lauree Scientifiche - Progetto Archimede. Costruzione di poliedri SCHEDA 4

Piano Lauree Scientifiche - Progetto Archimede. Costruzione di poliedri SCHEDA 4 Piano Lauree Scientifiche - Progetto Archimede Costruzione di poliedri SCHEDA 4 Espansione di un cubo Consideriamo il quadrato verde AEHD faccia del cubo ABCDEFGH. Vogliamo traslare questa faccia esternamente

Dettagli

= (5 1 + R4) = (4 1 + R3) = R3

= (5 1 + R4) = (4 1 + R3) = R3 Dati cinque punti nel piano, in modo che a tre a tre non siano allineati, quante rette passanti per due di questi punti è possibile tracciare? Sai esprimere il legame generale tra il numero N di punti

Dettagli

Triangoli numerici e loro conseguenze aritmetiche su quadrati, cubi, numeri di Lie, numeri di Fibonacci, ecc.

Triangoli numerici e loro conseguenze aritmetiche su quadrati, cubi, numeri di Lie, numeri di Fibonacci, ecc. Triangoli numerici e loro conseguenze aritmetiche su quadrati, cubi, numeri di Lie, numeri di Fibonacci, ecc. Francesco Di Noto, Michele Nardelli, Pierfrancesco Roggero Abstract In questo lavoro parleremo

Dettagli

Piano Lauree Scientifiche - Progetto Archimede. Dai poliedri platonici ai poliedri archimedei per espansione

Piano Lauree Scientifiche - Progetto Archimede. Dai poliedri platonici ai poliedri archimedei per espansione Piano Lauree Scientifiche - Progetto Archimede Dai poliedri platonici ai poliedri archimedei per espansione Consideriamo il quadrato verde AEHD faccia del cubo ABCDEFGH. Vogliamo traslare questa faccia

Dettagli

9 a GARA MATEMATICA CITTÀ DI PADOVA 19 MARZO 1994 SOLUZIONI

9 a GARA MATEMATICA CITTÀ DI PADOVA 19 MARZO 1994 SOLUZIONI 9 a GARA MATEMATICA CITTÀ DI PADOVA 19 MARZO 1994 SOLUZIONI 1.- Nella prima giornata la squadra B gioca con una delle tre rimanenti (vi sono 3 scelte possibili) e le altre due una contro l altra. 1 3 I

Dettagli

SPAZIO E FIGURE: ROMPIAMO LE SCATOLE

SPAZIO E FIGURE: ROMPIAMO LE SCATOLE SPAZIO E FIGURE: ROMPIAMO LE SCATOLE 1) Procurati una scatola vuota e bada che sia richiusa bene. Apri i lati necessari ad ottenere il suo sviluppo. Quanti lati è necessario aprire come minimo? 2) Lavora

Dettagli

SOLUZIONI. u u In un quadrato magico sommando gli elementi di una riga, di una

SOLUZIONI. u u In un quadrato magico sommando gli elementi di una riga, di una 1 a GARA MATEMATICA CITTÀ DI PADOVA 2 Aprile 2016 SOLUZIONI 1.- Sia n un numero intero. È vero che se la penultima cifra di n 2 è dispari allora l ultima è 6? Possiamo supporre n positivo. Sia : n = 100c

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie numeriche e serie di potenze Sommare un numero finito di numeri reali è senza dubbio un operazione che non può riservare molte sorprese Cosa succede però se ne sommiamo un numero infinito? Prima

Dettagli

10 a GARA MATEMATICA CITTÀ DI PADOVA 25 MARZO 1995 SOLUZIONI

10 a GARA MATEMATICA CITTÀ DI PADOVA 25 MARZO 1995 SOLUZIONI 10 a GARA MATEMATICA CITTÀ DI PADOVA 2 MARZO 199 SOLUZIONI 1.- Nella somma 70 + + 40 gli studenti che studiano almeno una lingua contano una volta, quelli che ne studiano almeno due un altra volta, quelli

Dettagli

Generazione di una mesh rettangolare

Generazione di una mesh rettangolare Generazione di una mesh rettangolare asse y Lunghezza F2 (x0,y0) Lunghezza F1 asse x Sia dato un dominio rettangolare di base F1 e altezza F2, costruito a partire dal punto indicato come (X0, Y 0). 1 Vogliamo

Dettagli

Il quadrato di binomio, assieme allaa differenza dei quadrati che vedremo in seguito, è uno dei più importanti prodotti notevoli.

Il quadrato di binomio, assieme allaa differenza dei quadrati che vedremo in seguito, è uno dei più importanti prodotti notevoli. PRODOTTI NOTEVOLI I prodotti notevoli sono identità matematiche molto utilizzate nella risoluzione di espressioni algebriche letterali in quanto permettono uno svolgimento rapido dei calcoli, inoltre si

Dettagli

1. equivalenze e implicazioni logiche. Esercizio 1.2. Trovare le implicazioni che legano i seguenti enunciati (x, y R):

1. equivalenze e implicazioni logiche. Esercizio 1.2. Trovare le implicazioni che legano i seguenti enunciati (x, y R): . equivalenze e implicazioni logiche Esercizio.. Trovare le implicazioni che legano i seguenti enunciati (x, y R): () x < y, () x = y, () x y, () x y, () (x y) > 0. Osserviamo subito che (x y) > 0 equivale

Dettagli

La scomposizione in fattori primi

La scomposizione in fattori primi La scomposizione in fattori primi In matematica la fattorizzazione è la riduzione in fattori: fattorizzare un numero n significa trovare un insieme di numeri {a0, a1, a2, a3 } tali che il loro prodotto

Dettagli

Costruzione di un triangolo simile a un triangolo dato

Costruzione di un triangolo simile a un triangolo dato C Costruzione di un triangolo simile a un triangolo dato Disegna un triangolo ABC e un segmento A 0 B 0. Costruisci poi un punto C 0 in modo che il triangolo A 0 B 0 C 0 sia simile ad ABC. Verifica quindi

Dettagli

Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana /16

Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana /16 Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana - 015/16 Esercizio 1 Per quali valori n Z \ {0} l espressione è un numero intero positivo? (n + 5)(n + 6) 6n Soluzione. Il problema

Dettagli

FIGURE SOLIDE OSSERVANDO LE FIGURE DELLO SPAZIO CHE CI CIRCONDANO NOTIAMO CHE:

FIGURE SOLIDE OSSERVANDO LE FIGURE DELLO SPAZIO CHE CI CIRCONDANO NOTIAMO CHE: FIGURE SOLIDE OSSERVANDO LE FIGURE DELLO SPAZIO CHE CI CIRCONDANO NOTIAMO CHE: IL CUBO IL PARALLELEPIPEDO LA PIRAMIDE HANNO LA SUPERFICIE COSTITUITA DA POLIGONI (QUADRATO, RETTANGOLO, TRIANGOLO) E PRENDONO

Dettagli

SCHEDA D FACCIAMO UN PAVIMENTO

SCHEDA D FACCIAMO UN PAVIMENTO SCHEDA D FACCIAMO UN PAVIMENTO 1. Noi chiamiamo tassellazioni regolari quelle ottenute unendo fra loro poligoni regolari dello stesso tipo in modo da restare sul piano. Con il materiale a disposizione

Dettagli

DIDATTICA DELLA GEOMETRIA Lezione n 3

DIDATTICA DELLA GEOMETRIA Lezione n 3 DIDATTICA DELLA GEOMETRIA Lezione n 3 PERCORSI NELLA GEOMETRIA SOLIDA LA RELAZIONE DI EULERO f+v=s+2 Possiamo fare un po di algebra con la Geometria solida! Quanti vertici ha un prisma a base triangolare?

Dettagli

Corso di Laurea in Fisica. Geometria 1. a.a Gruppo B. Prof. P. Piazza Soluzioni compito a casa del 17/11/06 B =

Corso di Laurea in Fisica. Geometria 1. a.a Gruppo B. Prof. P. Piazza Soluzioni compito a casa del 17/11/06 B = Corso di Laurea in Fisica. Geometria. a.a. 26-7. Gruppo B. Prof. P. Piazza Soluzioni compito a casa del 7//6 Soluzione esercizio. Sia B {e, e 2 } e sia B {v, v 2 }. La matrice B del cambiamento di base

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. . esercizi Chi non risolve esercizi non impara la matematica.. esercizi + = + = + = 0 = + = 8 + = 0 = 8 8 = + 9 = 0 = + = = + = 0 = = + = 0 = 0 8 0 = 9 = 0 + = + = = 8 = 0 = = = + = 8 = 0 9 = 0 = = + 8

Dettagli

Categoria Benjamin Per studenti del primo e secondo anno della scuola media inferiore. I quesiti dal N.1 al N. 10 valgono 3 punti ciascuno

Categoria Benjamin Per studenti del primo e secondo anno della scuola media inferiore. I quesiti dal N.1 al N. 10 valgono 3 punti ciascuno Categoria Benjamin Per studenti del primo e secondo anno della scuola media inferiore I quesiti dal N.1 al N. 10 valgono 3 punti ciascuno 1. Risposta D) (2008 200 8) + 2008 = 1800 + 2008 = 3808. 2. Risposta

Dettagli

Massimo comune divisore e minimo comune multiplo Tavola A Descrizione della tavola

Massimo comune divisore e minimo comune multiplo Tavola A Descrizione della tavola Massimo comune divisore e minimo comune multiplo Proponiamo un lavoro che sollecita la riflessione sulle nozioni forma e proporzionalità, di multipli e divisori, di massimo comun divisore, di punti a coordinate

Dettagli

Complementi di algebra

Complementi di algebra Complementi di algebra Equazioni di grado superiore al secondo Come per le equazioni di grado, esistono formule risolutive anche per le equazioni di e grado ma non le studieremo perché sono troppo complesse,mentre

Dettagli

Soluzioni per gli esercizi di Teoria dei grafi.

Soluzioni per gli esercizi di Teoria dei grafi. M. Barlotti Soluzioni per gli Esercizi di Teoria dei grafi v.!.3 Pag. 1 Soluzioni per gli esercizi di Teoria dei grafi. Esercizio 1 Un grafo connesso Z è disegnato nel piano senza sovrapposizione di lati

Dettagli

Soluzione esercizi Gara Matematica 2009

Soluzione esercizi Gara Matematica 2009 Soluzione esercizi Gara Matematica 009 ( a cura di Stefano Amato, Emanuele Leoncini e Alessandro Martinelli) Esercizio 1 In una scacchiera di 100 100 quadretti, Carlo colora un quadretto di rosso, poi

Dettagli

Kangourou della Matematica 2017 Coppa Kangourou a squadre Semifinale turno A Cervia, 6 maggio Quesiti

Kangourou della Matematica 2017 Coppa Kangourou a squadre Semifinale turno A Cervia, 6 maggio Quesiti Kangourou della Matematica 2017 Coppa Kangourou a squadre Semifinale turno A Cervia, 6 maggio 2017 Quesiti 1. Addendi Il numero 5 6 può essere ottenuto sia come prodotto di 6 fattori ognuno uguale a 5

Dettagli

Matematica Lezione 4

Matematica Lezione 4 Università di Cagliari Corso di Laurea in Farmacia Matematica Lezione 4 Sonia Cannas 18/10/2018 Proporzioni Esempio Da un rubinetto di una vasca fuoriescono 60 litri di acqua in 4 minuti. Quanti litri

Dettagli

Archimede sulla quadratura del segmento parabolico. Progetto per il corso di Storia della Matematica Luciana Elena Scala Michele Gasparini

Archimede sulla quadratura del segmento parabolico. Progetto per il corso di Storia della Matematica Luciana Elena Scala Michele Gasparini Archimede sulla quadratura del segmento parabolico Progetto per il corso di Storia della Matematica Luciana Elena Scala Michele Gasparini Archimede di Siracusa è stato matematico, fisico e inventore. Egli

Dettagli

ANNO SCOLASTICO 2015/2016

ANNO SCOLASTICO 2015/2016 ANNO SCOLASTICO 2015/2016 SCUOLA SECONDARIA DI PRIMO GRADO U. FOSCOLO RELAZIONE DI MATEMATICA IL TRIANGOLO DI TARTAGLIA ALUNNO: NICOLÒ BAGNASCO CLASSE: 3 B PROFESSORE: DANIELE BALDISSIN CENNI STORICI Tartaglia

Dettagli

Alberi binari: definizione e alcune proprietà

Alberi binari: definizione e alcune proprietà Alberi binari: definizione e alcune proprietà Alberi binari Un albero binario è un albero con radice in cui ogni nodo ha al più due figli. In maniera più formale: Definizione. (Alberi binari) Un albero

Dettagli

RISOLVERE EQUAZIONI DI PRIMO GRADO INTERE

RISOLVERE EQUAZIONI DI PRIMO GRADO INTERE Prof. Di Caprio 1 RISOLVERE EQUAZIONI DI PRIMO GRADO INTERE Introduzione In questa lezione impareremo a risolvere equazioni di primo grado intere. Esse sono molto utili principalmente per risolvere alcune

Dettagli

Funzioni: definizioni e tipi. Prof.ssa Maddalena Dominijanni

Funzioni: definizioni e tipi. Prof.ssa Maddalena Dominijanni Funzioni: definizioni e tipi Definizione di funzione Dati due insiemi non vuoti A e B, si dice funzione o applicazione da A a B una relazione che associa ad ogni elemento dell insieme A uno ed un solo

Dettagli

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2017

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2017 SOLUZIONE DEL PROBLEMA TEMA DI MATEMATICA ESAME DI STATO 7. Studiamo la funzione f() per verificare che il suo grafico sia compatibile con il profilo della pedana. Dominio della funzione. R Eventuali simmetrie

Dettagli

Il principio di Induzione Matematica

Il principio di Induzione Matematica Il principio di Induzione Matematica prf.ssa Giovanna Corsi 11 luglio 2004 Il principio di induzione matematica è un metodo dimostrativo che fa esplicito riferimento ai numeri naturali.... Il riferimento

Dettagli

I vertici e i lati di ogni poligono vengono detti rispettivamente vertici e spigoli del poliedro.

I vertici e i lati di ogni poligono vengono detti rispettivamente vertici e spigoli del poliedro. 1 I poliedri diagonale DEFINIZIONE. Un poliedro è la parte di spazio delimitata da poligoni posti su piani diversi in modo tale che ogni lato sia comune a due di essi. I poligoni che delimitano il poliedro

Dettagli

LE SEQUENZE Questi esercizi sono i più comuni e i più frequenti. Sono prove che si basano su un semplice principio costituito dalla ricerca della

LE SEQUENZE Questi esercizi sono i più comuni e i più frequenti. Sono prove che si basano su un semplice principio costituito dalla ricerca della LE SEQUENZE Questi esercizi sono i più comuni e i più frequenti. Sono prove che si basano su un semplice principio costituito dalla ricerca della regola che spiega la progressione di una certa sequenza

Dettagli

Kangourou Italia Gara del 20 marzo 2003 Categoria Benjamin Per studenti di prima o seconda media. I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno

Kangourou Italia Gara del 20 marzo 2003 Categoria Benjamin Per studenti di prima o seconda media. I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 9-14-.qxd 29/03/2003 8.15 Pagina 10 Kangourou Italia Gara del 20 marzo 2003 Categoria Per studenti di prima o seconda media I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Quale delle seguenti

Dettagli

AREE. Area = lato * lato. Area = diagonale * diagonale diagonale = Area : 2 2. altezza = area : base

AREE. Area = lato * lato. Area = diagonale * diagonale diagonale = Area : 2 2. altezza = area : base AREE QUADRATO Area = lato * lato lato = Area Area = diagonale * diagonale diagonale = Area : 2 2 RETTANGOLO Area = base * altezza base = area : altezza altezza = area : base TRIANGOLO Area = base * altezza

Dettagli

Università degli Studi di Roma Tor Vergata. Principio di induzione matematica

Università degli Studi di Roma Tor Vergata. Principio di induzione matematica Università degli Studi di Roma Tor Vergata. Principio di induzione matematica Il Principio di induzione matematica è una tecnica di dimostrazione che permette la dimostrazione simultanea di infinite affermazioni.

Dettagli

Kangourou della Matematica 2019 Coppa Junior a squadre Semifinale turno A Cervia, 6 maggio Quesiti

Kangourou della Matematica 2019 Coppa Junior a squadre Semifinale turno A Cervia, 6 maggio Quesiti Kangourou della Matematica 2019 Coppa Junior a squadre Semifinale turno A Cervia, 6 maggio 2019 Quesiti 1. Ai minimi termini Riducete ai minimi termini la frazione (1 + 3 + 5 + + 51) / (4 + 6 + 8 + + 54)

Dettagli

Quesiti. 1. La somma di quest anno La somma vale Quanti sono gli addendi?

Quesiti. 1. La somma di quest anno La somma vale Quanti sono gli addendi? Quesiti 1. La somma di quest anno La somma 1 3 + 5 7 + 9 vale 2013. Quanti sono gli addendi? 2. Il triangolo numerato Una tabella di numeri ha l aspetto di un triangolo: in figura ne vedete una parte.

Dettagli

Kangourou della Matematica 2012 Coppa a squadre Kangourou - finale Mirabilandia, 6 maggio Quesiti

Kangourou della Matematica 2012 Coppa a squadre Kangourou - finale Mirabilandia, 6 maggio Quesiti Kangourou della Matematica 2012 Coppa a squadre Kangourou - finale Mirabilandia, 6 maggio 2012 Quesiti 1. Paola ed Enrico Considerate tutti i numeri interi positivi fino a 2012 incluso: Paola calcola la

Dettagli

Quesito 1 GLI SQUILLI DI AMERIGO Quando riceve qualche telefonata sul suo cellulare, Amerigo gli fa fare almeno tre squilli prima di rispondere.

Quesito 1 GLI SQUILLI DI AMERIGO Quando riceve qualche telefonata sul suo cellulare, Amerigo gli fa fare almeno tre squilli prima di rispondere. Quesito 1 GLI SQUILLI DI AMERIGO Quando riceve qualche telefonata sul suo cellulare, Amerigo gli fa fare almeno tre squilli prima di rispondere. Non più di quattro, però. Questo pomeriggio gli squilli

Dettagli

2.1 Numeri naturali, interi relativi, razionali

2.1 Numeri naturali, interi relativi, razionali 2.1 Numeri naturali, interi relativi, razionali Definizione L insieme N = {0, 1, 2, 3,...} costituito dallo 0 e dai numeri interi positivi è l insieme dei numeri naturali. Se a, b 2 N, allora mentre non

Dettagli

Agnese De Rito, Rosemma Cairo, Egidia Fusani Dell associazione Matematica in Gioco. Poligoni stellati

Agnese De Rito, Rosemma Cairo, Egidia Fusani Dell associazione Matematica in Gioco. Poligoni stellati Agnese De Rito, Rosemma Cairo, Egidia Fusani Dell associazione Matematica in Gioco Poligoni stellati I poligoni regolari che abbiamo incontrato finora sono tutti poligoni convessi; esistono anche dei particolari

Dettagli

Finito o infinito? Serie numeriche tra teoria e paradossi

Finito o infinito? Serie numeriche tra teoria e paradossi Finito o infinito? Serie numeriche tra teoria e paradossi Alberto G. Setti Università dell Insubria - Como, Italy alberto.setti@uninsubria.it Liceo Scientitico Galileo Ferraris, Varese, 15 ottobre 2012

Dettagli

VII GARA DI MATEMATICA CON LE TECNOLOGIE FINALE GELA 7 APRILE B B C B A

VII GARA DI MATEMATICA CON LE TECNOLOGIE FINALE GELA 7 APRILE B B C B A VII GARA DI MATEMATICA CON LE TECNOLOGIE FINALE GELA 7 APRILE 2011 1 2 3 4 5 6 7 8 9 10 B B C B A 1986 43 267 532 459408 QUESITI A RISPOSTA MULTIPLA Una sola risposta è esatta fra le 4 proposte per ciascun

Dettagli

Calcolare x n = x x x (n volte)

Calcolare x n = x x x (n volte) Calcolare x n = x x x (n volte) Abbiamo bisogno di: una variabile ris in cui ad ogni iterazione del ciclo si ha un risultato parziale, e che dopo l ultima iterazione contiene il risultato finale; una variabile

Dettagli

FINALE ITALIANA 1998 SOLUZIONI. 16 maggio Università Bocconi

FINALE ITALIANA 1998 SOLUZIONI. 16 maggio Università Bocconi International Site Ricerca > Centri di Ricerca > PRISTEM > Giochi matematici > Archivio edizioni precedenti - testi di allenamento > 1998 Finale italiana 1998 Finale italiana Soluzioni FINALE ITALIANA

Dettagli

Definizione Chiamiamo poliedro la regione di spazio limitata che ha per bordo una superficie poliedrale.

Definizione Chiamiamo poliedro la regione di spazio limitata che ha per bordo una superficie poliedrale. 1 Poliedri Definizione Un sottoinsieme connesso dello spazio è detto superficie poliedrale se è l unione di un numero finito di poligoni P j (poligoni che si diranno facce del poliedro) in modo che risultino

Dettagli

Kangourou della Matematica 2012 Coppa a squadre Kangourou Semifinale turno A Cervia, 5 maggio Quesiti

Kangourou della Matematica 2012 Coppa a squadre Kangourou Semifinale turno A Cervia, 5 maggio Quesiti Kangourou della Matematica 0 Coppa a squadre Kangourou Semifinale turno A Cervia, 5 maggio 0 Quesiti. umeri di quest anno Quanti numeri interi positivi n sono tali che entrambi i numeri n 0 e n + 0 siano

Dettagli

Calcolare il valore delle seguenti espressioni applicando le proprietà delle potenze e lasciando i risultati sotto forma di potenza:

Calcolare il valore delle seguenti espressioni applicando le proprietà delle potenze e lasciando i risultati sotto forma di potenza: Esercizio n.7 Calcolare il valore delle seguenti espressioni applicando le proprietà delle potenze e lasciando i risultati sotto forma di potenza: 3 x ] : x ]; 3 3 9 : 3 6 ] : 3 8 x 3 ]; { 3 : 3 x ] x

Dettagli

Partiamo da un informazione comune a tutti gli alunni della scuola italiana: La somma degli angoli interni di un triangolo è 180.

Partiamo da un informazione comune a tutti gli alunni della scuola italiana: La somma degli angoli interni di un triangolo è 180. 1 Partiamo da un informazione comune a tutti gli alunni della scuola italiana: La somma degli angoli interni di un triangolo è 180. Come giustificare questo fatto? Con delle prove sperimentali, ad esempio.

Dettagli

PRISTEM > Sito PRISTEM > Giochi matematici > Archivio edizioni precedenti (testi di allenamento) > 1998 Finale italiana > Soluzioni

PRISTEM > Sito PRISTEM > Giochi matematici > Archivio edizioni precedenti (testi di allenamento) > 1998 Finale italiana > Soluzioni 30-3 - 2002 Dipartimenti Istituti Centri di Ricerca Centri del Dipartimento di Economia Aziendale Centri del Dipartimento di Economia Politica Centri di Ricerca Interdipartimentali Dipartimenti di ricerca

Dettagli

1 n 1. n + 1. n=1 N+1. n=1. n=1 N N + 1.

1 n 1. n + 1. n=1 N+1. n=1. n=1 N N + 1. 44 Roberto Tauraso - Analisi 2 e quindi la somma parziale s N è uguale a N N s N n(n + ( n n + n N n n N+ n n N +. n2 N n N n n + dove nell ultimo passaggio si sono annullati tutti i termini opposti tranne

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

Note sul teorema fondamentale e sulla formula fondamentale del calcolo integrale

Note sul teorema fondamentale e sulla formula fondamentale del calcolo integrale Note sul teorema fondamentale e sulla formula fondamentale del calcolo integrale Definizione. Sia f:[a, b] R una funzione reale continua definita sull intervallo [a, b] R. Una funzione primitiva (o semplicemente

Dettagli

TASSELLATURA DEL PIANO

TASSELLATURA DEL PIANO MATh.en.JEANS TASSELLATURA DEL PIANO Liceo Scientifico Statale E. Curiel Caterina Alessi, Eleonora Filira, Matteo Forin, Lorenzo Gamba, Mircea Muntean, Stefano Pietrogrande, Emanuele Quaglio, Marco Venuti,

Dettagli

LEZIONE 3. a + b + 2c + e = 1 b + d + g = 0 3b + f + 3g = 2. a b c d e f g

LEZIONE 3. a + b + 2c + e = 1 b + d + g = 0 3b + f + 3g = 2. a b c d e f g LEZIONE 3 3.. Matrici fortemente ridotte per righe. Nella precedente lezione abbiamo introdotto la nozione di soluzione di un sistema di equazioni lineari. In questa lezione ci poniamo il problema di descrivere

Dettagli

TEOREMA DI PITAGORA. Francobollo greco dedicato al celebre teorema

TEOREMA DI PITAGORA. Francobollo greco dedicato al celebre teorema Francobollo greco dedicato al celebre teorema Livello scolare: 1 biennio Abilità interessate:!conoscere le caratteristiche generali dei poligoni!saper confrontare ed operare con segmenti ed angoli!conoscere

Dettagli

Ancora sui criteri di divisibilità di Marco Bono

Ancora sui criteri di divisibilità di Marco Bono Ancora sui criteri di divisibilità di Talvolta può essere utile conoscere i divisori di un numero senza effettuare le divisioni, anche se la diffusione delle calcolatrici elettroniche, sotto varie forme,

Dettagli

Laboratorio di informatica

Laboratorio di informatica Laboratorio di informatica GEOMETRIA DELLO SPAZIO Introduzione a Geogebra 3D La versione 5 di Geogebra prevede anche la possibilità di lavorare in ambiente 3D. Basta aprire Visualizza - Grafici 3D: sullo

Dettagli

MATEMATICA DISCRETA CLAUDIA MALVENUTO PRIMA PROVA IN ITINERE 24 APRILE 2014

MATEMATICA DISCRETA CLAUDIA MALVENUTO PRIMA PROVA IN ITINERE 24 APRILE 2014 MATEMATICA DISCRETA CLAUDIA MALVENUTO PRIMA PROVA IN ITINERE 4 APRILE 014 1. Trovare il numero di stringhe di lunghezza n che si possono formare usando le lettere A, B, C, D, E in modo che ogni stringa

Dettagli

Misure e loro proprietà (appunti per il corso di Complementi di Analisi Matematica per Fisici, a.a )

Misure e loro proprietà (appunti per il corso di Complementi di Analisi Matematica per Fisici, a.a ) Misure e loro proprietà (appunti per il corso di Complementi di Analisi Matematica per Fisici, a.a. 2006-07 Sia Ω un insieme non vuoto e sia A una σ-algebra in Ω. Definizione 1. (Misura. Si chiama misura

Dettagli

totale Φ S (E) attraverso S * mediante la (3.I) è immediato, dato che la

totale Φ S (E) attraverso S * mediante la (3.I) è immediato, dato che la Appendice I : Dimostrazione del Teorema di Gauss. In questa sezione si procederà ad una dimostrazione induttiva del TdG procedendo dal caso più semplice (carica puntiforme al centro di una superficie sferica)

Dettagli

Soluzioni ottava gara Suole di Gauss

Soluzioni ottava gara Suole di Gauss Soluzioni ottava gara Suole di Gauss 5 Marzo 09. Risposta: 000 Semplicemente un quadrato può essere scritto come somma di due triangolari consecutivi. Diamone una breve dimostrazione: n(n ) + (n + )n n(n

Dettagli

Geometria solida 2. Veronica Gavagna

Geometria solida 2. Veronica Gavagna Geometria solida 2 Veronica Gavagna Lo sviluppo del parallelepipedo B Superficie laterale Area laterale e area totale Dato il parallelepipedo Area laterale A l = (a + b + a + b) c = P c b Area totale A

Dettagli

NUMERI INTERI E POTENZE

NUMERI INTERI E POTENZE Saper operare con le potenze di numeri interi - Prof. Di Caprio 1 Obiettivo NUMERI INTERI E POTENZE In questa lezione richiameremo alcune proprietà dei numeri interi, e impareremo a operare con le potenze.

Dettagli

Kangourou della Matematica 2019 Coppa Ecolier a squadre Finale Cervia, 9 maggio Quesiti

Kangourou della Matematica 2019 Coppa Ecolier a squadre Finale Cervia, 9 maggio Quesiti Kangourou della Matematica 2019 Coppa Ecolier a squadre Finale Cervia, 9 maggio 2019 Quesiti 1. Trentatré Quanti numeri interi positivi sono tali che il prodotto delle loro cifre è 33? 2. Il cubo dipinto

Dettagli

180 (n 2)p/n = 360 (n 2)p/n = 2 p = 2n/(n-2).

180 (n 2)p/n = 360 (n 2)p/n = 2 p = 2n/(n-2). Fantasia di reti Liceo Scientifico B. Pascal Merano (BZ) Classe 2LS Liceo Scientifico Insegnante di riferimento: Giovanni Porcellato Ricercatrice: Letizia Pernigotti Partecipanti: Beatrice Amaduzzi, Ilaria

Dettagli

Equazioni goniometriche risolvibili per confronto di argomenti

Equazioni goniometriche risolvibili per confronto di argomenti Equazioni goniometriche risolvibili per confronto di argomenti In questa dispensa si esaminano le equazioni goniometriche costituite dall uguaglianza di due funzioni goniometriche, nei cui argomenti compare

Dettagli

n! n n. n=1 an = L [0, + ] Se L = 1 il criterio non dà una risposta e la serie potrebbe sia convergere che divergere. 2 n2. n 1

n! n n. n=1 an = L [0, + ] Se L = 1 il criterio non dà una risposta e la serie potrebbe sia convergere che divergere. 2 n2. n 1 46 Roberto Tauraso - Analisi 2 Esempio 3.6 Determinare il carattere della serie Applichiamo il criterio del rapporto: n n. a n+ a n (n +! nn (n + nn (n + n+ (n + n n n+ (n + ( n + n e. n Dato che e

Dettagli

Espressioni letterali e valori numerici

Espressioni letterali e valori numerici Espressioni letterali e valori numerici 8 8.1 Lettere 8.1.1 Lettere per esprimere formule Esempio 8.1. In tutte le villette a schiera di recente costruzione del nuovo quartiere Stella, vi è un terreno

Dettagli

Giocando intorno a Pitagora

Giocando intorno a Pitagora 12 SEMINARIO NAZIONALE SUL CURRICOLO VERTICALE per una educazione alla cittadinanza Giocando intorno a Pitagora Roma, lì 23 Maggio 2017 BUGLIA GIOVANNI LUIGI Contesto Scuola secondaria di primo grado Classe

Dettagli

CALCOLO COMBINATORIO

CALCOLO COMBINATORIO Il DNA fa l RNA, l RNA fa le proteine e le proteine fanno noi (F.H.C, Crick) La fase di costruzione della proteina da parte dell RNA prende il nome di traduzione: le basi dell RNA vengono lette in triplette,

Dettagli

I.T.I.S L. Da Vinci G. Galilei Progetto: Diritti a Scuola - Matematica - Anno 2016

I.T.I.S L. Da Vinci G. Galilei Progetto: Diritti a Scuola - Matematica - Anno 2016 Si ringrazia il gentilissimo Prof. Nicola Filipponio per la sua disponibilità, per aver tenuto delle brillanti lezioni presso il nostro istituto e per l utilizzo del suo materiale relativo alla costruzione

Dettagli

1. Pompieri (Cat. 3) /ARMT/ II prova

1. Pompieri (Cat. 3) /ARMT/ II prova 10 o RALLY MATEMATICO TRANSALPINO PROVA II marzo-aprile 2002 ARMT2002 p. 1 1. Pompieri (Cat. 3) /ARMT/2002-10 - II prova I pompieri di Transalpino hanno tre scale: - una corta, - una media che misura 2

Dettagli

1. Pompieri (Cat. 3) Quanto misura ciascuna scala? Spiegate il vostro ragionamento. 2. La casa di Viola (Cat. 3, 4)

1. Pompieri (Cat. 3) Quanto misura ciascuna scala? Spiegate il vostro ragionamento. 2. La casa di Viola (Cat. 3, 4) 10 o RALLY MATEMATICO TRANSALPINO PROVA II marzo-aprile 2002 ARMT2002 p. 1 1. Pompieri (Cat. 3) I pompieri di Transalpino hanno tre scale: - una corta, - una media che misura 2 volte quella corta, - una

Dettagli

Prima Edizione Giochi di Achille - Olimpiadi di Matematica Soluzioni Categoria M1 (Alunni di prima Media) 18 maggio 2006

Prima Edizione Giochi di Achille - Olimpiadi di Matematica Soluzioni Categoria M1 (Alunni di prima Media) 18 maggio 2006 Il Responsabile coordinatore dei giochi: Prof. Agostino Zappacosta Chieti tel. 0871 843 (cell.: 340 47 47 9) e-mail:agostino_zappacosta@libero.it Prima Edizione Giochi di Achille - Olimpiadi di Matematica

Dettagli

Esercizi per il corso Matematica clea

Esercizi per il corso Matematica clea Esercizi per il corso Matematica clea Daniele Ritelli anno accademico 008/009 Lezione : Numeri naturali e principio di induzione Esercizi svolti. Provare che + + + n. Provare che + + + n n(n + ) n(n +

Dettagli

I problemi di questa prova

I problemi di questa prova I problemi di questa prova Categoria Problemi 3 1-2-3-4-5 4 1-2-3-4-5-6 5 1-2-3-4-5-6-7 6 7-8-9-10-11-12-13 7 8-9-10-11-12-13-14 8 8-9-10-11-12-13-14 9 10-11-12-13-14-15-16 10 10-11-12-13-14-15-16 Correzione

Dettagli

2.1.2 Perché qualsiasi numero elevato alla 0 è uguale a 1?

2.1.2 Perché qualsiasi numero elevato alla 0 è uguale a 1? 2.1.2 Perché qualsiasi numero elevato alla 0 è uguale a 1? Un altra regoletta che tutti conosciamo fin dalle scuole medie (o al massimo dai primi anni delle superiori) è questa: Qualsiasi numero elevato

Dettagli

Cap. 2 - Rappresentazione in base 2 dei numeri interi

Cap. 2 - Rappresentazione in base 2 dei numeri interi Cap. 2 - Rappresentazione in base 2 dei numeri interi 2.1 I NUMERI INTERI RELATIVI I numeri relativi sono numeri con il segno: essi possono essere quindi positivi e negativi. Si dividono in due categorie:

Dettagli

2010 Categoria Junior

2010 Categoria Junior 2010 Categoria Junior 1. Risposta D) Si ha 20102010 = 2010 x 10000 + 2010. 2. Risposta A) 1 punto è il 5% dei punti disponibili. 3. Risposta C) Per ognuna delle prime 10 caselle della seconda riga, il

Dettagli

Triangoli rettangoli. Problema

Triangoli rettangoli. Problema Triangoli rettangoli 1. a) Sposta il vertice C 1, fino a quando stimi che l angolo nel vertice C 1 sia 90. b) Allo stesso modo sposta i vertici da C 2 fino a C 9 fino a quando stimi che l angolo sia 90.

Dettagli

e l insieme delle soluzioni, dopo le analoghe riduzioni del caso n = 2, si scrive come

e l insieme delle soluzioni, dopo le analoghe riduzioni del caso n = 2, si scrive come Numeri complessi 9 Da questi esempi si può osservare che, facendo le successive potene di un numero complesso, i punti corrispondenti girano attorno all origine. Se inoltre > 1 allora i punti si allontanano

Dettagli

Consideriamo un numero a e un numero naturale n positivo. Per dare una definizione corretta di radicale con indice n, o radice n-esima di a

Consideriamo un numero a e un numero naturale n positivo. Per dare una definizione corretta di radicale con indice n, o radice n-esima di a RADICALI E PROPRIETÀ DEI RADICALI I radicali in Matematica sono numeri definiti mediante radici con indice intero. I radicali possono essere espressi sotto forma di potenze con esponente fratto mediante

Dettagli

Esercizi di Algoritmi e Strutture Dati

Esercizi di Algoritmi e Strutture Dati Esercizi di Algoritmi e Strutture Dati Moreno Marzolla marzolla@cs.unibo.it 12 ottobre 2010 1 Vero o falso? Per ciascuna delle seguenti affermazioni, dire se è vera o falsa, fornendo una dimostrazione:

Dettagli

francesca fattori speranza bozza gennaio 2018

francesca fattori speranza bozza gennaio 2018 DERIVATE APPLICATE ALLO STUDIO DI FUNZIONE. OM Le derivate servono a trovare eventuali massimi e minimi delle funzioni. Ho pensato questo modulo in questo modo: concetto di derivata; calcolo di una derivata

Dettagli

Espressioni letterali e valori numerici

Espressioni letterali e valori numerici Espressioni letterali e valori numerici 9 9.1 Lettere 9.1.1 Lettere per esprimere formule Esempio 9.1. In tutte le villette a schiera di recente costruzione del nuovo quartiere Stella, vi è un terreno

Dettagli

Problemi di secondo grado con argomento geometrico (aree e perimetri)

Problemi di secondo grado con argomento geometrico (aree e perimetri) Problemi di secondo grado con argomento geometrico (aree e perimetri) Impostare con una o due incognite 1. Un rettangolo ha perimetro 10 cm ed è tale che l area gli raddoppia aumentando di 1 cm sia la

Dettagli

TEORIA DEI GIOCHI. Anna TORRE

TEORIA DEI GIOCHI. Anna TORRE MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI Anna TORRE Dipartimento di Matematica, Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy. E-mail: anna.torre@unipv.it sito

Dettagli

CIRCONFERENZA E CERCHIO

CIRCONFERENZA E CERCHIO CIRCONFERENZA E CERCHIO Definizione di circonferenza La circonferenza è una linea chiusa i cui punti sono tutti equidistanti da un punto fisso detto CENTRO Definizione di cerchio Si definisce CERCHIO la

Dettagli