LE TRASFORMAZIONI GEOMETRICHE
|
|
|
- Alberta Venturini
- 9 anni fa
- Visualizzazioni
Transcript
1 pag. 1 LE TRASFORMAZIONI GEOMETRICHE Trasformazione geometrica Movimento rigido Traslazione Simmetria Costruzione di due punti simmetrici rispetto ad una retta Poligoni aventi assi di simmetria Rotazione Omotetia Similitudine 1. Trasformazione geometrica Una trasformazione geometrica (t) tra i punti di un piano è una funzione che fa corrispondere ai punti del piano altri punti del piano stesso e viceversa (trasformazione biunivoca). Dati due punti P e P' si può dire che: P' = t(p) è detto trasformato o immagine di P. P è detto antitrasformato o controimmagine di P'. Si dice trasformazione identica o identità la trasformazione che associa ad ogni punto P il punto stesso: t(p) = P. In una trasformazione le caratteristiche che non cambiano si chiamano invarianti; le caratteristiche che cambiano si chiamano varianti; gli elementi che hanno per trasformati se stessi si chiamano elementi uniti. Le principali caratteristiche che una trasformazione può lasciare invariate sono: la lunghezza dei segmenti l ampiezza degli angoli il parallelismo le direzioni il rapporto tra i segmenti l orientamento dei punti del piano
2 pag. 2 ESEMPIO 1 A' = t(a) A' corrisponde ad A B' = t(b) B' corrisponde a B C'= t(c) C' corrisponde a C Le invarianti di questa trasformazioni sono: la lunghezza dei segmenti (AB=A'B'; BC=B'C') l ampiezza degli angoli il rapporto tra i segmenti (BC:AB=B'C':A'B') l orientamento dei punti del piano Le direzioni ESEMPIO 2 A' = t(a) A' corrisponde ad A B' = t(b) B' corrisponde a B C'= t(c) C' corrisponde a C Le invarianti di questa trasformazioni sono: l ampiezza degli angoli il rapporto tra i segmenti (BC:AB=B'C':A'B') l orientamento dei punti del piano Le direzioni Le varianti di questa trasformazioni sono: La lunghezza dei segmenti
3 pag Movimento rigido Un movimento rigido è lo spostamento di una figura su un piano senza che essa subisca deformazioni. I movimenti rigidi sono detti anche isometrie (dal greco: figure uguali). L' Isometria è una trasformazione geometrica che conserva le distanze fra i punti. Sono isometrie le seguenti trasformazioni geometriche: simmetria traslazione rotazione ribaltamento SINTESI La simmetria, la traslazione, la rotazione e il ribaltamento sono movimenti rigidi sul piano o isometrie che a loro volta sono trasformazioni geometriche
4 pag La traslazione La traslazione è il movimento rigido di una figura su un piano lungo una direzione e secondo un verso assegnato La traslazione è caratterizzata da tre elementi: 1. direzione, la retta passante per i punti corrispondenti 2. verso o senso 3. intensità o modulo, rappresentata dalla misura della lunghezza dello spostamento I tre elementi vengono rappresentati insieme con un segmento orientato detto vettore (si rappresenta con una v e una freccia sopra): Il vettore AB indica che il verso va da A a B; il vettore BA indica il contrario. Fraseologia Se due figure F e F si corrispondono in una traslazione di vettore AB si dice che F è la trasformata di F nella traslazione di vettore AB. PROPRIETA DELLA TRASLAZIONE Una traslazione conserva 1. l allineamento dei punti, il parallellismo, le lunghezze dei segmenti, le ampiezze degli angoli,le aree, l orientamento dei punti del piano
5 pag La rotazione La rotazione è il movimento rigido di una figura su un piano mediante rotazione attorno ad un punto, detto centro di rotazione. La traslazione è caratterizzata da due elementi: 1. verso o senso, orario o antiorario 2. intensità o modulo, rappresentata dall ampiezza dell angolo di rotazione PROPRIETA Una rotazione conserva 1. il parallellismo 2. le lunghezze dei segmenti 3. le ampiezze degli angoli 4. le aree Nella figura è rappresentata una rotazione attorno al punto O esterno alla figura di verso antiorario e angolo 80 Nella figura a fianco è rappresentata una rotazione attorno al punto O interno alla figura, di verso antiorario e angolo 90
6 pag. 6 Come individuare l angolo di rotazione se conosciamo il centro O Per individuare l angolo e il verso di rotazione in due figure che si corrispondono in una rotazione è sufficiente unire due punti corrispondenti (ad esempio B e B ) con il centro O misurare l angolo con il goniometro. Il verso è da B a B. Come individuare il centro di rotazione, l angolo di rotazione e il verso Date le due figure ABCD e A'B'C'D': 1. Unisci almeno tre coppie di vertici corrispondenti (BB, CC, DD ) 2. Traccia gli assi dei tre segmenti ottenuti (BB', CC', DD') 3. Se i tre assi si incontrano nello stesso punto, il punto di incontro è il centro di rotazione. 4. Unisci il di incontro degli assi con due vertici corrispondenti. L angolo compreso fra i due segmenti è l angolo di rotazione 5. Costruisci un arco di centro O e raggio A. Il verso di rotazione va da
7 5. La simmetria assiale LEZIONI GEOMETRIA pag. 7 Punti simmetrici Due punti A e A' sono simmetrici rispetto ad una retta s quando hanno la stessa distanza dalla retta s e la retta s è asse di simmetria del segmento AA'. La retta s è detta asse di simmetria. Poligoni simmetrici Due poligoni sono simmetrici rispetto a una retta s se i vertici corrispondenti sono simmetrici rispetto a s, cioè ogni coppia di punti corrispondenti sono alla stessa distanza dalla retta. Due figure simmetriche sono sempre congruenti, ma opposte. Invarianti e varianti di una simmetria assiale Invarianti 1. la lunghezza dei lati corrispondenti 2. l'ampiezza degli angoli corrispondenti Varianti 1. l'orientamento della figura F rispetto alla figura F'. Pertanto si dice che: Due figure corrispondenti in una simmetria assiale sono inversamente congruenti, cioè opposte
8 pag. 8 Altri esempi di simmetria assiale L'asse di simmetria attraversa il poligono Osserva bene la disposizione dei punti rispetto alla retta. il simmetrico di B è a sinistra della retta il simmetrico di A è a destra Il quadrato è simmetrico di se stesso rispetto la retta che lo attraversa nei punti medi dei lati. La retta è detta asse di simmetria del quadrato Analizza tutti i quadrilateri studiati. Individua in essi tutti gli assi di simmetria Come costruire due punti simmetrici rispetto ad una retta Per costruire due punti simmetrici rispetto a una retta r si procede con il compasso nel seguente modo: 1. Si punta il compasso sul punto A in modo da tagliare la retta r in due punti C e D (fig. 1); 2. Con la stessa apertura si punta su C e poi su D in modo da tracciare due archi (fig. 2) 3. Il punto di intersezione dei due archi, detto A', è simmetrico al punto A rispetto la retta r 4. Tracciare gli archi e il segmento AA' con la matita Tracciare la retta r e i punti A e A' con una penna
9 Figure dotate di assi di simmetria LEZIONI GEOMETRIA pag. 9 Una figura è dotata di assi di si mmetria quando esiste una retta tale che, per ogni punto della figura, anche il suo simmetrico appartiene alla figura 1. Il quadrato ha 4 assi di simmetria 2. Il triangolo equilatero ha tre assi di simmetria Esercizi Individua tutti i quadrilateri e triangoli che hanno uno o più assi di simmetria. Disegna i poligoni e gli assi di simmetria.
10 pag Omotetia L omotetia è una trasformazione non isometrica che comporta una dilatazione secondo una costante K detta costante di omotetia e un punto O detto centro di omotetia. K = OA' OA PROPRIETA L omotetia conserva 1. il parallellismo 2. le ampiezze degli angoli K=2 Fig. 1 A B :AB=B C :BC=C D :CD=A D :AD=2 OA =2OA OB =2OB OC =2OC OD =2OD Le dimensioni della figura ABCD sono state ingrandite due volte. Cioè sono direttamente proporzionali.
11 pag. 11 K= 1 2 Le dimensioni della figura A B C D sono la metà di quelle di ABCD. Fig. 2 Nell immagine a sinistra il centro di omotetia è interno ad ABCD Fig. 3 Centro di omotetia sul vertice C fig. 4
12 pag. 12 Omotetia inversa. A B C D è dalla parte opposta rispetto O. Una simmetria centrale è una omotetia inversa di K=1 fig. 5 Osserva questo esempio di omotetia inversa di cui O è interno ad ABCD. Sembra uguale alla fig. 3. Quale differenza noti? Fig. 6
C C B B. Fig. C4.1 Isometria.
4. Isometrie 4.1 Definizione di isometria Date due figure congruenti è possibile passare da una all altra con una trasformazione. Una trasformazione geometrica in un piano è una funzione biunivoca che
1 Congruenza diretta e inversa
1 Congruenza diretta e inversa PROPRIETÀ. La congruenza tra due figure piane mantiene inalterata la lunghezza dei segmenti e l ampiezza degli angoli; ciò che cambia è la posizione delle figure nel piano.
TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 3
TRASFORMAZIONI GEOMETRICHE NEL PIANO Parte 3 Le Isometrie trasformazioni geometriche che lasciano invariate la forma e le dimensioni delle figure I movimenti Traslazioni Rotazioni Ribaltamenti Principali
Studiare una trasformazione geometrica significa prendere in esame i cambiamenti che ha prodotto nella figura trasformata e ciò che invece
Studiare una trasformazione geometrica significa prendere in esame i cambiamenti che ha prodotto nella figura trasformata e ciò che invece ha lasciato inalterato. Si chiama trasformazione geometrica un
Angoli al centro e alla circonferenza
Angoli al centro e alla circonferenza angolo al centro se il vertice coincide con il centro del cerchio proprietà ad angoli uguali corrispondono archi uguali A B angolo alla circonferenza se ha il vertice
Lavoro individuale: leggi attentamente il testo e completa il testo che trovi al termine del stesso. (10 )
Testo 1: Lavoro individuale: leggi attentamente il testo e completa il testo che trovi al termine del stesso. (10 ) Lavoro di gruppo T1: discuti assieme ai tuoi compagni il significato di quanto hai letto
Le isometrie Capitolo
Le isometrie Capitolo Simmetria centrale e assiale erifica per la classe prima COGNOME............................... NOME............................. Classe.................................... Data...............................
La composizione di isometrie
La composizione di isometrie Quello che è più interessante in una trasformazione geometrica è studiare quali effetti ha sulle figure e soprattutto valutare quali proprietà delle figure di partenza si conservano
TRASFORMAZIONI GEOMETRICHE
TRASFORMAZIONI GEOMETRICHE Def. Una trasformazione geometrica T tra i punti di un piano è una corrispondenza biunivoca che ad ogni punto P del piano associa uno e un solo punto P' appartenente al piano
Trasformazioni geometriche del piano. 3 marzo 2013
Trasformazioni geometriche del piano 3 marzo 2013 1 Indice 1 Trasformazioni geometriche del piano 3 1.1 Affinità............................... 4 1.2 Isometrie.............................. 8 1.2.1 Simmetrie..........................
Le trasformazioni geometriche
Un trasformazione geometrica t è una corrispondenza biunivoca che fa corrispondere ad un punto P del piano un altro punto P, ad una figura F una figura F. Il punto P si dice il trasformato di P secondo
1 La traslazione. 2 La composizione di traslazioni. 3 La rotazione
1 La traslazione Per poter applicare una traslazione ad una generica figura geometrica si deve: ± creare il vettore di traslazione AB mediante il comando Vettore tra due punti; ± cliccare con il mouse
I I. è un affinità, avente la matrice della trasformazione uguale a: A 1 x A2. Proprietà invarianti
TRAFORMAZON Una trasformazione (geometrica) è una funzione iunivoca fra i punti del piano. Un punto si dice unito rispetto ad una data trasformazione se il suo corrispondente è se stesso. Una retta si
1 L omotetia. i punti O, A e A siano allineati
1 L omotetia DEFINIZIONE. Dato un punto O ed un numero reale k, si dice omotetia di centro O e rapporto k, quella trasformazione del piano che associa ad ogni punto A il corrispondente punto A tale che
punti uniti rette di punti uniti rette unite qual è la trasformazione inversa
3) Dì quali sono i punti uniti, le rette di punti uniti, le rette unite di una a) simmetria centrale b) simmetria assiale c) traslazione d) rotazione e) omotetia Simmetria centrale: si ha un solo punto
4.3 PROBLEMI TIPO. 1. Determinare l asse di simmetria, data una figura e la sua simmetrica. (scheda 2)
4.3 PROBLEMI TIPO Le situazioni descritte rappresentano alcuni problemi standard che riguardano lo studio della simmetria assiale. Considerata la potenzialità del software Cabrì Geometre e la possibilità
LE TRASFORMAZIONI GEOMETRICHE
LE TRASFORMAZIONI GEOMETRICHE LA SIMMETRIA ASSIALE Definizione: il simmetrico P di un punto P, rispetto alla simmetria assiale di asse r gode delle seguenti proprietà: P e P sono equidistanti da r e il
I MOVIMENTI E LA CONGRUENZA DI FIGURE GEOMETRICHE
I MOVIMENTI E L ONGRUENZ DI FIGURE GEOMETRIHE Due figure geometriche F ed F' sono congruenti se, sovrapposte mediante movimenti che non le deformino, coincidono perfettamente. G E D ' G' E' D' ' G' G EE'
Le trasformazioni geometriche nel piano cartesiano. x = ϕ(x', y') τ 1 : G(x', y') = 0. la sua inversa.
τ : P P' oppure P'=τ(P) P immagine di P trasformato di P secondo τ se α è una figura geometrica α =τ(α) è la figura geometrica trasformata x' = f (x, y) τ : y' = g(x, y) espressione analitica della trasformazione
Disegna la figura di cui vuoi la trasformata e gli oggetti (asse o centro di simmetria, vettore,...) che caratterizzano la trasformazione
LE TRASFORMAZIONI IN CABRI Per ottenere la figura immagine di una figura data in una trasformazione Disegna la figura di cui vuoi la trasformata e gli oggetti (asse o centro di simmetria, vettore,...)
Gli esercizi assegnati all esame saranno varianti di alcuni degli esercizi seguenti
Gli esercizi assegnati all esame saranno varianti di alcuni degli esercizi seguenti 1.1) Su un piano α (trasparente) sia tracciato un triangolo equilatero. Si consideri un piano β parallelo ad α e raggi
ˆ b, si usa la convenzione di prendere. come verso positivo quello antiorario e come verso negativo quello orario.
Capitolo 4 Le rotazioni 4.1 Richiami di teoria E' opportuno ricordare che, dato un angolo orientato ao ˆ b, si usa la convenzione di prendere come verso positivo quello antiorario e come verso negativo
Un approccio costruttivo alle trasformazioni geometriche del piano
Un approccio costruttivo alle trasformazioni geometriche del piano Le cosiddette trasformazioni geometriche elementari del piano sono corrispondenze bigettive, del piano su se stesso, caratterizzate dalla
Costruzioni geometriche. (Teoria pag , esercizi )
Costruzioni geometriche. (Teoria pag. 81-96, esercizi 141-153 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda: due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente
ESERCITAZIONE INVALSI GEOMETRIA PIANA FEBBRAIO 2012
ESERCITAZIONE INVALSI GEOMETRIA PIANA FEBBRAIO 2012 G 1 : Considera la corona circolare formata da due cerchi aventi il raggio uno il doppio dell altro, l angolo al centro â e le due corde AB e A B. La
PP ', stessa direzione e stesso verso.
1 ISOMETRIE Trasformazione geometrica: corrispondenza biunivoca che ad ogni punto P del piano associa un altro punto P' dello stesso piano. Se il punto trafformato P' (immagine del punto P) coincide con
Gli angoli corrispondenti sono congruenti; I lati corrispondenti, che si dicono lati omologhi, sono in rapporto costante:
ome sai, se vuoi riprodurre una figura, puoi disegnarla perfettamente uguale rispettandone la forma e le dimensioni e cambiandone quindi solo la posizione. In questo caso la riproduci isometricamente,
Gli enti geometrici fondamentali
capitolo 1 Gli enti geometrici fondamentali 1. Introduzione 1 2. La geometria euclidea come sistema ipotetico-deduttivo 2 Teoremi e dimostrazioni, 3 3. Postulati di appartenenza 4 4. Postulati di ordinamento
Le Isometrie e il piano cartesiano
Le Isometrie e il piano cartesiano Generalità piano Gli enti geometrici del piano come punti, rette, angoli, poligoni,... possono essere spostati sul TRSLTI v RILTTI RISPTTO UN RTT r Francesca Incensi
TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 1
TRASFORMAZIONI GEOMETRICHE NEL PIANO Parte 1 La geometria è la scienza che studia la forma e l estensione dei corpi e le trasformazioni che questi possono subire. In generale per trasformazione geometrica
Lezione 5 Geometria Analitica 1
Lezione 5 Geometria Analitica 1 Donato A Ciampa In questa lezione richiameremo alcune nozioni della geometria analitica, quali le trasformazioni del piano in se stesso e le varie equazioni relative alla
TRASFORMAZIONI GEOMETRICHE E FUNZIONI
TRASFORMAZIONI GEOMETRICHE E FUNZIONI La trasformazione geometrica del piano in sé è una corrispondenza biunivoca tra i punti di un piano; è indicata con t ed è un applicazione del piano in se che trasforma
Due rette si dicono INCIDENTI se hanno esattamente un punto in comune, altrimenti si dicono PARALLELE.
Riepilogo di Geometria: Assioma A1 Per tutte le coppie di punti P,Q dell insieme S è assegnato un numero reale (=)> 0, che si dice distanza di P da Q e si indica don d(p,q) 1- Se i punti P,Q sono distinti
Cosa puoi dire del quadrilatero ABCD? Come sono i lati, le diagonali, gli angoli?
Dal parallelogramma al rombo (fase 1 e 2) Fase 1 Disegna due circonferenze concentriche c e c di centro O; disegna su c un punto A e su c un punto B; traccia la retta r passante per i punti A e O, chiama
LE TRASFORMAZIONI GEOMETRICHE
Lezione 8 3/11/2017 LE TRASFORMAZIONI GEOMETRICHE Narciso di Caravaggio I sette tipi di fregi TRASFORMARE Ogni giorno facciamo esperienza di trasformazioni nello spazio: ci si sposta nello spazio si
A B C D E F G H I L M N O P Q R S T U V Z
IL VOCABOLARIO GEOMETRICO A B C D E F G H I L M N O P Q R S T U V Z A A: è il simbolo dell area di una figura geometrica Altezza: è la misura verticale e il segmento che parte da un vertice e cade perpendicolarmente
LA GEOMETRIA EUCLIDEA. Seminario Cidi, Roma 13/05/ prof.ssa Dario Liliana 1
LA GEOMETRIA EUCLIDEA Seminario Cidi, Roma 13/05/2013 - prof.ssa Dario Liliana 1 Le difficoltà degli studenti nell apprendere la geometria nel 1 anno della scuola secondaria Gli argomenti della geometria
TRASFORMAZIONE PRIMA SELEZIONE SELEZIONE SUCCESSIVA
Come ottenere la figura immagine di una figura data Disegna la figura di cui vuoi la trasformata e gli oggetti (asse o centro di simmetria, vettore,...) che caratterizzano la trasformazione Clicca sul
1 L'omotetia. 2 Il teorema del rapporto dei perimetri e delle aree di due triangoli simili
1 L'omotetia Per definire un'omotetia bisogna disegnare una generica figura nel piano (nel nostro caso utilizzeremo un triangolo), un punto (il centro dell'omotetia) e un numero (il rapporto k dell'omotetia).
LE ISOMETRIE. Esplorare la Geometria. Percorso di didattico con Geogebra
G E O M E T R I A Esplorare la Geometria LE ISOMETRIE Percorso di didattico con Geogebra I.T.C.G. E. Fermi Via Firenze 51, Pontedera Telefono: 0587 213400 www.itcgfermi.it I Introduzione Lo scopo di questo
geometriche. Parte Sesta Trasformazioni isometriche
Parte Sesta Trasformazioni isometriche In questa sezione di programma di matematica parliamo della geometria delle trasformazioni che studia le figure geometriche soggette a movimenti. Tali movimenti,
METODI E TECNOLOGIE PER L INSEGNAMETO DELLA MATEMATICA. LEZIONE n 13
METODI E TECNOLOGIE PER L INSEGNAMETO DELLA MATEMATICA LEZIONE n 13 Parte terza TRASFORMAZIONI GEOMETRICHE Dalle indicazioni nazionali: Descrivere, denominare e classificare figure geometriche, identificando
Didattica della Matematica 1 e Didattica della Matematica e della Fisica - classi A047 e A049 Trasformazioni geometriche
Didattica della Matematica 1 e Didattica della Matematica e della Fisica - classi A047 e A049 Trasformazioni geometriche anno acc. 2013/2014 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi
La geometria con il CABRI
La geometria con il CABRI Cabrì è un micromondo dove si "materializzano" gli enti astratti della geometria elementare del piano (punti, rette, angoli, figure) sotto forma di disegni, su "fogli virtuali"
Costruzioni geometriche. ( Teoria pag , esercizi 141 )
Costruzioni geometriche. ( Teoria pag. 81-96, esercizi 141 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda ; due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente
Circonferenza e cerchio
Cerchio e circonferenza - 1 Circonferenza e cerchio La circonferenza è il luogo geometrico dei punti del piano equidistanti da un unico punto detto centro. Il cerchio è l insieme costituito dai punti appartenenti
f : A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che si può invertire.
Consideriamo l insieme P dei punti del piano e una f funzione biiettiva da P in P: f : { P P A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che
Circonferenza e cerchio
Circonferenza e cerchio Def. La circonferenza è la linea chiusa formata dall insieme di tutti i punti di un piano che hanno la stessa distanza da un punto detto centro della circonferenza. La distanza
3 Omotetie del piano. 4 Omotetie del piano. Fondamenti e didattica della matematica B. Geometria delle similitudini. k = 3.
1 2 Fondamenti e didattica della matematica B 5 marzo 2007 Geometria delle similitudini Marina Bertolini ([email protected]) Dipartimento di Matematica F.Enriques Università degli Studi di
RECUPERO LE TRASFORMAZIONI GEOMETRICHE NEL PIANO CARTESIANO
RECUPER LE TRSFRMZINI GEMETRICHE NEL PIN CRTESIN La traslazione di punti, rette, parabole secondo un vettore assegnato 1 Data la retta r di equazione 0 e la traslazione secondo il vettore v (; ), scrivi
COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - A PT
1 COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - A PT Scheda 1: Fondamenti di geometria analitica 1. Determina il punto P dell asse y che forma con A(; ) e B(; ) un triangolo
COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - VE
1 COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - VE Scheda 1: Fondamenti di geometria analitica 1. Determina il punto P dell asse y che forma con A(; ) e B(; ) un triangolo
I TRIANGOLI. Geogebra l Triangoli COSTRUZIONE DEL TRIANGOLO ISOSCELE
I TRIANGOLI COSTRUZIONE DEL TRIANGOLO ISOSCELE Come sai il triangolo isoscele ha due lati della stessa lunghezza. Costruiamo il triangolo isoscele a partire dal lato disuguale. 1. Apri il programma Geogebra
Tassellazioni del piano
Tassellazioni del piano Livello scolare: 1 biennio Abilità interessate Individuare e riconoscere proprietà di figure del piano e dello spazio. Individuare proprietà invarianti per isometrie nel piano.
Trasformazioni geometriche nel piano: dalle isometrie alle affinità
Trasformazioni geometriche nel piano: dalle isometrie alle affinità Le trasformazioni geometriche In generale una trasformazione geometrica è una corrispondenza biunivoca del piano in sé, ossia associa
IL TRIANGOLO. Teorema di Pitagora. Il triangolo è un poligono avente tre lati.
IL TRIANGOLO Il triangolo è un poligono avente tre lati. FORMULE AREA: Il triangolo è equivalente a metà parallelogramma. A = (b x h) : da cui: b= A : h e h= A : b TRIANGOLO RETTANGOLO (a, b cateti; c
Condizione di allineamento di tre punti
LA RETTA L equazione lineare in x e y L equazione: 0 con,,, e non contemporaneamente nulli, si dice equazione lineare nelle due variabili e. Ogni coppia ; tale che: 0 si dice soluzione dell equazione.
GEOMETRIA. Congruenza, angoli e segmenti
GEOMETRIA Per affermare che un triangolo è isoscele o rettangolo oppure che un quadrilatero è un parallelogramma o un rettangolo o un rombo o un quadrato o un trapezio o un trapezio isoscele, c è sempre
TRIANGOLI CLASSIFICAZIONE DEI TRIANGOLI RISPETTO AI LATI. Def: Si dice triangolo un poligono che ha 3 lati e 3 angoli.
TRIANGOLI Si dice triangolo un poligono che ha 3 lati e 3 angoli. Proprietà: in ogni triangolo la somma di due lati è sempre maggiore del terzo lato. CLASSIFICAZIONE DEI TRIANGOLI RISPETTO AI LATI SCALENO:
Raccolta di problemi sulla omotetia
Problemi sulla omotetia. Eserciziario ragionato con soluzioni. - 1 Raccolta di problemi sulla omotetia 1. Il rapporto di omotetia può essere negativo? 2. Il rapporto di omotetia può essere nullo? Motiva
1. costruzione di un TRIANGOLO ISOSCELE di assegnati lati
LABORATORIO DI GEOMETRIA COSTRUZIONI DI BASE DI POLIGONI 1. costruzione di un TRIANGOLO ISOSCELE di assegnati lati Si costruisce un segmento AB, base del triangolo, ed un segmento CD, lato obliquo. Si
I quadrilateri Punti notevoli di un triangolo
I quadrilateri Capitolo Quadrilateri 1 erifica per la classe prima COGME............................... ME............................. Quesiti 1.a ero o falso? 1. La somma degli angoli interni di un ottagono
Trasformazioni Geometriche 1 Roberto Petroni, 2011
1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni
GEOMETRIA ANALITICA
GEOMETRIA ANALITICA [email protected] LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate cartesiane su una retta r, è necessario considerare: un punto O detto origine; un
FUNZIONI GONIOMETRICHE
FUNZIONI GONIOMETRICHE Misura degli angoli Seno, coseno e tangente di un angolo Relazioni fondamentali tra le funzioni goniometriche Angoli notevoli Grafici delle funzioni goniometriche GONIOMETRIA : scienza
Problemi sull ellisse
1 equazione dell ellisse Determina l equazione di un ellisse che ha i fuochi sull asse delle ascisse, semiasse maggiore lungo 6 e distanza focale uguale a 6 + yy Scrivi l equazione dell ellisse con i fuochi
Giochi con due specchi. (Laboratorio sulla simmetria rotazionale)
Giochi con due specchi. (Laboratorio sulla simmetria rotazionale) Prima parte. Abbiamo a disposizione alcune coppie di specchi, dei piccoli oggetti (poligoni, matite, palline), alcuni disegni. Tra due
LA RETTA NEL PIANO CARTESIANO
LA RETTA NEL PIANO CARTESIANO LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate cartesiane su una retta r, è necessario considerare: un punto O detto origine; un verso di percorrenza;
in forma matriciale: X = A X + B, cioè Se il det A = ad - bc è diverso da zero, la trasformazione è invertibile e quindi biunivoca; in tal caso la
TRASFORMAZIONI LINEARI SUL PIANO Sono trasformazioni lineari tutte le trasformazioni del tio: a b c d q in forma matriciale: X A X B, cioè a c b d q Dove a A c b d è la matrice della trasformazione. Se
GEOGEBRA. Nella scuola del Primo Ciclo
GEOGEBRA Nella scuola del Primo Ciclo GEOGEBRA GeoGebra è un software gratuito di matematica dinamica. In questi due incontri saranno utilizzati solo gli strumenti geometrici Con questo software è possibile
LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI
LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI 1. La circonferenza e il cerchio ESERCIZI 1 A Disegna un triangolo ABC di altezza CH relativa ad AB. Fissa un segmento ED minore di CH. Determina il
Geometria Anali-ca. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica L ELLISSE
Geometria Anali-ca DOCENTE: Vincenzo Pappalardo MATERIA: Matematica L ELLISSE INTRODUZIONE L ellisse fa parte di un insieme di curve (circonferenza, parabola, iperbole) chiamate coniche, perché si possono
Dispensa di Disegno Tecnico
Dispensa di Disegno Tecnico Modulo 1 Primo Quadrimestre Scuola Bottega Artigiani di San Polo Onlus Ed. 2016-2017 Docente: Carlo Colombini DISPENSA DI DISEGNO TECNICO 1 È più facile fare bene un lavoro
Anno Scolastico 2015/16 PROGRAMMAZIONE ANNUALE CLASSE SECONDA LICEO LINGUISTICO LICEO DELLE SCIENZE UMANE LICEO ECONOMICO-SOCIALE LICEO MUSICALE
LICEO LAURA BASSI - BOLOGNA Anno Scolastico 2015/16 PROGRAMMAZIONE ANNUALE CLASSE SECONDA LICEO LINGUISTICO LICEO DELLE SCIENZE UMANE LICEO ECONOMICO-SOCIALE LICEO MUSICALE MATEMATICA ARGOMENTI: EQUAZIONI
TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 2
TRASFORMAZIONI GEOMETRICHE NEL PIANO Parte 2 La simmetria L'etimologia della parola simmetria è greca. = stessa misura Per estensione, se ne amplia il significato ad espressioni del tipo 'equilibrio fra
LA CIRCONFERENZA DEFINIZIONI. Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro.
LA CIRCONFERENZA DEFINIZIONI Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro. Un cerchio è una figura piana formata dai punti di una circonferenza
COMUNICAZIONE N.4 DEL
COMUNICAZIONE N.4 DEL 7.11.2012 1 1 - PRIMO MODULO - COSTRUZIONI GEOMETRICHE (4): ESEMPI 10-12 2 - SECONDO MODULO - APPLICAZIONI DI GEOMETRIA DESCRITTIVA (4): ESEMPI 19-25 PRIMO MODULO - COSTRUZIONI GEOMETRICHE
GEOMETRIA ANALITICA Prof. Erasmo Modica
ISTITUTO PROVINCIALE DI CULTURA E LINGUE NINNI CASSARÀ SEZIONE DISTACCATA DI CEFALÙ CLASSE V C GEOMETRIA ANALITICA Prof. Erasmo Modica LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate
a) S/ 4; b) S/ 8; c) S/12; d) S/16; e) Nessuna delle precedenti. 2. Due triangoli sono congruenti se hanno congruenti:
1. Sia ABC un triangolo equilatero di area S. Siano L, M, N, i punti medi dei lati AB, BC, CA, e E, F, D, i punti medi dei lati LM, MN, NL.. L area del triangolo DEF è uguale a: a) S/ 4; b) S/ 8; c) S/12;
Trasformazioni geometriche
Trasformazioni geometriche Generalità sulle trasformazioni geometriche Una trasformazione geometrica è una corrispondenza biunivoca, quindi una funzione, che associa a un punto P del piano in un punto
Programma di Matematica svolto durante l anno scolastico nella classe 2 sez.e
Programma di Matematica svolto durante l anno scolastico 2015-2016 nella classe 2 sez.e ALGEBRA 1) Richiami sul calcolo letterale e sulle equazioni algebriche lineari ad una incognita. 2) Disequazioni
In un triangolo altezza mediana bisettrice asse Proprietà di angoli e lati di un triangolo
In un triangolo si dice altezza relativa a un lato il segmento di perpendicolare al lato condotta dal vertice opposto. Si dice mediana relativa a un lato il segmento che unisce il punto medio del lato
TRASFORMAZIONI LINEARI SUL PIANO
TRASFORMAZIONI LINEARI SUL PIANO Sono trasformazioni lineari tutte le trasformazioni del tio: a b c d in forma matriciale: X A X B, cioè a c b d Dove a A c b d è la matrice della trasformazione. Se il
La circonferenza e il cerchio
La circonferenza e il cerchio Def. Circonferenza Si dice circonferenza una linea piana chiusa formata dall insieme dei punti che hanno la stessa distanza da un punto detto centro. Si dice raggio di una
I criteri di similitudine introdotti a partire dalle trasformazioni
I criteri di similitudine introdotti a partire dalle trasformazioni Cinzia Cerroni, Rosa Conforto, Leo Maggio Introduzione La scelta metodologica di introdurre i criteri di similitudine a partire dalle
Poligoni. Enti geometrici fondamentali. Formati dei fogli. Squadratura del foglio
Poligoni Enti geometrici fondamentali Gli enti geometrici fondamentali sono le rette e le curve. I segmenti sono frammenti di retta, mentre gli archi sono frammenti di curva. Un angolo esprime l inclinazione
