TASSELLATURA DEL PIANO
|
|
|
- Gianpiero Carboni
- 9 anni fa
- Visualizzazioni
Transcript
1 MATh.en.JEANS TASSELLATURA DEL PIANO Liceo Scientifico Statale E. Curiel Caterina Alessi, Eleonora Filira, Matteo Forin, Lorenzo Gamba, Mircea Muntean, Stefano Pietrogrande, Emanuele Quaglio, Marco Venuti, Federico Vettore. Prof. Giorgio Ciociano, Prof. Alberto Zanardo, Prof. Riccardo Colpi. Padova, 01/05/16
2 Come si può piastrellare un piano nel caso di piastrelle quadrate identiche? E con piastrelle esagonali? Pentagonali? Come si può ricoprire la superficie più ampia possibile nell ultimo caso? 1
3 1. Poligoni regolari Quadrati: Copertura: 100% Pentagoni: Disponendo i pentagoni come in figura, si nota che a ciascuno di essi corrisponde un area non coperta (una delle quali è evidenziata in giallo). Spostando il punto di contatto tra vertice del pentagono e lato di quello adiacente si può minimizzare l area gialla (situazione descritta nella seconda figura). In tale configurazione la copertura delle piastrelle è 92,13%. Esagoni: Copertura: 100% 2
4 2. Numero massimo di lati di un poligono convesso per copertura totale Sia L il numero di lati, uguale ad A, numero di angoli. Si ricorda la somma degli angoli interni di un poligono: Si considera un punto in cui concorrono 3 lati (difatti vogliamo che in ogni vertice del poligono concorrano esattamente 3 lati). La media degli angoli che si formano in ogni vertice è Dividendo la somma degli angoli interni del poligono per 120 si ottiene il numero di vertici in cui possono concorrere 3 lati. Questo numero deve essere minore o uguale al numero di vertici del poligono ( ). Il numero massimo possibile di lati è dunque 6. 1 Si è considerata la media degli angoli poiché la riduzione dell ampiezza di un angolo di un poligono comporta l aumento dell ampiezza di un altro angolo concorrente nello stesso punto (la media rimarrà dunque invariata). La media degli angoli massima che si può avere è. 3
5 Angoli piatti Sia X il numero di vertici in cui concorrono angoli di media 120, e Y il numero di angoli piatti: { ; ; ; { Si può notare che nel caso di un poligono convesso con più di 6 angoli (che hanno una media di 120 e 180 ) il poligono degenera sempre in un esagono. 4
6 3. Tassello autosimile Si consideri il pentagono irregolare a fianco: Esso presenta la proprietà di potersi replicare con 4 tasselli simili a quello di partenza. Numero di tasselli: N n = 4 n N 0 = 1 N 1 = 4 N 2 = 16 N 3 = 64 5 N 4 = 256
7 Il processo di suddivisione può essere ripetuto applicandolo ai sottotasselli appena creati. In figura, n indica il numero di iterazioni di suddivisione. Il metodo di divisione qui utilizzato per dividere il tassello in tasselli più piccoli, può essere utilizzato per crearne di più grandi, andando verso l esterno e tassellando così tutto il piano. Intendendo come periodica una tassellatura in cui ogni tassello può essere sovrapposto perfettamente ad un altro tramite una traslazione di un vettore fissato, si può dimostrare che la tassellatura descritta è aperiodica. Dimostrazione: La suddetta costruzione si può formalizzare come segue: A partire dal pentagono P 0 si costruisce P 1 con 4 tasselli: 1. P 0 riflesso rispetto all'asse della base; 2. Tassello 1. traslato verso destra di una base; 3. Tassello 2. ruotato di 180 e traslato; 4. P 0 ruotato di 120 in verso orario e traslato. Definiamo ora ricorsivamente P n applicando gli stessi punti a P n-1. Definiamo macropentagono un qualunque P n (n > 0). Con riferimento alla figura iniziale, si indica con C il vertice collocato più in alto, con A l'estremo sinistro della base e con B l'estremo destro. Notiamo che, poiché il primo passo della costruzione consiste in una riflessione, I punti A e B della base vengono scambiati di posizione ad ogni iterazione. 6
8 La fila di tasselli che incontrano la linea di base è costituita dall'alternanza di tasselli con base giacente sulla linea, tasselli che la toccano con C e da altri che la toccano con vertici A o B. La sequenza m di punti A e B giacenti sulla base così individuati (trascurando i punti C) risponde alla seguente ricorsione: m 2 = A m r = m r 1 + A + m r 1 se r = 2n; m r = m r 1 + B + m r 1 se r = 2n + 1. Inoltre la sequenza dei vertici dei P n è una alternanza di A e B. In particolare essi sono punti B se n è pari e A se n è dispari. Ciò si può dimostrare per induzione: Passo base: Il vertice C di P 1 è A di P 0 per il punto 4. della costruzione; tale punto a sua volta diventa A nella base di P 2 per il punto 3. della costruzione. Il vertice A di P 1 è B di P 0 per punto 1.; questo a sua volta diventa vertice C di P 2 per punto 4.. Passo induttivo: r pari: il vertice C del macrotassello precedente è una A per ipotesi di induzione e diventa e diventa l'elemento centrale della stringa per punto 3. della costruzione. La stringa precedente l'elemento centrale coincide con quella ad esso seguente per punti 1. e 2. della costruzione. r dispari: analogo a r pari. Le stringhe m r sono aperiodiche, perché costituite dalla concatenazione di due stringhe m r-1 con la frapposizione, alternativamente, di A e B. 7
9 Se una tassellatura è periodica, si può sempre individuare un parallelogramma modulo con cui costruire tutta la tassellatura tramite due traslazioni. La retta s delle basi di P n è genericamente inclinata di un angolo α rispetto alla base del parallelogramma modulo. Parallelogramma modulo Si danno tre casi: (1) La retta s interseca lati consecutivi del modulo in segmenti commensurabili tra loro, pertanto esiste un macroparallelogramma di base m moduli e lato n moduli tale che la retta s stacchi segmenti congruenti in macroparallelogrammi consecutivi. Dunque, esiste un periodo nei segmenti individuati dai macroparallelogrammi su s e quindi un periodo delle stringhe m r, il che è assurdo. (2) La retta s Interseca lati consecutivi del modulo in segmenti non commensurabili tra loro, quindi non esiste un macroparallelogramma come quello del caso (1). 8
10 Il parallelogramma mostrato in figura è un periodo per ipotesi, pertanto ad ogni punto di intersezione tra s ed un lato del modulo corrisponde sul lato opposto l'inizio di una nuova retta di base di macropentagono parallela ad s. Ciò si ripete per ognuna di queste parallele, che a causa dell'ipotesi iniziale di incommensurabilità saranno infinite, tutte distinte fra loro; questo implica che l'altezza dei tasselli sia nulla, il che è assurdo. (3) La base del parallelogramma modulo giace sulla retta s, ma questo implica che gli m r sono periodici: assurdo. Quindi la tassellatura è aperiodica. 9
11 Regole di produzione del tassello autosimile A A - A - A + A 120 A - A + AAA 180 A 60 + A 180 A 180 A A 60 - A 120 A 60 + A 60 + A 60 - A 120 A 180 A + A + A - A 60 A 60 + A 60 - A 120 A 120 A 60 A 60 + A 60 A 60 A 120 A 60 - LEGENDA A tassello di base; A - tassello riflesso rispetto l asse delle y; A + tassello riflesso rispetto l asse delle x; A α tassello ruotato in senso orario di un angolo α; A α tassello ruotato in senso antiorario di un angolo α. A 60 + A 120 A 120 A 60 A - A 60 - A 60 A 60 A 120 A + A 120 A 60 + A 60 + A 60 - A A 60 A 60 - A 60 - A 60 + A 60 A 60 A 60 - A 60 - A 60 + A 180 Dimostrazioni A A - A + y=f(x) y=f(-x) y=-f(x) A - A -- =A y=f(-x) y=f(x) A + A ++ =A y=-f(x) y=f(x) A +- =A 180 y=-f(-x) { Simmetria rispetto l origine quindi rotazione di 180 A 60 - = A =A A =A
12 4. Esagoni irregolari Ipotesi: Tesi: (1) (1) (2) (2) (3) AB è opposto a DE (3) (4) ABCDEF è un esagono convesso (4) (5) (5) Costruzione: si tracci una retta passante per i punti D e B. (6) Dimostrazione: (1) per somma di angoli interni di un triangolo; (2) per ipotesi (5); (3) per ipotesi (5); (4) per punti (1), (2), (3); (5) per ipotesi (2) e costruzione (coniugati interni di parallele tagliate da trasversale); (6) per ipotesi (5); (7) per punti (5), (6); (8) per somma dei punti (4) e (7). Analogamente si dimostrano le altri tesi. 11
13 5. Quadrilateri irregolari convessi Ipotesi: Tesi: (1) (1) (2) è un quadrilatero convesso (2) (3) Dimostrazione (1) per ip. (1) (2) per ip. (1) (3) per (2) e per angoli alterni interni congruenti. Pertanto si può sempre tassellare un piano partendo da un quadrilatero irregolare convesso costruendo un esagono con due lati opposti congruenti e paralleli (vedi sezione 4.). 12
14 6. Pentagoni irregolari convessi Ipotesi: Tesi: (1) (1) (2) (2) (3) (4) è un pentagono convesso. Dimostrazione (1) per angoli coniugati interni e ip. (2). (2) per ip. (1). (3) per punti (1) e (2). (4) Analogamente:. (5) per (2), (3), (4). (6) perché somme di segmenti congruenti. Pertanto si può sempre tassellare un piano partendo da un pentagono irregolare convesso con due lati paralleli costruendo un esagono con due lati opposti congruenti e paralleli (vedi sezione 4.). 13
RETTE PARALLELE E RETTE PERPENDICOLARI
RETTE PARALLELE E RETTE PERPENDICOLARI Rette perpendicolari Due rette si dicono perpendicolari se incontrandosi formano 4 angoli retti. In simboli, per indicare che a è perpendicolare ad b si scrive: a
Dato un triangolo ABC, è il segmento che partendo dal vertice opposto al lato, incontra il lato stesso formando due angoli retti.
Anno 2014 1 Sommario Altezze, mediane, bisettrici dei triangoli... 2 Altezze relativa a un vertice... 2 Mediane relative a un lato... 2 Bisettrici relativi a un lato... 2 Rette perpendicolari... 3 Teorema
Poligoni e triangoli
Poligoni e triangoli Def: I poligoni sono figure geometriche formate da una spezzata chiusa semplice e dalla parte di piano che essa delimita.. I punti A, B, C, D, E sono i vertici del poligono. I segmenti
Principali Definizioni e Teoremi di Geometria
Principali Definizioni e Teoremi di Geometria Segmento (definizione) Si dice segmento di estremi A e B l insieme costituito dai punti A e B e da tutti i punti della retta AB compresi tra A e B. Angolo
In un triangolo altezza mediana bisettrice asse Proprietà di angoli e lati di un triangolo
In un triangolo si dice altezza relativa a un lato il segmento di perpendicolare al lato condotta dal vertice opposto. Si dice mediana relativa a un lato il segmento che unisce il punto medio del lato
1 La traslazione. 2 La composizione di traslazioni. 3 La rotazione
1 La traslazione Per poter applicare una traslazione ad una generica figura geometrica si deve: ± creare il vettore di traslazione AB mediante il comando Vettore tra due punti; ± cliccare con il mouse
Costruzioni geometriche. (Teoria pag , esercizi )
Costruzioni geometriche. (Teoria pag. 81-96, esercizi 141-153 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda: due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente
Gli esercizi assegnati all esame saranno varianti di alcuni degli esercizi seguenti
Gli esercizi assegnati all esame saranno varianti di alcuni degli esercizi seguenti 1.1) Su un piano α (trasparente) sia tracciato un triangolo equilatero. Si consideri un piano β parallelo ad α e raggi
FONDAMENTI DI GEOMETRIA
1 FONDAMENTI DI GEOMETRIA (Fundamental geometrical concepts) La geometria [ghè (terra) metron (misura)] è una parte della matematica che studia lo spazio, la forma, l estensione, la trasformazione delle
C6. Quadrilateri - Esercizi
C6. Quadrilateri - Esercizi DEFINIZIONI E COSTRUZIONI 1) Dato il seguente quadrilatero completa al posto dei puntini. I lati AB e BC sono I lati AB e CD sono I lati AD e sono consecutivi I lati AD e sono
Anno 1. Quadrilateri
Anno 1 Quadrilateri 1 Introduzione In questa lezione impareremo a risolvere i problemi legati all utilizzo dei quadrilateri. Forniremo la definizione di quadrilatero e ne analizzeremo le proprietà e le
1. Qual è la posizione dell immagine fornita da uno specchio piano? Di che tipo di immagine si tratta?
Specchi piani MPZ 1. Qual è la posizione dell immagine fornita da uno specchio piano? Di che tipo di immagine si tratta? Disponi il cilindro giallo dietro lo specchio, in modo che coincida con l immagine
1 Congruenza diretta e inversa
1 Congruenza diretta e inversa PROPRIETÀ. La congruenza tra due figure piane mantiene inalterata la lunghezza dei segmenti e l ampiezza degli angoli; ciò che cambia è la posizione delle figure nel piano.
Le figure solide. Due rette nello spaio si dicono sghembe se non sono complanari e non hanno alcun punto in comune.
Le figure solide Nozioni generali Un piano nello spazio può essere individuato da: 1. tre punti A, B e C non allineati. 2. una retta r e un punto A non appartenente ad essa. 3. due rette r e s incidenti.
LE TRASFORMAZIONI GEOMETRICHE
pag. 1 LE TRASFORMAZIONI GEOMETRICHE Trasformazione geometrica Movimento rigido Traslazione Simmetria Costruzione di due punti simmetrici rispetto ad una retta Poligoni aventi assi di simmetria Rotazione
Le sezioni piane del cubo
Le sezioni piane del cubo Versione provvisoria 11 dicembre 006 1 Simmetrie del cubo e sezioni speciali Sezioni speciali si presentano in corrispondenza di piani perpendicolari agli assi di simmetria del
I quadrilateri Punti notevoli di un triangolo
I quadrilateri Capitolo Quadrilateri 1 erifica per la classe prima COGME............................... ME............................. Quesiti 1.a ero o falso? 1. La somma degli angoli interni di un ottagono
DIEDRI. Un diedro è convesso se è una figura convessa, concavo se non lo è.
DIEDRI Si definisce diedro ciascuna delle due parti di spazio delimitate da due semipiani che hanno la stessa origine, compresi i semipiani stessi. I due semipiani prendono il nome di facce del diedro
C C B B. Fig. C4.1 Isometria.
4. Isometrie 4.1 Definizione di isometria Date due figure congruenti è possibile passare da una all altra con una trasformazione. Una trasformazione geometrica in un piano è una funzione biunivoca che
La composizione di isometrie
La composizione di isometrie Quello che è più interessante in una trasformazione geometrica è studiare quali effetti ha sulle figure e soprattutto valutare quali proprietà delle figure di partenza si conservano
SCUOLA SECONDARIA DI SECONDO GRADO. Contenuti Attività Metodo Strumenti Durata (in ore)
SCUOLA SECONDARIA DI SECONDO GRADO Obiettivi di apprendimento Contenuti Attività Metodo Strumenti Durata (in ore) Valutazione degli obiettivi di apprendimento Valutazione della competenza Conoscere i poligoni
Classifichiamo i poligoni
Geometria La parola geometria significa misura (metria) della terra (geo). La geometria si occupa dello studio della misura e della forma degli oggetti disposti nello spazio. Le idee primitive (che vengono
Tassellazioni del piano
Tassellazioni del piano Livello scolare: 1 biennio Abilità interessate Individuare e riconoscere proprietà di figure del piano e dello spazio. Individuare proprietà invarianti per isometrie nel piano.
Costruzioni geometriche. ( Teoria pag , esercizi 141 )
Costruzioni geometriche. ( Teoria pag. 81-96, esercizi 141 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda ; due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente
POLIGONI E NON POLIGONI: elementi caratteristici, proprietà e relazioni.
POLIGONI E NON POLIGONI: elementi caratteristici, proprietà e relazioni. Il problema dell altezza. Clara Colombo Bozzolo, Carla Alberti,, Patrizia Dova Nucleo di Ricerca in Didattica della Matematica Direttore
Due rette si dicono INCIDENTI se hanno esattamente un punto in comune, altrimenti si dicono PARALLELE.
Riepilogo di Geometria: Assioma A1 Per tutte le coppie di punti P,Q dell insieme S è assegnato un numero reale (=)> 0, che si dice distanza di P da Q e si indica don d(p,q) 1- Se i punti P,Q sono distinti
Proprietà focali delle coniche.
roprietà focali delle coniche. Mauro Saita e-mail: [email protected] Versione provvisoria, gennaio 2014 Indice 1 Coniche 1 1.1 arabola....................................... 1 1.1.1 roprietà focale
Principali Definizioni e Teoremi di Geometria
Principali Definizioni e Teoremi di Geometria Segmento (definizione) Si dice segmento di estremi A e B l insieme costituito dai punti A e B e da tutti i punti della retta AB compresi tra A e B. Angolo
Geometria euclidea dello spazio Presentazione n. 5 Poliedri Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia
Geometria euclidea dello spazio Presentazione n. 5 Poliedri Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Poliedri Un poliedro è un solido delimitato da una superficie formata da
GEOMETRIA. Congruenza, angoli e segmenti
GEOMETRIA Per affermare che un triangolo è isoscele o rettangolo oppure che un quadrilatero è un parallelogramma o un rettangolo o un rombo o un quadrato o un trapezio o un trapezio isoscele, c è sempre
Angoli al centro e alla circonferenza
Angoli al centro e alla circonferenza angolo al centro se il vertice coincide con il centro del cerchio proprietà ad angoli uguali corrispondono archi uguali A B angolo alla circonferenza se ha il vertice
Unità Didattica N 25 Quadrilateri particolari
Unità idattica N 25 Quadrilateri particolari 41 Unità idattica N 25 Quadrilateri particolari 01) efinizione di quadrilatero 02) efinizione di parallelogrammo 03) Teoremi diretti sul parallelogrammo 04)
FIGURE EQUIVALENTI. Dimostrazione: dato il parallelogramma ABCD ed il parallogramma ABC'D', con
1. FIGURE EQUIVALENTI 1.1 EQUIVALENZA TRA PARALLELOGRAMMI TEOREMA: Due parallelogrammi aventi le basi e le altezze congruenti sono equivalenti. Dimostrazione: dato il parallelogramma ABCD ed il parallogramma
C3. Rette parallele e perpendicolari - Esercizi
C3. Rette parallele e perpendicolari - Esercizi ESERCIZI CON COSTRUZIONI E GRAFICI 1) Disegna la retta passante per A perpendicolare alla retta r contando i quadretti. 2) Disegna la retta passante per
Progetto Matematica in Rete - Geometria euclidea - Quadrilateri. I quadrilateri. Il parallelogramma
I quadrilateri Il parallelogramma Definizione: un parallelogramma è un quadrilatero avente i lati opposti paralleli AB // DC AD // BC Teorema : se ABCD è un parallelogramma allora ciascuna diagonale lo
1 L'omotetia. 2 Il teorema del rapporto dei perimetri e delle aree di due triangoli simili
1 L'omotetia Per definire un'omotetia bisogna disegnare una generica figura nel piano (nel nostro caso utilizzeremo un triangolo), un punto (il centro dell'omotetia) e un numero (il rapporto k dell'omotetia).
Indice del vocabolario della Geometria euclidea
Indice del vocabolario della Geometria euclidea 1 Postulati di appartenenza: piano, retta e punto nello spazio Punto, retta, piano nello spazio Punto, retta nel piano Punto nella retta Punto esterno alla
Università del Salento Facoltà di Scienze Matematiche Fisiche e Naturali. Matematica e Fisica
Università del Salento Facoltà di Scienze Matematiche Fisiche e Naturali Test d INGRESSO Matematica e Fisica 2017-2018 A 1. In un parallelogramma due lati consecutivi sono lunghi a e b e l angolo tra essi
Confronto fra angoli La dimensione dell angolo è l ampiezza in base all ampiezza gli angoli si dicono:
Confronto fra angoli La dimensione dell angolo è l ampiezza in base all ampiezza gli angoli si dicono: congruenti (uguali) maggiore minore la somma di due angoli la ottieni portandoli ad essere consecutivi
DIDATTICA DELLA GEOMETRIA Lezione n 3
DIDATTICA DELLA GEOMETRIA Lezione n 3 PERCORSI NELLA GEOMETRIA SOLIDA LA RELAZIONE DI EULERO f+v=s+2 Possiamo fare un po di algebra con la Geometria solida! Quanti vertici ha un prisma a base triangolare?
Un approccio costruttivo alle trasformazioni geometriche del piano
Un approccio costruttivo alle trasformazioni geometriche del piano Le cosiddette trasformazioni geometriche elementari del piano sono corrispondenze bigettive, del piano su se stesso, caratterizzate dalla
LE TRASFORMAZIONI GEOMETRICHE
LE TRASFORMAZIONI GEOMETRICHE LA SIMMETRIA ASSIALE Definizione: il simmetrico P di un punto P, rispetto alla simmetria assiale di asse r gode delle seguenti proprietà: P e P sono equidistanti da r e il
Misure riguardanti triangoli, parallelogrammi, poligoni regolari e cerchio
Misure riguardanti triangoli, parallelogrammi, poligoni regolari e cerchio ELEMENTI DI GEOMETRI PIN. MISURE RIGURDNTI TRINGOLI, PRLLELOGRMMI, POLIGONI REGOLRI, CERCHIO La geometria piana si occupa delle
GEOMETRIA CLASSE IV B A.S.
GEOMETRIA CLASSE IV B A.S. 2014/15 Insegnante: Stallone Raffaella RETTA, SEMIRETTA E SEGMANTO La retta è illimitata, non ha né inizio né fine. Si indica con una lettera minuscola. La semiretta è ciascuna
Corso di Matematica - Geometria. Geometria - 0. Ing. L. Balogh
Geometria - 0 Triangoli qualunque somma degli angoli interni, calcolo del perimetro e dell area Oggetti Vertici Lati Angoli Altezza Raggio Simbolo A, B, C a, b, c,, h S, r Perimetro = + + Somma angoli
Poligoni inscritti e circoscritti ad una circonferenza
Poligoni inscritti e circoscritti ad una circonferenza Def: 1. Un poligono si dice inscritto in una circonferenza se tutti i suoi vertici sono punti della La circonferenza si dice circoscritta al poligono.
Quadrilateri. Il Parallelogramma
Il Parallelogramma 2. Fai clic su Ic3 e scegli Retta per due punti : disegna la retta a. 3. Fai clic su Ic2 e scegli Nuovo Punto : fai clic fuori dalla retta a 4. Fai clic su Ic4 e scegli Retta parallela
Progetto Matematica in Rete - Geometria euclidea - Quadrilateri. I quadrilateri. Il parallelogramma
I quadrilateri Il parallelogramma Definizione: un parallelogramma è un quadrilatero avente i lati opposti paralleli AB // DC AD // BC Teorema : se ABCD è un parallelogramma allora ciascuna diagonale lo
I Triangoli e i criteri di congruenza
I Triangoli e i criteri di congruenza 1 Le caratteristiche di un triangolo Un triangolo è un insieme di punti del piano costituito da una poligonale chiusa di tre lati e dai suoi punti interni I punti
Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi.
Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi. (1) Sia A l insieme dei numeri dispari minori di 56 e divisibili per 3. Quale delle seguenti affermazioni
SOLUZIONI. questa è l area della parte restante : è più grande o più piccola dell area del cerchio?
IV a GARA MATEMATICA CITTÀ DI PADOVA 15 aprile 1989 SOLUZIONI 1.- Indichiamo con l il lato del triangolo rettangolo isoscele : Area del triangolo = Area del cerchio inscritto = che si ottiene dalla doppia
Proprietà di un triangolo
Poligono con tre lati e tre angoli. Proprietà di un triangolo In un triangolo : I lati e i vertici sono consecutivi fra loro; La somma degli angoli interni è 180 ; La somma degli angoli esterni è 360 Ciascun
punti uniti rette di punti uniti rette unite qual è la trasformazione inversa
3) Dì quali sono i punti uniti, le rette di punti uniti, le rette unite di una a) simmetria centrale b) simmetria assiale c) traslazione d) rotazione e) omotetia Simmetria centrale: si ha un solo punto
GEOMETRIA. Studio dei luoghi /relazioni tra due variabili. Studio delle figure (nel piano/spazio) Problemi algebrici sulle figure geometriche
GEOMETRIA ANALITICA EUCLIDEA Studio dei luoghi /relazioni tra due variabili Studio delle figure (nel piano/spazio) Funzioni elementari Problemi algebrici sulle figure geometriche Grafici al servizio dell
COMUNICAZIONE N.4 DEL
COMUNICAZIONE N.4 DEL 7.11.2012 1 1 - PRIMO MODULO - COSTRUZIONI GEOMETRICHE (4): ESEMPI 10-12 2 - SECONDO MODULO - APPLICAZIONI DI GEOMETRIA DESCRITTIVA (4): ESEMPI 19-25 PRIMO MODULO - COSTRUZIONI GEOMETRICHE
AREE DEI POLIGONI. b = A h
AREE DEI POLIGONI 1. RETTANGOLO E un parallelogramma avente quattro angoli retti, i lati opposti uguali e paralleli, le diagonali uguali non perpendicolari che si scambiano vicendevolmente a metà. Def.
A B C D E F G H I L M N O P Q R S T U V Z
IL VOCABOLARIO GEOMETRICO A B C D E F G H I L M N O P Q R S T U V Z A A: è il simbolo dell area di una figura geometrica Altezza: è la misura verticale e il segmento che parte da un vertice e cade perpendicolarmente
C5. Triangoli - Esercizi
C5. Triangoli - Esercizi DEFINIZIONI 1) Dato il triangolo in figura completare al posto dei puntini. I lati sono i segmenti,, Gli angoli sono,, Il lato AB e l angolo sono opposti Il lato AB e l angolo
1B GEOMETRIA. Gli elementi fondamentali della geometria. Esercizi supplementari di verifica
Gli elementi fondamentali della geometria Esercizi supplementari di verifica Esercizio 1 a) V F Si dice linea retta una qualsiasi linea che non ha né un inizio né una fine. b) V F Il punto è una figura
Triangoli rettangoli. Problema
Triangoli rettangoli 1. a) Sposta il vertice C 1, fino a quando stimi che l angolo nel vertice C 1 sia 90. b) Allo stesso modo sposta i vertici da C 2 fino a C 9 fino a quando stimi che l angolo sia 90.
POLIGONI INSCRITTI E CIRCOSCRITTI AD UNA CIRCONFERENZA
POLIGONI INSCRITTI E CIRCOSCRITTI AD UNA CIRCONFERENZA Un poligono si dice inscritto in una circonferenza se tutti i suoi vertici sono punti della circonferenza. La circonferenza si dice circoscritta al
SCHEMA RIASSUNTIVO SUI QUADRILATERI
SCHEMA RIASSUNTIVO SUI QUADRILATERI ( a cura della prof.sa Carmelisa Destradis ) SI CHIAMA QUADRILATERO UNA FIGURA PIANA CON QUATTRO LATI E QUATTRO ANGOLI. LA SOMMA DEGLI ANGOLI INTERNI DI QUALUNQUE QUADRILATERO
Teoremi di geometria piana
la congruenza teoremi sugli angoli γ teorema sugli angoli complementari Se due angoli sono complementari di uno stesso angolo α β In generale: Se due angoli sono complementari di due angoli congruenti
ISTITUTO SAN GABRIELE CLASSI 4 S - 4 SA PROF. ANDREA PUGLIESE GEOMETRIA EUCLIDEA NELLO SPAZIO
ISTITUTO SAN GABRIELE CLASSI 4 S - 4 SA PROF. ANDREA PUGLIESE GEOMETRIA EUCLIDEA NELLO SPAZIO GEOMETRIA NELLO SPAZIO Gli enti fondamentali sono punto, retta, piano, e spazio. Con le lettere maiuscole (A,B,C,...)
MATEMATICA: Compiti delle vacanze Estate 2015
MATEMATICA: Compiti delle vacanze Estate 2015 Classe II a PRIMA PARTE Ecco una raccolta degli esercizi sugli argomenti svolti quest anno: risolvili sul tuo quaderno! Per algebra ho inserito anche una piccola
ESPERIENZE CON GLI SPECCHI PIANI
1. Qual è la posizione dell immagine fornita da uno specchio piano? Di che tipo di immagine si tratta? Disponi il cilindro giallo dietro lo specchio, in modo che coincida con l immagine riflessa del cilindro
Si definisce poligono la parte di piano delimitata da una spezzata semplice chiusa. D contorno
I POLIGONI Si definisce poligono la parte di piano delimitata da una spezzata semplice chiusa. E D contorno La linea spezzata chiusa che delimita il F C poligono si chiama contorno I punti A, B, C, D,
Test di autovalutazione
Test di autovalutazione Test 0 10 0 30 0 0 0 70 80 90 100 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle alternative. n onfronta le tue risposte con le soluzioni.
Problemi di geometria
1 2 6 7 9 Calcola la misura dell ipotenusa di un triangolo rettangolo i cui cateti misurano 11,2 cm e 1 cm. [1,7 cm] In un triangolo rettangolo l ipotenusa misura cm, un cateto è dell ipotenusa. Calcola
LA PERPENDICOLARITA NELLO SPAZIO. Nello spazio si definiscono la perpendicolarità sia tra una retta e un piano sia tra due piani.
1 LA PERPENDICOLARITA NELLO SPAZIO Nello spazio si definiscono la perpendicolarità sia tra una retta e un piano sia tra due piani. 2.1 La perpendicolarità retta piano Nel piano la perpendicolarità tra
I solidi. Un solido è una parte di spazio delimitata da una superficie chiusa. I solidi delimitati da poligoni vengono chiamati poliedri.
I solidi Un solido è una parte di spazio delimitata da una superficie chiusa. I solidi delimitati da poligoni vengono chiamati poliedri. I solidi che hanno superfici curve vengono chiamati solidi rotondi.
METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 12
METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 12 PARTE SECONDA GEOMETRIA SOLIDA UNA PREMESSA Diversi esperti di Didattica della Matematica ritengono che l approccio migliore, per la
Rette perpendicolari
Rette perpendicolari Definizione: due rette incidenti (che cioè si intersecano in un punto) si dicono perpendicolari quando dividono il piano in quattro angoli retti. Per indicare che la retta a è perpendicolare
Indice. Parte prima Metodi. XI Gli autori
XI Gli autori XIII Prefazione Parte prima Metodi 5 Capitolo 1 Elementi di geometria proiettiva 5 1.1 Gli enti geometrici 6 1.2 Convenzioni 7 1.3 L operazione di proiezione 9 1.4 L ampliamento proiettivo
Kangourou Italia Gara del 21 marzo 2013 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado
Kangourou Italia Gara del 21 marzo 2013 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Quale è il più grande
3. Osserva attentamente il centro della corda e la distanza con il centro del cerchio M. Cosa constati?
Corde 1. Ruota la retta a attorno al punto A e leggi il testo di colore verde. a) La retta, quando è una secante? Quando una tangente? Quando la retta non è né l una né l altra? b) Quante tangenti e quante
Categoria Benjamin Per studenti del primo e secondo anno della scuola media inferiore. I quesiti dal N.1 al N. 10 valgono 3 punti ciascuno
Categoria Benjamin Per studenti del primo e secondo anno della scuola media inferiore I quesiti dal N.1 al N. 10 valgono 3 punti ciascuno 1. Risposta D) (2008 200 8) + 2008 = 1800 + 2008 = 3808. 2. Risposta
Gli angoli adiacenti agli angoli interni si dicono angoli esterni del poligono convesso.
Poligoni In geometria un poligono è una figura geometrica piana delimitata da una linea spezzata chiusa. I segmenti che compongono la spezzata chiusa si dicono lati del poligono e i punti in comune a due
Le caratteristiche dei poligoni. La relazione tra i lati e gli angoli di un poligono. Definizioni
Le caratteristiche dei poligoni 1. Si dice poligono la parte del piano delimitata da una spezzata chiusa. 2. Il perimetro di un poligono è la somma delle misure del suoi lati, si indica cm 2p. 3. Un poligono
REGOLA DELLA SEMPLIFICAZIONE DELLE AREE
REGOLA DELLA SEMPLIFICAZIONE DELLE AREE Ogni formula di calcolo delle aree dei poligoni può essere espressa tramite una frazione avente al numeratore un prodotto di due valori e un unico valore al denominatore.
1 Punti, linee e piani nello spazio
1 Punti, linee e piani nello spazio DEFINIZIONE. La geometria dello spazio o geometria dei solidi o ancora geometria solida è il settore della geometria che si occupa dei corpi a tre dimensioni (lunghezza,
Proporzioni tra grandezze
Definizione Due grandezze omogenee A e B (con B 0) e altre due grandezze omogenee C e D (con D 0) si dicono in proporzione quando il rapporto tra le prime due è uguale al rapporto tra la terza e la quarta
La misura della lunghezza della poligonale si chiama perimetro del poligono. Due poligoni che hanno lo stesso perimetro si chiamano isoperimetrici.
Perimetro La misura della lunghezza della poligonale si chiama perimetro del poligono. Quindi è la somma delle lunghezze dei lati. Due poligoni che hanno lo stesso perimetro si chiamano isoperimetrici.
C7. Circonferenza e cerchio
7. irconferenza e cerchio 7.1 Introduzione ai luoghi geometrici Un luogo geometrico è l insieme dei punti del piano che godono di una proprietà detta proprietà caratteristica del luogo geometrico. Esempio
Gli enti geometrici fondamentali
capitolo 1 Gli enti geometrici fondamentali 1. Introduzione 1 2. La geometria euclidea come sistema ipotetico-deduttivo 2 Teoremi e dimostrazioni, 3 3. Postulati di appartenenza 4 4. Postulati di ordinamento
Problemi di geometria
1 2 3 applicazioni al triangolo rettangolo Calcola il perimetro e l area di un triangolo rettangolo sapendo che l ipotenusa e l altezza ad essa relativa sono lunghe rispettivamente 3 cm e 16,8 cm. [8 cm;
